Кроме передачи электронов, отрицательный заряд катода обусловлен свойствами вещества, из которого изготавливается катод.
EMD: Ученые изготовили эффективные органические катоды для цинк-ионных батарей
Короткое время заряда/разряда разработанных калиевых источников тока на органической основе позволяет рассматривать их как альтернативу суперконденсаторам. Известно, что многослойные катоды LMR подвержены явлению, известному как «утечка напряжения», которое влечет за собой быстрый износ катодов и потерю заряда в батарее. Плотность энергии литий-ионных аккумуляторов может быть улучшена за счет сохранения заряда при высоких напряжениях за счет окисления оксидных ионов в материале катода. Исследователи из Токийского столичного университета разработали новый квазитвердотельный катод для твердотельных литий-металлических батарей со значительно сниженным. В данном разделе вы найдете много статей и новостей по теме «катоды». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из рецензируемых.
Китайская CATL представила первые натрий-ионные аккумуляторы для электромобилей
Тяговые батареи нового поколения могут быть созданы на основе перспективных катодных материалов, представляющих собой сложные оксиды лития и переходных металлов с избыточным содержанием лития. Такие материалы обеспечивают рекордную на сегодняшний день электрохимическую ёмкость за счёт участия в окислительно-восстановительных реакциях как катионов переходных металлов никель и кобальт , так и анионов кислорода. К сожалению, из-за разницы напряжений заряда и разряда гистерезис напряжения работа такого аккумулятора сопровождается потерями энергии, что создаёт препятствие для практического использования. Одновременно катодный материал должен отдать или принять эквивалентное количество электронов, чтобы сохранить электронейтральность. В нашей работе показано, что кинетические затруднения и энергетические барьеры связаны не только с перемещением катионов лития, но в значительной степени с перемещением электронов.
В связи с ростом использования электромобилей и систем хранения энергии в масштабах энергосистемы, необходимость изучения альтернатив литий-ионным батареям как никогда высока. Одной из таких замен являются металл-кальциевые батареи. Кальций, как пятый по распространённости элемент в земной коре, широко доступен и недорог, а также у него более высокий потенциал плотности энергии, чем у лития. Также считается, что его свойства помогают ускорить перенос ионов и диффузию в электролитах и катодных материалах, что даёт ему преимущество перед другими альтернативами литиевым батареям — такими, как магний и цинк.
Температура больше не повышается, и аккумулятор возвращается в привычный режим работы», — рассказала капитан команды, магистрантка направления «Физика» Анна Никитенко. Такой способ имеет ряд преимуществ. Его внедрение на предприятиях не потребует перестройки производственной цепочки и, следовательно, больших вложений. Помимо этого, новая катодная масса будет в каждом аккумуляторе устройства, в то время как, например, выключатель прикрепляется только к одному из них, и если нагревание батареи начнется не с него, то сигнал о неполадках придет с опозданием. Еще один плюс проекта состоит в том, что изменения в катоде не отразятся на размере исходного изделия, что упростит масштабирование технологии в производство. Ребята планируют сотрудничать с производителями аккумуляторов для мобильных телефонов, бытовой техники и автомобилей, а также с изготовителями крупных промышленных батарей, например, для подводных лодок или электрокаров, предлагая предприятиям готовый продукт или лицензию на свою разработку. Студенты уже ведут переговоры с некоторыми компаниями. Команды, представившие самые наукоемкие и коммерчески перспективные бизнес-модели, получат денежные призы от эндаумент-фонда СПбГУ. Первое место принесет 300 000 рублей, второе — 200 000 рублей, а третье — 100 000 рублей. Кроме того, двум победившим командам могут предложить создать совместно с Университетом малые инновационные предприятия.
Титан — лёгкий серебристо-белый металл. Он находится на 10-м месте по распространённости в природе. Титан обладает очень высокой коррозионной стойкостью. Основные титансодержащие реагенты легко доступны, устойчивы и не токсичны.
Ученые сформулировали новую теорию о жизни после смерти
- Содержание
- Как здания влияют на микробиом и здоровье человека
- Другие новости
- Новосибирский завод «Катод» поставил приборы ночного видения бойцам СВО
- Серебряно-цинковые
- Учёные сделали то, что уже давно нужно было сделать
Заказать звонок
- Последние комментарии
- Инженеры собрали кальций-металлический аккумулятор, выдерживающий 500 циклов зарядки / Хабр
- Андрей Травников оценил приборы ночного видения завода «Катод» для СВО
- Научились заряжать аккумулятор за несколько секунд ученые в России
Автоматическое зарядное устройство КАТОДЪ-501
Опубликовано: 19. В Шанхае Китай продолжится международная выставка водных ресурсов, сбора и обработки сточных вод и природных энергоресурсов. Подробности Опубликовано: 19. Об этом сообщили в пресс-службе компании.
Телефоны Pixabay Что если бы аккумулятор в вашем телефоне служил 70 лет, а заряжаться мог за несколько секунд? Российские ученые создали прототип такого устройства, катоды которого сделаны из полимерного материала Сегодня литиевые аккумуляторы — самые распространенные накопители энергии.
Они производятся в огромных количествах и увидеть их можно практически в каждом современном электронном устройстве. Однако, с этим видом аккумуляторов есть серьезная проблема: в состав их катодов входит кобальт, более половины запасов которого находится в одной стране — Демократической республике Конго. В будущем цена на этот элемент и аккумуляторы может сильно вырасти, если не найти ему замену в катодах. Менделеева и Института проблем химической физики РАН разрабатывают новые, так называемые двухионные аккумуляторы.
Его слоистая структура позволяет ему хранить различные катионы, включая литий, натрий и магний. Благодаря наночастицам и композиции с углеродными материалами Кису и его коллегам удалось создать катод, способный накапливать большое количество ионов кальция. При использовании электролита гидридного типа они создали батарею с очень стабильными показателями работы в течение многих циклов.
LiFePO4 отличается высокой структурной и химической устойчивостью при циклировании, а также нетоксичностью и доступностью.
Однако у него очень низкая электронная и литий-ионная проводимость и, как следствие, неудовлетворительная циклируемость при больших токах. Однако в ходе многочисленных исследований были разработаны разнообразные методы для улучшения свойств LiFePO4. Например, нанести на поверхность частиц слой высокопроводящего углеродного покрытия, в результате чего электронная проводимость материала может возрасти многократно Ravet, Armand, 1999. Этому же способствует, например, и допирование материала катода алюминием, цирконием и другими металлами Chiang, 2002. Время российского «нано»? В 2000 г. Ямато Sony первым показал, что в наноразмерном состоянии железофосфат лития способен работать даже при высоких скоростях заряда-разряда. На сегодняшний день наноразмерные композиты железо-фосфата лития и углерода практически не уступают по электрохимическим показателям другим известным катодным материалам. Поэтому они являются перспективными для использования в гибридных энергетических системах и крупногабаритных аккумуляторах для электромобилей, где большое значение имеют цена и безопасность.
С чем же связано улучшение мощностных характеристик электродных материалов, особенно с низкой электронно-ионной проводимостью, при повышении их дисперсности? Это приводит к ускорению ионного транспорта и, соответственно, процессов заряда-разряда в аккумуляторах. Меньшие по размеру частицы также лучше адаптируются к объемным изменениям в ходе внедрения и экстракции ионов лития, что способствует повышению структурной стабильности материалов. С увеличением дисперсности наблюдается и повышение электрохимической емкости. Особенность этого способа в том, что синтез наночастиц LiFePO4 из исходных реагентов идет параллельно с модифицированием поверхности этих частиц углеродом. В 2011 г. В сфере литий-ионных аккумуляторов все происходит на удивление быстро. Так, кобальтат лития был предложен в качестве катодного материала в 1986 г. Синтезировать железо-фосфат лития сложнее, к тому же он выходил на уже имеющийся рынок, однако в данном случае от идеи до внедрения прошло не более десятка лет.
И сразу же после этого многие автомобилестроительные компании, такие как Toyota, Renault, General Motors, Nissan и др. Сейчас разрабатываются новые виды литиевых аккумуляторов — литий-серные и литий-воздушные. При использовании кислорода воздуха в качестве катода плотность аккумулирования энергии может увеличиться в 5—10 раз! Рекордные значения удельной энергии и емкости, характерные для литий-воздушных аккумуляторов, а также низкая стоимость реагентов объясняют большой практический и экономический интерес к этой теме.
Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов
Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий - все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов. PDPAPZ напротив оказался достаточно удачным материалом: литиевые полуячейки с этим полимером могли сравнительно быстро заряжаться и разряжаться, а также показали хорошую стабильность. Они сохраняли до трети своей ёмкости даже после 25 тысяч рабочих циклов - если бы обычный аккумулятор в телефоне обладал такой же стабильностью, то его можно было бы ежедневно заряжать и разряжать на протяжении 70 лет. Таким образом, российские ученые показали, что разработанные полимерные катодные материалы можно использовать для создания эффективных литиевых и калиевых двухионных аккумуляторов, сообщает пресс-служба Российского химико-технологического университета им.
Таким образом исследователи создали анод, включив тонкодисперсные активные материалы в пористый углерод МО-каркас. Полученный материал обладал высочайшей кинетикой, позволяя быструю зарядку, и приблизил его по этому параметру к суперконденсаторам. Похожим образом, но с использованием других материалов, был создан катод, отличающийся рекордной ёмкостью.
Тем самым учёные как бы сократили дисбаланс в характеристиках между аккумуляторными анодами и катодами суперконденсаторов. Созданный в лаборатории прототип гибридного натриево-ионного аккумулятора превзошёл по плотности энергии коммерческие литиево-ионные аккумуляторы как показано на графике выше и показал характеристики плотности мощности, свойственные суперконденсаторам.
У первых хромает скорость заряда, а вторые не отличаются высокой ёмкостью. Поэтому учёные пошли по пути создания объёмных электродов на основе пористых 3D-материалов — так называемых металлорганических каркасов. Если есть каркас, то туда всегда можно поместить что-то нужное. Таким образом исследователи создали анод, включив тонкодисперсные активные материалы в пористый углерод МО-каркас. Полученный материал обладал высочайшей кинетикой, позволяя быструю зарядку, и приблизил его по этому параметру к суперконденсаторам.
Батарея пережила 200 циклов заряда и разряда, сохраняя кулоновскую эффективность отношение заряда, который батарея отдает при разряде, к тому, который необходим для заряда около 99 процентов. Чтобы выяснить причины такой неожиданной стабильности, авторы аккуратно вскрыли батарею и изучили ее содержимое с помощью сканирующей электронной микроскопии, рентгеновской фотоэлектронной спектроскопии и масс-спектрометрии. Они обнаружили, что во время первого разряда образующийся NaCl в основном осел на пористом углеродном катоде, а при последующем заряде хлорид ионы из NaCl окислились до молекулярного хлора Cl2.
При последующем разряде хлор снова восстанавливается до хлорид-иона Cl-. Обратимые заряд и разряд стали возможны благодаря наличию множества пор в катоде, которые могут аккумулировать образующийся хлор. Хлор — активный газ, который может вступить в реакцию и с анодом и с компонентами электролита, но пока он находится в порах катода, вся система остается стабильной. Причем, судя по всему, для удерживания хлора лучше всего подходят микропоры размером менее 2 нанометров. Чтобы проверить эту гипотезу, авторы изготовили несколько ячеек с катодом из другого пористого материала — ketjenblack carbon black. Этот материал имеет удельный объем пор даже больше, чем у аморфных углеродных наносфер, но большая часть его приходится на мезопоры размером от 2 до 50 нанометров. Ячейка с крупнопористым катодом из ketjenblack carbon black тоже показала обратимый разряд и заряд, но проработала всего сорок циклов, а затем ее кулоновская эффективность резко стала уменьшаться.
Новосибирский завод «Катод» изготовил сложнейшее оборудование для участников спецоперации
Губернатор Андрей Травников во время выездного совещания на площадке АО «Катод» обсудил вопросы поддержки воинских подразделений, участвующих в СВО. Литий-ионная батарея заряжается и разряжается в процессе движения ионов лития между двумя электродами — анодом и катодом. Выяснилось, что на межзёренных границах отрицательного электрода (на катоде) в процессе заряда и разряда батарей с твёрдым электролитом скапливаются электроны.
Катод и анод
В данном разделе вы найдете много статей и новостей по теме «катоды». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из рецензируемых. Категория: Новости РЖД. Опубликовано: 19 августа 2022. Рельсовый автобус «Орлан» между Екатеринбургом и Челябинском планируют запустить в октябре 2022 года. Проблема заключалась в том, что катоды на основе подобных соединений отличаются относительно низким содержанием ионов натрия и энергоемкостью.
Ионные жидкости произвели фурор в твердотельных литий-металлических батареях следующего поколения
Такие катоды могут выдерживать до 25000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных аккумуляторов. У аккумуляторов полярность на аноде и катоде изменяется от того, работает он как гальванический элемент (при разряде) или как электролизёр (при заряде). Категория: Новости РЖД. Опубликовано: 19 августа 2022. Рельсовый автобус «Орлан» между Екатеринбургом и Челябинском планируют запустить в октябре 2022 года. Знание того, какой заряд имеет катод, является ключевым для понимания его функции и влияния на электролитические. Новости электроники, справочник радиолюбителя, электронные компоненты, радиодетали. Известно, что многослойные катоды LMR подвержены явлению, известному как «утечка напряжения», которое влечет за собой быстрый износ катодов и потерю заряда в батарее.
Ученые создали долговечный катод для натрий-ионных аккумуляторов
Со временем любая батарея деградирует, как известно, и выходит из строя — эдакий расходник. И как раз трещины на частицах катода связаны с таким старением. Трещины и хаотичные формы мешают переносу лития внутри частиц, как проектировали инженеры узнайте , что происходит внутри и как устроен аккумулятор смартфона. То есть в любом совершенно новом литий-ионном аккумуляторе с кобальтовым катодом оказываются проблемные частицы. Они препятствуют эффективному переносу лития, плохо воздействуют на напряжения внутри частиц и тем самым ускоряют процесс деградации. Материал неоднороден и стремится к разрушению со всеми сопутствующими рисками выхода из строя целой ячейки. Это в очередной раз доказывает нам — брак аккумулятора вероятен даже в самых дорогих и проверенных линейках потребительских устройств. Больше науки Пишите вопросы в комментарии.
В итоге снижаются потери в производительности, возникающие в элементе под действием солнечного света. Большинство аккумуляторов для электромобилей содержат кобальт — металл, добыча которого связана с экономическими и политическими трудностями. Инженеры из США разработали литий-ионную батарею с катодом из органики вместо кобальта или никеля — она может снять зависимость индустрии электротранспорта от редких металлов. Новый тип катода дешевле, проводит электричество не хуже, а заряжает батарею быстрее кобальтового. Также по теме.
Стандартный литий-ионный аккумулятор — это ячейка объем которой заполнен литий-содержащим электролитом и разделен сепаратором на две части — в одной находится анод, а в другой катод. В заряженном состоянии большинство атомов лития встроены в кристаллическую структуру анода, а при разряде они выходят из анода и через сепаратор проникают в катодный материал. В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счет этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные. Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий — все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов.
В CATL видят несколько сценариев использования натрий-ионных источников тока: во-первых, электромобили, особенно если они эксплуатируются в регионах с холодным климатом; во-вторых, буферные накопители энергии, скажем, для солнечных батарей, где низкая масса не является важным условием. И чтобы подкрепить свои слова о перспективности разработки, компания уже приступила к промышленному внедрению натрий-ионных аккумуляторов: базовую производственную цепочку планируют полностью сформировать к 2023 году. Параллельно в CATL Research Institute продолжится работа над совершенствованием натриевых батарей: экземпляры следующего поколения будут иметь удельную ёмкость в 200 ватт-часов на килограмм и выше. Источник: CATL.
EMD: Ученые изготовили эффективные органические катоды для цинк-ионных батарей
В данном разделе вы найдете много статей и новостей по теме «катоды». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из рецензируемых. В электрохимии катод — электрод, на котором происходят реакции восстановления. Во время заряда положительным является анод, отрицательным является катод. Электрохимические процессы в LiIon аккумуляторах При разряде элементов питания ионы лития переносят заряд от анода к катоду. С целью избегания ошибок электроды таких деталей получили специальное название – анод и катод.