Желтые карлики – это, как правило, звезды средней массы, светимости и температуры поверхности. Система из двух потухших звезд, так называемых белых карликов, открыта астрономами на расстоянии восьми тысяч световых лет от Земли. Художественная иллюстрация слияния пары белых карликов, что является одной из теорий образования нового типа Рейндл/ CC BY SA 4.0. Астрофизик Роман Рафиков о дисках вокруг белых карликов, кольцах Сатурна и будущем Солнечной системы.
Красные карлики – шанс для жизни
Российские астрофизики и космологи объяснили, по какой причине все известные белые карлики – объекты масштабом с Землю, остающиеся после смерти звезды, подобной нашему. В результате слияния двух белых карликов образовалась эта странная зелёная звезда. Пример белого карлика GD 362 показывает, что жизнь после смерти действительно возможна. В обычных звёздах энергия высвобождается за счёт ядерного синтеза, но в белых карликах этот процесс уже остановлен. Следовательно, The Accident, вероятнее всего, более чем в два раза старше других известных коричневых карликов.-0. Специалисты наблюдали LP 890-9 — ближайшую карликовую звезду M спектрального класса M6V, используя спутник НАСА для исследования транзитных экзопланет (TESS).
Астрономы предсказали слияние пары белых карликов с образованием экзотической звезды
Коричневые карлики вместе со звездами начинают свои жизни, как газовые гиганты, но у них недостаточно высокая масса, чтобы сжигать ядерное топливо и излучать радиацию. Кроме очень низкой температуры, Wise J085510. Несмотря на близость к нашей солнечной системе, едва ли на Wise J085510. Дело в том, что на всех планетах, вращающихся вокруг нее, слишком холодно, чтобы на них существовала жизнь. Что касается физических характеристик, то недавно открытая звезда в 3-10 раз тяжелее Юпитера. Учитывая такую низкую массу, можно было бы предположить, что, как и Юпитер, она может быть газовым гигантом, исторгнутым своей звездной системой. Однако астрономы считают, что это, вероятно, не планета, а коричневый карлик, потому что их намного больше, чем планет, пишет Daily Mail. Новость прокомментировал для "ВМ" Владимир Курт, заведующий отделом физического института имени Лебедева Академии наук: — Эта звезда очень маленькая.
Но возможно, зона обитания красного карлика распространяется довольно далеко от карлика. Вода на планете, расположенной за зоной обитания, замерзает. Это вызывает понижение альбедо планеты и, в свою очередь, дальнейшее уменьшение получаемого тепла. Но альбедо льда выше в красной области спектра, и красные карлики не зря назвали красными.
Данное открытие уже назвали настоящим прорывом в астрономических исследованиях, учитывая, что до этого было известно лишь четыре подобных звезды. Согласно результатам исследования, которое проводила научная группа Национальной астрономической обсерватории при Академии наук КНР, содержание лития в этих звёздах в 4 раза больше, чем в Солнце. Кроме того, исследователи выяснили, что 7 из 9 обнаруженных звёзд имеют высокую скорость вращения вокруг оси — более 9 км в секунду. При этом блеск 3-х из них испытывает периодическое изменение, а ещё одна звезда входит в состав двойной звезды.
В соответствии с характеристиками изменения светимости, карликовые новые могут быть разделены на три типа: звёзды типа SS Лебедя SS Cygni, UGSS , для которых характерно увеличение яркости на 2-6m звёздных величин в течение 1-2 дней и возвращение к своей первоначальной яркости в течение нескольких последующих дней. Их нормальные короткие вспышки аналогичны звёздам типа SS Лебедя, а «сверхмаксимумы» ярче на 2m звёздные величины и продолжаются более чем в пять раз дольше, но происходят они в несколько раз реже. В «сверхмаксимуме» яркости кривые блеска имеют наложение периодических «супергорбов», чьи периоды близки к орбитальным, а изменения амплитуды составляют около 0. Их орбитальные периоды короче, чем 0,1 дня; и они имеют спутника спектрального класса M. Значения их периодов переменности от 10 до 40 дней, в то время как амплитуды изменения блеска от 2m до 5m звёздных величин. Карликовые новые отличаются от классических новых звёзд и в других отношениях.
Астрономы подтвердили редкость юпитероподобных экзопланет у карликовых звезд
Результаты исследования опубликованы в журнале The Open Journal of Astrophysics и размещены на сайте arXiv. Нам известно очень немного коричневых карликов, состоящих в таких тесных двойных связях с другими малыми звёздами. Коричневые карлики формально не подпадают под определение звёзд, занимая промежуток между крошечными звёздами и массивными планетами. Их масса примерно в 13-80 раз больше массы Юпитера, и они достаточно массивны, чтобы в их ядрах происходил синтез дейтерия, но не водорода, который питает «полноценные» звёзды. Как, по мнению художника, коричневый карлик будет выглядеть с поверхности одной из его планет Заметить их нелегко, поскольку они довольно маленькие и тусклые. В Млечном Пути известно около 5 тыс. Тем не менее, астрономы ищут такие системы.
Несмотря на то, что на данный момент учёными выявлено довольно большое количество коричневых карликов, объекты, подобные только что обнаруженными, то есть вращающимися вокруг других звёзд, являются редкой находкой. Этому только что обнаруженному космическому объекту дали обозначение TOI-5375 b. Коричневый карлик сам по себе размером с Юпитер.
Свойства и судьбы солнц определяются принадлежностью к одной из девяти «весовых категорий». Облако газа и пыли вокруг коричневого карлика иллюстрация Бурые карлики — самые лёгкие из светил. Лишь недавно стало известно, что тела массой 0,012 — 0,077 солнечных или от 12 до 77 «юпитеров» можно считать настоящими звёздами, обладающими термоядерным источником энергии. Давления в их недрах недостаточно для запуска синтеза гелия, но его хватает для протекания реакций с самым низким порогом. Термоядерным горючим для коричневых карликов служат дейтерий и литий. Бурые карлики изображён T-карлик не просто настоящие звёзды, а самая многочисленная категория звёзд. Планеты на орбитах бурых карликов уже обнаружены, но может ли там кто-то обитать — вопрос Тем не менее, отличия бурых карликов от звёзд главной последовательности велики. Температура и светимость более крупных звёзд постоянно возрастают по мере того, как водород превращается в более плотный гелий и давление в ядре увеличивается. Когда запасы горючего истощаются окончательно, карликовая звезда превращается в увеличенный аналог Юпитера. Другая любопытная особенность этих светил — неполная ионизация вещества. В их атмосферах присутствуют соединения кислорода и водорода: главным образом угарный газ и метан. Ко второй категории относятся наименьшие из звёзд главной последовательности — красные и частично оранжевые карлики массой от 0,077 до 0,5 «солнц», уже достаточной для того, чтобы четыре ядра водорода сливались в ядро гелия. Однако горение водорода в телах такой массы ещё нестабильно. Звезда пульсирует. Сжатие ведёт к увеличению давления и возрастанию интенсивности реакций, но повышенное выделение энергии влечёт за собой нагрев ядра, расширение, снижение давления и резкое замедление синтеза. Наименее стабильные карлики именуются «вспыхивающими звёздами» и считаются самой многочисленной разновидностью переменных. Несмотря на неравномерность горения, с возрастом красные и оранжевые звёзды непрерывно наращивают температуру и светимость, пока наконец не сменят цвет. Свою карьеру звезда лёгкого веса завершает уже как голубой карлик. Правда, для этого требуется невероятно много времени: от 50 миллиардов до триллиона лет. Карлики очень экономно расходуют водородное горючее, но в безмерно удалённом будущем догорят и они, превратившись в гелиевые шары, покрытые водородным панцирем. К третьей категории принадлежат оранжевые, жёлтые и жёлто-белые звёзды среднего веса — до 2,5 солнечных масс. В них водород горит стабильно, а светимость и спектр с возрастом меняются незначительно. За срок от 1 до 50 миллиардов лет с увеличением массы долговечность светила падает стремительно оранжевая звезда станет жёлтой, а жёлтая побелеет. Впечатляющие и замысловатые метаморфозы начнутся, когда водород в ядре будет израсходован. Тогда твёрдая сердцевина звезды начинает сжиматься. Выдавленные из ядра «тонущим» гелием на границу конвективной зоны остатки водорода на короткое время возобновляют реакцию, вследствие чего внешние слои вещества выталкиваются наружу, а звезда раздувается в 2,5 раза, превращаясь в яркий субгигант. Ядро же по закону сохранения импульса испытывает дополнительное сжатие — имплозию, благодаря которой температура в центре звезды кратковременно подскакивает до 100 миллионов кельвинов. А этого уже достаточно для начала термоядерных реакций с участием гелия. Горение гелия в солнцеподобной звезде прекращается почти сразу, но выделившейся за время гелиевой вспышки энергии хватает, чтобы температура в конвективной зоне возросла до миллионов градусов и горение водорода началось во всём объёме звезды. Увеличив светимость в 100 тысяч раз, а радиус в сотни раз, она превращается в красный гигант. После чего обогащённый гелием и щепоткой более тяжёлых элементов водород, слишком раскалённый, чтобы гравитация ядра могла его удержать, улетучивается. Гелиевое же ядро продолжает сжиматься, в конечном счёте превращаясь в крошечный сверхплотный белый карлик. Через несколько миллиардов лет лишённое внутреннего источника энергии тело остывает. И белый карлик становится «чёрным карликом». Звёзды четвёртой категории — белые и бело-голубые, от 2,5 до 8 солнечных масс — с возрастом даже не меняют оттенок свечения. Существенные различия с предыдущим типом обнаруживаются в момент гелиевой вспышки. Такая звезда не выходит из стадии субгиганта, ибо более сильная гравитация препятствует разлёту вещества, а выделившейся энергии оказывается недостаточно для того, чтобы воспламенить возросшую массу водорода конвективной зоны. Расширение быстро сменяется сжатием, и горение гелия в ядре «входит в режим», став цефеидой. Звезда пульсирует с чётким ритмом. Однозначная связь между периодом пульсации и светимостью позволяет измерять по таким звёздам галактические дистанции. Лишь после выгорания гелия в ядре цефеида, сжавшись в последний раз, вспыхивает по всему объёму, превращается в красный гигант и рассеивается, оставляя после себя белый карлик массой около 0,7 солнечной с заключённым в гелиевую оболочку ядром из углерода, азота и кислорода. Но в случае, если звезда была двойной а обычно так оно и есть , начинается самое интересное. Дождавшись, когда второй компонент системы войдёт в фазу красного гиганта и станет терять массу, углеродный карлик начинает захватывать чужое вещество.
Когда вещество звезды вылетает из атмосферы, оно довольно долго тормозится её магнитным полем, прежде чем сможет окончательно покинуть её. Подобно тому, как вращающийся конькобежец замедляет движение, вытягивая руки, такое распределение массы замедляет вращение звезды, что приводит к уменьшению орбиты в случае бинарных звёзд. Судя по плотной орбите в данной бинарной системе, такое «магнитное торможение», по-видимому, является эффективным процессом даже для маломассивных звёзд и коричневых карликов. Несмотря на то, что коричневый карлик меньше по размеру и массе, чем красный карлик, его поверхностная гравитация несколько выше; это, в свою очередь, означает, что по мере сближения коричневый карлик начнёт отбирать материал у красного карлика. Если магнитное торможение играет роль в сжатии орбиты, то этот обмен массой должен начаться через несколько десятков миллионов лет. Мы не увидим этого, но обнаружение этой системы так близко от нас позволяет предположить, что такие тесные маломассивные двойные звёзды встречаются довольно часто. Возможно, мы просто не обнаружили их, потому что они такие тусклые.
Астрономы нашли звезду, которая превращается в гигантский алмаз
Звёзды-карлики. Солнце – звезда-карлик. | Предполагается, среди всех звезд Wise J085510.83-071442.5 и не самая холодная, но среди коричневых карликов, к которым она, скорее всего, относится, является рекордсменкой. |
Телескоп TESS NASA обнаружил новый крупный коричневый карлик с массой 77 Юпитеров | Астрономы подтвердили редкость появления экзопланет, похожих на Юпитер, у маломассивных красных карликов, не найдя ни одного такого объекта у 200 близких к Солнцу звезд. |
У карликовой звезды нашли две суперземли | Планеты, вращающейся вокруг «неспокойных» красных карликов, подвергаются риску потери своих атмосфер после вспышек на поверхности звезд. |
Астрономы предсказали слияние пары белых карликов с образованием экзотической звезды | Карликовыми называют небольшие звезды со свечением, ученые разделяют их на несколько классов. |
Могут ли звезды стать планетами? | Астрономы говорят, что найденный крошечный белый карлик, названный ZTF J1901+1458, родился как раз из пары двух "постаревших" звезд. |
Астрономы открыли экзопланету с необычной орбитой
Они похожи на классические новые звёзды в том плане, что белый карлик участвует в периодических вспышках, но механизмы вспышек разные: в классических новых звёздах вспышка — результат термоядерной реакции и детонации аккрецировавшего водорода , в то время как современная теория предполагает, что вспышка карликовой новой — результат нестабильности в аккреционном диске, когда газ в диске достигает критической температуры, что приводит к изменению вязкости , и часть вещества выпадает на белый карлик, в результате чего высвобождается большое количество энергии [2] [3]. Кривая блеска карликовой новой HT Кассиопеи во время вспышки 4 ноября 2010 года: отчётливо видны спады во время затмения «горячего пятна» и подъёмы, производимые аккреционным диском Карликовые новые являются тесными двойными системами, состоящими из карлика или субгиганта спектрального класса К-М, истекающее вещество с которого заполняет его полость Роша , а также белого карлика, окружённого аккреционным диском. Орбитальный период системы находятся в диапазоне от 0,05 до 0,5 дней. Обычно наблюдаются лишь небольшие, в некоторых случаях быстрые, колебания света, но время от времени яркость системы быстро возрастает на несколько величин, а после, на интервале от нескольких дней до месяца и более, возвращается в исходное состояние.
Интервалы между двумя последовательными вспышками для данного типа звёзд могут сильно различаться, но каждая звезда характеризуется некоторым средним значением из этих интервалов, то есть это означает, что цикл соответствует некоторой средней амплитуде изменения яркости. Также наблюдается закономерность, чем больше цикл, тем больше амплитуда.
А вот присутствие звезды-пары ускорило бы этот процесс: её гравитационная тяга избавила бы звезду от энергии и вещества, и та бы успешно превратилась в ELM-объект. До недавнего времени такая схема развития ELM-звезды оставалась гипотетической. Однако в 2020 году благодаря данным космического телескопа «Гея» учёные обнаружили 21 кандидата в ELM-звёзды. Их можно полноправно считать белыми карликами с экстремально низкой массой.
Таким образом, астрономам впервые удалось подтвердить существование давно теоретически предполагавшихся звёзд.
Белый карлик Sirius B в сравнении с Землей. Несмотря на то, что он сопоставим по размеру с нашей планетой, его масса составляет 98 процентов от массы Солнца. Credit: ESA and NASA Предполагается, что такие дуэты на очень тесных орбитах, потенциально являющиеся источниками гравитационных волн, относительно распространены, однако для астрономов они остаются практически неуловимыми, и на сегодняшний день обнаружено лишь несколько таких систем.
Рекордсмен среди двойных белых карликов К счастью, недавно стартовавший обзор, который ведется с использованием телескопов Паломарской обсерватории США и Национальной обсерватории Китт-Пик, меняет эту ситуацию. Каждую ночь 1,2-метровый телескоп в Паломарской обсерватории сканирует небо в поисках объектов, которые движутся, мерцают или иным образом изменяют яркость.
Дело в том, что на всех планетах, вращающихся вокруг нее, слишком холодно, чтобы на них существовала жизнь. Что касается физических характеристик, то недавно открытая звезда в 3-10 раз тяжелее Юпитера. Учитывая такую низкую массу, можно было бы предположить, что, как и Юпитер, она может быть газовым гигантом, исторгнутым своей звездной системой. Однако астрономы считают, что это, вероятно, не планета, а коричневый карлик, потому что их намного больше, чем планет, пишет Daily Mail. Новость прокомментировал для "ВМ" Владимир Курт, заведующий отделом физического института имени Лебедева Академии наук: — Эта звезда очень маленькая. В ней 10 масс Юпитера всего, то есть этот карлик - в сотни раз меньше массы солнца. При такой маленькой массе — не идут ядерные реакции. Поэтому такие звезды не греются.
«Уэбб» нашел самую маленькую «звезду-неудачницу»
Иллюстрация диапазонов масс космических объектов. Коричневый карлик, напротив, находится на грани верхнего предела массы этих малоизученных объектов: его радиус примерно равен радиусу Юпитера, но масса в 80,1 раза больше его массы. Другие свойства позволяют предположить, что оба объекта довольно старые, что вызывает вопросы о том, как они оказались там, где они сейчас. Эль-Бадри и его коллеги полагают, что когда-то оба объекта были значительно больше, чем сейчас, что означает, что когда-то они были удалены друг от друга на расстояние по меньшей мере в 5 раз большее. Когда вещество звезды вылетает из атмосферы, оно довольно долго тормозится её магнитным полем, прежде чем сможет окончательно покинуть её. Подобно тому, как вращающийся конькобежец замедляет движение, вытягивая руки, такое распределение массы замедляет вращение звезды, что приводит к уменьшению орбиты в случае бинарных звёзд.
Судя по плотной орбите в данной бинарной системе, такое «магнитное торможение», по-видимому, является эффективным процессом даже для маломассивных звёзд и коричневых карликов.
В любом случае, время, необходимое для достижения этой стадии с момента рождения звезды, превышает текущий возраст Вселенной, поэтому пока не существует ни одного черного карлика. Замерзшая звезда Когда-нибудь, когда во Вселенной будет исчерпан материал для возобновления звездных циклов, могут появиться так называемые «замерзшие звезды», которые горят с температурой образования водяного льда около 0 градусов Цельсия , будучи наполненными различными тяжелыми элементами из-за недостатка водорода и гелия в космосе. Согласно исследователям, которые концептуализировали такие объекты, Фреду Адамсу и Грегори Лафлину, замерзшие звезды не будут образовываться еще триллионы триллионов лет. Некоторые из них возникнут в результате столкновений между субзвездными объектами, называемыми коричневыми карликами, которые крупнее планет, но слишком малы, чтобы воспламеняться в звезды. Замерзшие звезды, несмотря на низкую температуру, будут иметь массу, достаточную для поддержания ограниченного ядерного синтеза, но недостаточную для излучения большей части собственного света. Их атмосфера может быть загрязнена ледяными облаками, а слабое ядро излучать небольшое количество энергии. Художественное представление магнетара, нейтронной звезды внешне похожей на замерзшие звезды будущего. Credit: NASA Goddard Space Flight Center В этом отдаленном будущем самые крупные звезды будут только в 30 раз больше Солнца по массе, по сравнению с известными сегодня звездами, которые в 300 раз превосходят его по этому параметру. Предполагается, что и в среднем звезды будут намного меньше — примерно 40 масс Юпитера.
По словам Адамса и Лафлина, в этом холодном и далеком будущем, после того как Вселенная вообще перестанет образовывать звезды, оставшиеся крупные объекты будут в основном белыми и коричневыми карликами, нейтронными звездами и черными дырами. Железная звезда Если Вселенная продолжит постоянно расширяться, как это происходит в настоящее время, то в конечном итоге она испытает своего рода «тепловую смерть», когда сами атомы начнут распадаться. К концу этой эпохи могут образоваться поразительно необычные объекты, одним из которых может быть железная звезда.
Они похожи на классические новые звёзды в том плане, что белый карлик участвует в периодических вспышках, но механизмы вспышек разные: в классических новых звёздах вспышка — результат термоядерной реакции и детонации аккрецировавшего водорода , в то время как современная теория предполагает, что вспышка карликовой новой — результат нестабильности в аккреционном диске, когда газ в диске достигает критической температуры, что приводит к изменению вязкости , и часть вещества выпадает на белый карлик, в результате чего высвобождается большое количество энергии [2] [3]. Кривая блеска карликовой новой HT Кассиопеи во время вспышки 4 ноября 2010 года: отчётливо видны спады во время затмения «горячего пятна» и подъёмы, производимые аккреционным диском Карликовые новые являются тесными двойными системами, состоящими из карлика или субгиганта спектрального класса К-М, истекающее вещество с которого заполняет его полость Роша , а также белого карлика, окружённого аккреционным диском. Орбитальный период системы находятся в диапазоне от 0,05 до 0,5 дней. Обычно наблюдаются лишь небольшие, в некоторых случаях быстрые, колебания света, но время от времени яркость системы быстро возрастает на несколько величин, а после, на интервале от нескольких дней до месяца и более, возвращается в исходное состояние. Интервалы между двумя последовательными вспышками для данного типа звёзд могут сильно различаться, но каждая звезда характеризуется некоторым средним значением из этих интервалов, то есть это означает, что цикл соответствует некоторой средней амплитуде изменения яркости. Также наблюдается закономерность, чем больше цикл, тем больше амплитуда.
Наблюдения с помощью космического рентгеновского телескопа XMM-Newton показали яркое излучение звезды J005311. Судя по этому, система содержит очень много неона, кремния, серы, а ее раскаленная туманность достигает температуры в миллионы градусов. Точную массу звезды ученые пока не определили. По их приблизительным оценкам она составляет более чем 1,4 Солнца. Скорее всего, она возникла при слиянии пары белых карликов и один из них был кислородно-неоново-магниевым.
Обнаружена одна из самых редких звезд Млечного Пути — белый карлик-пульсар
Телескоп TESS нашел крупный коричневый карлик с массой 77 Юпитеров. Иллюстрация происхождения магнитных полей у белых карликов в тесных двойных звёздах (смотреть против часовой стрелки). Изначально Каяццо занималась поиском сильно замагниченных белых карликов, вроде ZTF J1901+1458, найденного ранее на установке Zwicky Transient Facility.
Двуликий карлик: астрономы нашли странную звезду, состоящую из гелия и водорода
Астрофизик Роман Рафиков о дисках вокруг белых карликов, кольцах Сатурна и будущем Солнечной системы. Масса желтых карликов лежит зачастую в пределах от 0,8 до 1,2 массы Солнца. Данные показали, что две звезды вращаются друг вокруг друга с периодом 1,9 часа — это самая тесная близость, зарегистрированная у коричневого карлика. Поскольку коричневый карлик и звезда находятся так близко друг к другу, первый заблокирован приливами.
Радиоастрономия обнаружила ультрахолодную звезду
Но все это очень нетипично для белых карликов — остатков сгоревших звезд, обладающих зашкаливающей плотностью. Есть подозрения, что количество коричневых карликов во Вселенной может быть близко к количеству обычных звезд. Путешествие к Звёздам. 1:39:02. KOSMO. В ультрафиолетовом диапазоне звезда в результате на 7 секунд стала в 14 тысяч раз ярче. Онлифанщица-карлик с двумя вагинами рассказала об особом правиле их использования.
Планета, вращающаяся вокруг мертвой звезды, дает представление о будущем Земли
Китайские астрономы обнаружили уникальные звёзды-карлики «Жэньминь жибао он-лайн»: китайские астрономы обнаружили уникальные звёзды-карлики с высоким содержанием лития 511 Китайские астрономы обнаружили уникальные звёзды-карлики с высоким содержанием лития. Как пишет газета «Жэньминь жибао он-лайн» , девять таких звёзд удалось найти при помощи крупнейшего в стране оптического телескопа LAMOST. Данное открытие уже назвали настоящим прорывом в астрономических исследованиях, учитывая, что до этого было известно лишь четыре подобных звезды. Согласно результатам исследования, которое проводила научная группа Национальной астрономической обсерватории при Академии наук КНР, содержание лития в этих звёздах в 4 раза больше, чем в Солнце.
Credit: ESA and NASA Предполагается, что такие дуэты на очень тесных орбитах, потенциально являющиеся источниками гравитационных волн, относительно распространены, однако для астрономов они остаются практически неуловимыми, и на сегодняшний день обнаружено лишь несколько таких систем. Рекордсмен среди двойных белых карликов К счастью, недавно стартовавший обзор, который ведется с использованием телескопов Паломарской обсерватории США и Национальной обсерватории Китт-Пик, меняет эту ситуацию.
Каждую ночь 1,2-метровый телескоп в Паломарской обсерватории сканирует небо в поисках объектов, которые движутся, мерцают или иным образом изменяют яркость. Затем, с целью выявления короткопериодических затменных двойных систем, за самыми многообещающими кандидатами начинает «слежку» 2,1-метровый телескоп в Национальной обсерватории Китт-Пик с установленным инструментом KPED, который предназначен для измерения скорости и степени изменения яркости источников. Национальная обсерватория Китт-Пик.
В данном случае прогноз полностью оправдался: погибшая звезда холоднее 13 000 Кельвинов, имеет частоту вращения около пяти минут, а гравитационное притяжение белого карлика оказывает сильное влияние на спутника. Магнитные поля белых карликов могут быть более чем в миллион раз сильнее магнитного поля Солнца, и модель динамо помогает объяснить почему. Ранее космический телескоп «Уэбб» обнаружил коричневого карлика, который всего в три-четыре раза массивнее Юпитера. По словам ученых, объяснить образование столь небольшого объекта даже теоретически достаточно сложно.
Одна половина его поверхности состоит из водорода, обратная — из гелия, говорится в исследовании, опубликованном в журнале Nature. Белые карлики — «тлеющие», но весьма горячие остатки не очень массивных звезд, которые сожгли свое термоядерное топливо и обречены на медленное затухание. Обычно в конце эволюции звезды наподобие Солнца раздуваются до стадии красного гиганта, после чего внешняя оболочка сдувается, и остается типичный белый карлик — углеродно-кислородное ядро, иногда с небольшим включением более тяжелых элементов, окруженное горячей оболочкой из газа. Моделирование показывает, что Солнце проэволюционирует до фазы белого карлика примерно через 5 млрд лет. Наблюдения, проведенные астрономом Иларией Каяццо из Калифорнийского технологического института с помощью камеры Zwicky Transient Facility ZTF в Паломарской обсерватории в США, позволили обнаружить белый карлик, меняющий представление об эволюции подобного рода объектов.
Астрономы открыли самую маленькую звезду из всех известных
Поэтому, как правило, в сравнении с большинством звезд коричневые карлики меньше, холоднее и тусклее. Подобно всем звездам, красные карлики превращают водород в гелий. Есть подозрения, что количество коричневых карликов во Вселенной может быть близко к количеству обычных звезд. В результате слияния двух белых карликов образовалась эта странная зелёная звезда. В этом случае белый карлик начинает отбирать водород у звезды, вокруг которой он вращается по спирали.