Новости дня от , интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода.
Квантовая физика
Новости компаний. Лауреатами Нобелевской премии по физике 2022 года стали Ален Аспе, Джон Клаузер и Антон Цайлингер — за работы в области квантовой информации и квантовой запутанности. В 1964 году физик Джон Белл придумал, как различить в эксперименте две версии квантовой механики — ортодоксальную и со скрытыми параметрами. Нобелевскую премию по физике в 2022 году за «эксперименты с запутанными фотонами, установление нарушения неравенства Белла и новаторскую квантовую информатику» получили Ален Аспект (Франция), Джон Клаузер (США) и Антон Цайлингер (Австрия).
Российские учёные развивают технологии на основе квантовой физики вместо классической
Вероятно, в какой-то момент, когда критическая масса развитых квантовых технологий, нашего понимания физики и экспертизы перевалит некую черту, начнется эра полностью квантовых машин. Квантовая физика (рассказывает физик Дмитрий Бочаров и др.) Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. В 1964 году физик Джон Белл придумал, как различить в эксперименте две версии квантовой механики — ортодоксальную и со скрытыми параметрами. На сайте собрана основная информация о главных новостях, инициативах, проектах и мероприятиях Десятилетия науки и технологий. Уже лет пять как в сети ходят новости о прорывах в квантовых вычислениях. Представьте, что отпраздновать Всемирный день квантовой науки собрались все великие ученые, которые приложили руку к созданию квантовой физики.
Наши проекты
- Восторг и ужас Вселенной: Как квантовая физика перевернула мир и почему она наводит жуть
- ЖУТКОЕ НА ЖУТКОМ
- Нобелевскую премию по физике дали за доказательство постулатов квантовой механики
- Что такое квант
- С приставкой «супер-»: обзор новостей квантовой физики
- Планетарная теория. Волна или частица
Нобелевская премия по физике — 2022
Законы причины и следствия не работают в квантовой физике, и это тоже противоречит учению Канта. Многие воспринимают квантовую физику как некий мистический мир. По этой причине даже появился парадокс Эйнштейна-Подольского-Розена, указывающий на неполноту квантовой механики. Если продолжать разговор об объекте и наблюдателе в разрезе изучения космоса, то, следуя «Критике чистого разума» Канта, можно сделать вывод, что вселенная смотрит на саму себя, — добавил доктор Штайн. Ведь Луна существует не только потому, что вы на нее смотрите. Она будет существовать даже когда вас не станет, ведь на нее смотрит вся Вселенная. Единственный вопрос, кто должен быть окончательным наблюдателем — тем, кто непосредственно смотрит на объект? Пока для ученых это загадка.
Иммануил Кант предполагал, что познание не может происходить в нас. Понимание абсолютно, независимо от того, что находится во вне. Это чистое трансцендентальное познание трансцендентальная апперцепция.
Награда, а также 10 млн рублей были вручены российским учёным и разработчикам перспективных технологий в номинациях «Учёный года», «Инженерное решение», «Перспектива» и «Прорыв». Сохраняет и развивает ведущие инженерные научные школы страны. И основание фонда «Вызов», поддержка этой замечательной национальной премии в области будущих технологий - это следующий этап нашей веры в то, что страна зависит от российской науки и людей, которые могут открывать новые горизонты», — сказал заместитель Председателя Правления Газпромбанка Дмитрий Зауэрс во время церемонии.
В отчете Boston Consulting Group за 2021 г. Но инвесторам придется запастись терпением - Boston Consulting Group ожидает такого масштаба не ранее 2040 г. Goldman Sachs видит потенциальные направления деятельности для квантовых компьютеров: ускорение расчетов методом Монте-Карло - сложных алгоритмов, используемых для оценки стоимости и рисков деривативов и других ценных бумаг, применение квантовых расчетов для оптимизации портфеля инвестиций, машинное обучение для борьбы с отмыванием денег. Мнения экспертов "Мы еще не достигли той стадии, когда квантовый компьютер улучшит показатели любой компании, не занимающейся квантовыми технологиями", - говорит Ryan Babbush, руководитель отдела квантовых алгоритмов и приложений в подразделении Google компании Alphabet. Тем не менее, уже сегодня есть реальные примеры использования квантовых компьютеров. С 2016 года компания IBM: построила более 30 квантовых компьютеров, более 20 из них сейчас работают в режиме онлайн, организовала доступ к квантовым компьютерам через Интернет. У нас в сети больше квантовых компьютеров, чем во всем остальном мире вместе взятом". За этим направлением гонится множество очень умных людей с большим капиталом. Simone Severini, директор по квантовым технологиям в Amazon Web Services: "Еще предстоит проделать значительную научную и инженерную работу, прежде чем мы получим масштабные квантовые вычисления. Мы видим растущий интерес со стороны клиентов, которые хотят изучить эту технологию.
Ведь страны, которые обладают квантовыми компьютерами, точно будут иметь определённое технологическое преимущество. Нам нельзя остаться без него в современном мире. Насколько российские учёные в принципе продвинулись в вопросе квантовой механики, квантовых вычислений, квантовых коммуникаций, особенно в последние годы, когда в стране идет Десятилетие науки и технологий? Сейчас мы отстаём от зарубежных команд или опережаем? Вообще, если смотреть исторически, очень многое из того, что стало основой квантовой механики, сделано советскими и российскими учёными. Например, есть понятие «матрица плотности» — это то, как мы описываем состояние квантовой системы. Его ввели одновременно венгеро-американский математик Джон фон Нейман и советский учёный Лев Ландау в 1927 году. Даже концепцию квантового компьютера в начале 1980-х тоже одновременно предложили Ричард Фейнман в Соединённых Штатах и Юрий Манин, советский математик. Несколько ключевых результатов в области квантовых технологий носят имена советских учёных. Например, теорема Холево , которая известна практически каждому специалисту в этой области. Вот эти основы — это уже достижение наших соотечественников. И это всего несколько примеров, российские учёные отметились по всей ветке развития квантовой механики. Сейчас отставание есть. Оно неоднородно по разным областям. Если в сфере квантовых компьютеров оно наблюдается из-за колоссальных инвестиций, направляемых на это направление, скажем, в США или Китае, то по квантовым коммуникациям российские решения вполне конкурентоспособны. Иногда мы даже демонстрируем более глубокое понимание в отдельных направлениях, скажем, в создании кудитных квантовых процессоров. Это процессоры нового поколения, которые используют для обработки информации не кубиты двухуровневые квантовые системы , а кудиты многоуровневые квантовые системы с суперпозицией произвольного количества квантовых состояний. Сейчас в мире есть пять-шесть квантовых процессоров на кудитах, и один из них — заслуга российской команды в Российском квантовом центре и ФИАН им. В нашей работе нам очень помог проект Лидирующих исследовательских центров, Дорожная карта по квантовым вычислениям и Российский научный фонд. Да и по новым типам кубитов, базовых вычислительных элементов для квантовых компьютеров, в России проводятся пионерские исследования на мировом уровне. Например, недавно продемонстрированные кубиты-флюксониумы с рекордными характеристики, в разработке которых принимали участие мои коллеги из МИСИС. То есть мы стараемся не отставать и искать новые пути развития. Критическая масса людей, интеллектуальный потенциал для развития этого направления есть. Сейчас мы вступили в активную фазу реализации Дорожной карты по квантовым вычислениям координирует Росатом. Это очень важный проект, объединяющий в рамках страны различные научные группы, которые решают задачи квантовых технологий. Мы уже видим первые результаты консолидации научного сообщества в этом направлении. Есть ли дефицит компонентов, есть ли утечка мозгов? Нынешнюю ситуацию вы рассматриваете как тёмный период или как время возможностей? Вы знаете, очень осторожное отношение к поставкам иностранного оборудования началось гораздо раньше. Эта сфера в последние пять лет постепенно становилась стратегической и всё более и более зарегулированной. И кардинального изменения в связи с санкциями не произошло. Это был логичный шаг, которому предшествовало всё возрастающее внимание к экспорту технологичных товаров со стороны стран Запада. Конечно, такие глобальные ситуации, как сейчас, осложняют работу и научное взаимодействие. Ведь наука, особенно в таких областях, носит международный характер. Во многих научных публикациях принимают одновременное участие учёные из самых разных стран мира. Поэтому хотелось бы, чтобы текущая ситуация не касалась напрямую возможностей для научного сотрудничества. Страны между собой обмениваются учёными, и это в карьере учёного совершенно нормально: закончить первую ступень образования в одной стране, потом поступить в магистратуру в другой стране, в аспирантуру — в третьей, а работать — вообще в четвёртой, пятой. Потом вернуться к себе на родину или остаться. Это абсолютно нормальные этапы развития. Есть такой тренд во всех странах мира: после определённого цикла получения опыта учёным стараются создать условия для работы в родной стране. Здесь пример демонстрирует Китай со своей национальной программой «1000 талантов». Она позволила вернуть огромное количество учёных — и сделать значительный скачок в квантовых технологиях и не только. Именно это становится основным трендом. Успешно у нас возвращают мозги? Есть примеры успешных возвратов.
Нобелевскую премию по физике присудили за квантовую запутанность
Группа европейских и сингапурских учёных предложила квантовый симулятор, который воспроизводит эффект квантовой гравитации и не только. Учёные из Венского технологического университета, Университета Крита, Наньянского технологического университета Сингапур и Берлинского университета опубликовали в научном журнале Proceedings of the National Academy of Sciences of the USA PNAS статью, в которой рассказали об успешной симуляции гравитационного линзирования на квантовом симуляторе. Фактически они утверждают о симуляции квантовой гравитации , обоснованием которой занимаются все физики-теоретики и никак не могут это сделать. В качестве основы для квантового симулятора исследователи взяли облака сверхохлаждённых атомов — это определённо квантовые структуры с соответствующим математическим аппаратом и массой решений по управлению ими вспомним многочисленные квантовые вычислители-симуляторы. Вместо света учёные взяли за основу звук и представили его как релятивистский объект из общей теории относительности. Получился квантовый симулятор распространения света в пространстве, который работал в точном соответствии как с ОТО, так и с квантовой теорией. В частности, эксперимент показал осуществимость эффекта гравитационного линзирования на симуляторе. Эксперименты показывают, что форма световых конусов , эффекты линзирования, отражения и другие явления могут быть продемонстрированы в атомных облаках именно так, как это ожидается в релятивистских космических системах. Постановка экспериментов и полученные результаты могут помочь открыть неизвестные доселе явления и эффекты и, в конечном итоге, могут привести к созданию общей теории функционирования нашей Вселенной. Этот вопрос крайне смущал многих физиков прошлого века, включая Альберта Эйнштейна, и был предметом постоянных споров.
Для нового эксперимента построили 30 метров вакуумной трубы с криогенным охлаждением, чтобы фотон как можно дольше летел от одной запутанной частицы к другой и не успел вмешаться в измерения. Устройство 30-м трубы из эксперимента с волноводом посередине. В таком случае они должны «передавать информацию» быстрее скорости света. По его мнению, мы просто не всё знаем о квантовой физике, и могут быть какие-то скрытые параметры, которые уже содержатся в характеристиках частицы и выдаются в ответ на измерение свойств одной из запутанных частиц. Например, если мы измерили направление спина одного из пары запутанных фотонов, то информация о спине второго оно будет противоположным по направлению становится известна мгновенно, где бы этот второй фотон из пары не находился. Это также называют эффектом квантовой телепортации. Для определения системы на наличие скрытых параметров в 60-х годах прошлого века физик Джон Белл предложил мысленный эксперимент, который уже в семидесятые годы поставил Джон Клаузер за что ему, в частности, была присуждена Нобелевская премия по физике за 2022 год. В классической системе нашем с вами мире неравенства Белла соблюдаются всегда, тогда как в квантовом мире они нарушаются. Если применить неравенства Белла к запутанным частицам, то случайное измерение двух запутанных частиц одновременно должно либо удовлетворять неравенствам, либо нарушать их.
В последнем случае это будет доказательством, что никаких скрытых параметров нет и частицы «передают информацию» по законам квантовой физики — быстрее скорости света. Учёные из Швейцарской высшей технической школы Цюриха ETH Zurich создали криогенную установку, в которой фотон путешествует дольше, чем ведутся локальные измерения связанных частиц. Измерения длились на несколько наносекунд быстрее. Никакая информация по классическим законам не могла передаться за это время, тогда как эффект квантовой запутанности частиц себя полностью проявил. До этого применение неравенств Белла предполагало лазейки в постановке экспериментов. Устранить все спорные места мог только эксперимент, в ходе которого измерения должны проводиться за меньшее время, чем требуется свету, чтобы пройти от одного конца к другому — это доказывает, что между ними не было обмена информацией. У поставленного эксперимента была и другая цель — убедиться, что сравнительно большие сверхпроводящие системы могут обладать квантовыми свойствами. В опыте участвовали две сверхпроводящие схемы, которые играли роль связанных частиц, тогда как обычно речь идёт о запутывании элементарных частиц типа электронов, фотонов или атомов. В эксперименте использовались объекты нашего большого мира, и они отыграли по законам квантовой физики.
Это означает, что на основе сверхпроводящих макросистем можно строить квантовые компьютеры, осуществлять квантовую связь и делать много другого интересного не углубляясь до таких тонких и пугливых сверхчувствительных материй, как элементарные частицы. В этом скрыт небывалый потенциал, который учёные намерены разрабатывать дальше. Однако приближаться к нему можно, бесконечно затрачивая на каждый шаг время и энергию. Благодаря новой работе международной группы физиков у нас появился ещё один параметр, усложняя который можно приближаться к абсолютному нулю, что обещает новые и неожиданные открытия. Источник изображения: Pixabay Для охлаждения элементарных частиц материи необходимо тем или иным способом отбирать у них энергию до тех пор, пока у нас будут на это ресурсы и время. В системе всё равно останутся нулевые колебания, что будет означать отличную от абсолютного нуля температуру. Но теперь появляется теоретическая возможность использовать для охлаждения материи ещё один неиспользованный ранее ресурс — это сложность системы. Фактор сложности или комплексности системы проистекает из законов квантовой физики. Точнее, из квантовой неопределённости и невозможности одновременно знать две «враждующие» характеристики квантовой системы, например, одновременно координаты и импульс количество движения.
Квантовое состояние системы описывается бесконечным набором волновых функций, и измерение одного из состояний заставляет мгновенно исчезать все остальные. Физики предположили, что если определить координаты частицы, то это будет означать, что она полностью остановилась все остальные состояния коллапсировали и достигала состояния, как в случае абсолютного нуля. Все квантовые детали информация о них фактически стираются. Согласно принципу Ландауэра , потеря одного бита данных приводит к выделению энергии. Иначе говоря, система теряет энергию и охлаждается ещё сильнее. И чем сложнее квантовая система, тем больше она несёт информации и тем сильнее охлаждается при измерении квантовых свойств. Именно это новое открытие роли сложности квантовой системы открывает новый угол зрения на поиск пути к абсолютному нулю, даже если это такое же практически невозможное решение, как и те, с которыми учёные уже работали энергия и время. Вполне возможно, что повышение сложности квантовых систем — это ещё один способ приблизиться к абсолютному нулю или, по крайней мере, ускорить процесс движения в эту сторону. В перспективе новый подход может привести к открытию новых явлений в квантовой физике и к созданию новых материалов и технологий.
Между тем, как и любые процессы в этом мире, химические реакции подвержены законам квантового мира. Учёные впервые выяснили, до какой степени можно пренебрегать ими при изучении химических процессов и как квантовые явления в химических реакциях влияют на физический мир. Ионы пробивают энергетические барьеры для химической связи с молекулами. Поэтому всё сводится к пренебрежению квантовыми эффектами и к решению задач только с позиции классической физики. Подобное приближение удобно для практического применения в повседневной жизни, но не позволяет разобраться в ряде фундаментальных процессов мироустройства. Очевидно, что для изучения квантовых явлений в химических реакциях необходимо придумать и поставить эксперимент, который был бы подтверждён теоретическими выкладками. Эффект туннелирования оказался одним из наиболее удобных кандидатов на постановку такого эксперимента, но на его организацию потребовались годы планирования. Опыт удался у команды исследователей из Университета Инсбрука, о чём они сообщили в свежем выпуске журнала Nature. Для опыта был выбран изотоп водорода дейтерий, который поместили в ионную ловушку и охладили, после чего заполнили ловушку газообразным водородом.
За счёт сильного охлаждения отрицательно заряженным ионам дейтерия не хватало энергии для химической реакции с молекулами водорода. Тем не менее, отдельные ионы дейтерия вступали в реакцию с молекулами водорода, чего не могло быть с точки зрения классической физики. По их количеству мы можем сделать вывод о том, как часто происходила реакция». Предложенный в 2018 году теоретический расчёт показал, что в условиях эксперимента одно квантовое туннелирование будет происходить в одном случае из каждых ста миллиардов столкновений, что учёные из Инсбрука смогли подтвердить на практике. Иными словами, для химической реакции с квантовыми явлениями эксперимент впервые подтвердил теорию. Одновременно это была самая медленная реакция с заряженными частицами из когда-либо наблюдавшихся. На основе проведённого исследования можно разработать более простые теоретические модели «квантовых» химических реакций и проверить их на реакции, которая уже успешно продемонстрирована. Туннельный эффект возникает во многих физических и химических процессах, а это путь к их лучшему пониманию и к открытию явлений, которые были либо плохо объяснимыми, либо вовсе непонятными для науки, например, такими, как астрохимический синтез молекул в межзвёздных облаках.
Ожидается, что Intel первой добьется коммерциализации 2-нм чипов. TSMC будет применять 2-нм техпроцесс в чипах для iPhone, но затем предложит передовые полупроводники и другим компаниям. Согласно ранее озвученным планам Samsung, компания сначала начнет массово производить 2-нм чипы для мобильных устройств, начиная с 2025 года, а затем в 2026 году начнет выпускать продукты для высокопроизводительных вычислений. Rapidus открывает фабрику по производству 2-нм чипов в городе Титосэ на Хоккайдо, Япония. Пилотную производственную линию планируют ввести в эксплуатацию в апреле 2025 года, а массовое производство обещают начать в 2027 году. Лебедева Российской академии наук и руководитель научной группы «Масштабируемые ионные квантовые вычисления» Российского квантового центра, а также лауреат Национальной Премии в области будущих технологий «ВЫЗОВ» в номинации «Перспектива» стал гостем нового выпуска Kuji подкаста. Илья поговорил с Андреем Коняевым и Тимуром Каргиновым о квантовом компьютере, трансформации искусственного интеллекта и закате человечества.
В планах разработчиков — создание компактных квантовых сенсоров для использования при пограничном контроле, мониторинге инфраструктуры и окружающей среды 362 views Квантач 2-нм чипы появятся уже в следующем году На фоне бума ИИ-технологий особенно важным становится производство передовых полупроводников. Компании Samsung, TSMC и Intel планируют освоить 2-нм техпроцесс и начать массовое производство в 2025 году, а Rapidus — только открыть пробное производство. Ожидается, что Intel первой добьется коммерциализации 2-нм чипов. TSMC будет применять 2-нм техпроцесс в чипах для iPhone, но затем предложит передовые полупроводники и другим компаниям. Согласно ранее озвученным планам Samsung, компания сначала начнет массово производить 2-нм чипы для мобильных устройств, начиная с 2025 года, а затем в 2026 году начнет выпускать продукты для высокопроизводительных вычислений. Rapidus открывает фабрику по производству 2-нм чипов в городе Титосэ на Хоккайдо, Япония. Пилотную производственную линию планируют ввести в эксплуатацию в апреле 2025 года, а массовое производство обещают начать в 2027 году.
Самые интересные проекты, открытия и исследования, а также информация о конкурсах и мероприятиях в вузах и научных центрах России в одном удобном формате. Будьте в курсе событий Десятилетия науки и технологий! Десятилетие науки и технологий в России Российская наука стремительно развивается.
Квантовая физика
Нобелевскую премию по физике присудили за квантовую запутанность | Фактически квантовые явления в виде группового взаимодействия электронов можно использовать как макрообъекты, что упростит эксперименты в области квантовой физики и позволит использовать эти явления в обычной электронике и не только. |
Эфир существует! Российские ученые совершили прорыв в фундаментальной физике | Новости компаний. |
Нобелевскую премию по физике присудили за квантовую запутанность | В частности, физикам из МГТУ удалось за 2023 год создать прототип квантового процессора на базе сверхпроводников и разные компоненты квантовых устройств. В данном обзоре новостей представлены последние открытия в физике и астрофизике. |
Квантовые точки: что это такое и почему за них дали нобелевскую премию? | Мировые новости экономики, финансов и инвестиций. |
Нобелевка по физике за изучение квантовой запутанности — что это значит
Ученые впервые обнаружили эффекты, предсказанные квантовой гравитацией — одной из физических теорий, призванной объединить квантовую механику с общей теорией относительности Эйнштейна. Идея одушевленности мира следует из принципов квантовой механики: фотон каким-то образом «сознательно» выбирает свой путь от лампы до страниц вашей книги. Последние новости на сайте. В Институте физики полупроводников им. А.В. Ржанова СО РАН прошла международная конференция, посвященная 60-летию учреждения. Новости квантовой физики. Атом водорода в квантовой физике.