Краткое содержание Рассмотрена модель молекулы воды на основе представлений об орбитальном движении частиц под действием сил тяготения, подчиняющихся обратно квадратичному закону с константой тяготения равной 1,847.1028 см3/ гс2. Water molecule (молекула воды) - Download Free 3D. Нейтронное рассеяние и компьютерное моделирование выявили уникальное и неожиданное поведение молекулы воды, нетипичное для какого-либо из известных газов, жидкостей или твердых тел.
Ученые впервые обнаружили молекулы воды на астероидах
Вода с большим содержанием таких солей называется жёсткой, с малым содержанием — мягкой. Кипячение устраняет только временную карбонатную жёсткость. Находит применение в быту.
Сегодня на эту тему опубликовано несколько тысяч работ, среди которых оригинальными являются работы Г. В работах по моделированию воды используется 2 критерия: геометрический и энергетический. Пустоты в воде по результатам моделирования имеют тенденцию объединяться друг с другом, образуя еще более крупные пустоты, как показано на рисунке 7. Рисунок 7 - Размещение пустот в пространстве 3456 молекул при температуре 300К. По результатам компьютерного моделирования структуры воды можно сделать однозначные выводы, что в ней существует трехмерная сетка из молекул, соединенных водородными связями. Сетка структурно и динамически неоднородна, не похожа на структуру кристаллов.
Время жизни водородной связи в сетке составляет несколько пикосекунд 10-12 с. На рисунке 8 представлена принципиальная схема эволюции кластера. Рисунок 8 - Эволюция кластеров из молекул воды в рамках модели числового моделирования. Рассмотрим кластерную и клатратную модели строения жидкой воды подробнее. Согласно квантово-химическим расчетам большей устойчивостью обладают линейного "открытого" димера воды, по сравнению с циклическими формами. В случае цикла выгодными являются трех-четырех- и пятичленные образования, в которых водородные связи имеют одинаковое направление. Для шестичленного цикла выгодным становится структура типа "кресло". Одно из первых изображений формирования циклических кластеров воды приведено на рисунке 9.
Рисунок 9 - Формирование циклического кластера воды. Большой вклад в возможность формирования и устойчивость кластеров воды во времени внесли работы Г. Домрачева и Д. Они доказывали существование механохимических реакций радикальной диссоциации воды. Доказательство основывалось на том, что вода, по их мнению, представляет собой динамически нестабильную полимероподобную систему и по аналогии с механохимическими реакциями в полимерах при механическом воздействии на воду поглощенная водой энергия используется для разрыва химических связей H-OH. Реакция разрыва связи может выглядеть так: H2O n H2O... Рассчитав эффективность механодиссоциации воды, авторы пришли к выводу, что кислород на Земле появился при диссоциации воды. Итак, вода, по мнению Г.
Селивановского - это громадный полимер из молекул воды, связанных водородными связями. Интересно, что в молекуле классического полимера атомы объединены ковалентными связями. В 1993 г. Джордан предложил свои варианты устойчивых "ассоциатов воды", которые состоят из 6 молекул рисунок 10. Рисунок 10 - Образование ассоциатов воды по К. По Джордану кластеры могут объединяться и друг с другом, и со свободными молекулами воды за счет водородных связей, формируя более крупные ассоциаты. Такие кластеры могут объединяться как друг с другом, так и со свободными молекулами воды. На рисунке ниже показаны возможные структуры конформации кластеров воды.
Считается, что тетрагональная структура льда разрушается при плавлении с образованием смеси, состоящей из три-, тетра-, пента-, гексамеров воды и свободных молекул. В 1999 г. Секайли удалось расшифровать строение тримера воды, а в 2001 г. Оригинальной кластерной моделью является теория С. Согласно модели С. Зенина вода представляет собой иерархию геометрически правильных объемных структур "ассоциато". Согласно его теории элементарной структурной ячейкой воды являются тетраэдры, в которых может содержаться 4 простой тетраэдр или 5 объемно-центрированный тетраэдр молекул воды. При этом у каждой молекулы воды в простых тетраэдрах сохраняется способность образовывать водородные связи, благодаря чему создаются более сложные структуры, как показано на рисунке 13.
Рисунок 13 - Формирование сложных ассоциатов из молекул воды по С. Кластеры, содержащие 20 молекул воды додэкаэдры более стабильны. Схема их образования показана на рисунке 14. Рисунок 14 - Формирование кластеров воды из 20 молекул. Из четырех таких образований возникают энергетически выгодные "кванты" - тетраэдрические додекаэдры рисунок 15. Рисунок 15 - Модель ассоциата воды из 57 молекул - "квант" тетраэдр из четырех додекаэдров. Из 57 молекул такого образования 17 составляют гидрофобный каркас с полностью насыщенными связями, а по 10 молекул на поверхности каждого додекаэдра формируют центры образования водородных связей. Методами жидкостной хроматографии было подтверждено существование пяти- и шестиквантовых структур типа "четырехконечной звезды" и "шестилучевой снежинки".
Рисунок 16 - Принципиальная модель кластера воды из 912 молекул 16 "квантов" воды. На каждой грани такого куба существует уже по 24 центра образования водородных связей. Данные цифры были подтверждены экспериментально. На уровне 24 центров связывание по водородным связям практически прекращается ввиду того, что поверхность образований становится насыщенной нейтральной. Кластеры почти не взаимодействуют между собой, а скользят друг по другу, поэтому вода не отличается высокой вязкостью. В таком "режиме" из кластеров формируются метастабильные структуры, пример которых показан на рисунке 17 микроизображение в режиме фазового контраста. Рисунок 17 - Микроизображение объемной структуры воды. Теория Зенина хорошо объясняет электропроводные свойства воды, уменьшение плотности при плавлении, но плохо согласуется с большими значениями коэффициента самодиффузии и малым временем диэлектрической релаксации.
Чаще всего физики применяют для этого так называемые оптические интерференционные ловушки. Они представляют собой периодическую структуру полей, возникающих в результате интерференции лазерного излучения. В узлы такой решётки помещают ультрахолодные атомы изучаемых веществ. Но исследователи из лаборатории терагерцовой спектроскопии МФТИ нашли другой, более рациональный путь. Они помещают отдельные молекулы воды, обладающие довольно большим дипольным моментом, в так называемую диэлектрическую матрицу. Её роль исполняет кристаллическая решетка цеолитов, содержащая периодически распределённые поры нанометрового размера. В результате получается твердотельный образец кристалл с находящимися в этих порах практически свободными молекулами воды так называемой нанолокализованной воды. Его очень удобно исследовать при различных не только очень низких температурах, включая комнатные, а также при различных внешних воздействиях под влиянием электрических полей, давления и др. Электродипольная решётка, исследованная в данной работе, была создана на основе одного из цеолитов — кристалла кордиерита.
Возникновение ионизации происходит в процессе попадания высокоэнергетического излучения в молекулы воды.
При этом протону удается присоединиться к другой молекуле, а электрон выбивается. Воспроизведение этого нестабильного комплекса осуществляется лазерными операциями и лучевой терапией, что приводит к активизации многих химических реакций в организме человека.
Ученые впервые увидели процесс, который обеспечивает «странные» свойства воды
Опровергнута общепризнанная модель поведения молекул воды: Наука: Наука и техника: | Объемная модель молекулы воды. |
Орбитальная модель молекулы воды | Исследователи из Массачусетского технологического института сделали новое открытие: свет может испарять воду без тепла. |
Вода | Строение молекулы, структура в жидком, твердом, газообразном виде | В результате молекулы воды отталкивают молекулы биологического вещества. |
ABC: Появились доказательства того, что вода состоит из двух жидкостей | Спектроскопия PHPPИ воды качественно отличается от ИК спектроскопии тем, что при возбуждении рентгеновским фотоном глубокого 1s электрона кислорода на первую незанятую молекулярную орбиту, молекула воды быстро диссоциирует. |
Ученые впервые нашли молекулы воды на астероидах
Каждая молекула воды является миниатюрным диполем с высоким дипольным моментом. Учебные модели придется перерисовать после того, как группа исследователей обнаружила, что молекулы воды на поверхности соленой воды организованы иначе, чем считалось ранее. В рамках изучения специалисты создали слои воды толщиной 100 нм и заставили молекулы вибрировать благодаря инфракрасному лазеру, а потом разрушали их короткими импульсами высокоэнергетических электронов от SLAC MeV-UED. Новинка 2024 года молекула воды(h2o) химическая модель химия биология молекулы структура модели обучающий эксперимент инструмент – цены, отзывы и видеообзоры.
Обнаружено новое фазовое состояние нанолокализованной воды
Так вот, загрузив все необходимые вводные данные в модель, ученые установили, что молекулы воды с повышенной плотностью формируют «топологически сложные структуры». Например, узел-трилистник, а также связь Хопфа отдаленно напоминает звенья цепочки. А так называемая «легкая» вода, напротив, образует в основном простейшие кольца, а это значит, что молекулы жидкости с пониженной плотностью не запутаны. Компьютерная модель состояния воды с высокой плотностью. Изображение: Andreas Neophytou et al.
Но откуда взялась вода на нашей планете? И как она распределена по солнечной системе и за ее пределами? Ответы на эти вопросы могут скрываться на астероидах — древних кусках камня и металла, которые остались после рождения планет. Астероиды — это своего рода космические архивы, которые хранят в себе информацию о том, как выглядела солнечная система в самом начале. Они образовались из солнечной туманности — гигантского облака газа и пыли, которое вращалось вокруг молодого солнца. В зависимости от расстояния до солнца, температура и давление в туманности были разными, и поэтому разные материалы сгущались и склеивались в астероиды. Ближе к солнцу было жарко, и там появлялись сухие астероиды, состоящие из силикатов — минералов, из которых состоит земная кора. Дальше от солнца было холодно, и там формировались астероиды с большим количеством льда, углерода и других органических веществ. Изучая состав астероидов, мы можем узнать, как вода и другие элементы распределялись по солнечной системе во время ее зарождения.
Четыре внешних электрона группируются в две электронные пары, тяготеющие к ядру, но частично не скомпенсированные. Схематически суммарные электронные орбитали этих пар показаны в виде эллипсов, вытянутых от общего центра — ядра O2-. Каждый из оставшихся двух электронов кислорода образует пару с одним электроном водорода. Эти пары также тяготеют к кислородному ядру. Поэтому водородные ядра — протоны — оказываются несколько оголенными, и здесь наблюдается недостаток электронной плотности. Таким образом, в молекуле воды различают четыре полюса зарядов: два отрицательных избыток электронной плотности в области кислородного ядра и два положительных недостаток электронной плотности у двух водородных ядер. Для большей наглядности можно представить, что полюса занимают вершины деформированного тетраэдра, в центре которого находится ядро кислорода рис. Общий вид электронного облака молекулы воды показан на рис. Вода - диполь: полярность воды Почти шарообразная молекула воды имеет заметно выраженную полярность, так как электрические заряды в ней расположены асимметрично. Под воздействием диполей воды в 80 раз ослабевают межатомные или межмолекулярные силы на поверхности погруженного в нее вещества. Иначе говоря, вода имеет высокую диэлектрическую проницаемость, самую высокую из всех известных нам соединений. Также, последние исследования установили полярность кластеров воды. Вода растворяет все! Во многом благодаря диэлектрической проницаемости, вода проявляет себя как универсальный растворитель.
Потенциальная энергия системы рассчитывалась методом молекулярной механики, учитывающим атом-атомные взаимодействия с помощью модельных полуэмпирических потенциалов. Фрагмент поверхности кристалла был представлен кластерной моделью, состоящей из конечного числа атомов, принадлежащих самой поверхности и ближайшим к ней атомным плоскостям. Были описаны различные кластерные модели, содержащие от 9 до 24 атомов оксида магния. Для них была определена равновесная геометрия системы с адсорбированной молекулой воды. Вычислены частоты валентных колебаний адсорбированной на поверхности молекулы воды. Полученные результаты сравниваются с результатами квантово-механических расчетов. Ключевые слова: молекулярная механика, потенциалы межмолекулярного взаимодействия, адсорбция, оксиды металлов. Raik A. Petersburg University. Applied mathematics, computer science, control processes. Issue 1. An interaction model between a water molecule and magnesium oxide crystal surface is considered. Fragment of the crystal surface is represented by the cluster model, that consists of a finite number of atoms belonging to the surface and the nearest atomic planes. Different cluster models containing from 9 to 24 atoms of magnesium oxide were considered. It is shown that the distance between the water molecule and the surface in equilibrium point is 3 A. Table 1. Keywords: molecular mechanics, intermolecular interaction potentials, adsorption, metal oxides.
Открыто новое состояние молекулы воды
Они обнаружили, что молекулы воды в жидкости с высокой плотностью образуют структуры, которые считаются «топологически сложными», такие как узел-трилистник (похоже на крендель) или связь Хопфа (напоминает звенья цепи). 3d-модель молекулы воды на черном фоне. © Guru3d / Фотобанк Лори. 3d illustration of a water molecule isolated on white background. молекулы воды 3d PNG, модель, вода, молекулы PNG картинки и пнг PSD рисунок для бесплатной загрузки. Кластерная модель представляла жидкую воду как кластеры из молекул, связанных водородными связями, плавающих в объеме свободных молекул.
Вода | Строение молекулы и структура воды в жидком, твердом и газообразном виде.
Математическая модель. В молекулярной механике молекула - это изолированная система, состоящая из атомов, совершающих колебания относительно положений равновесия. Атомы представляются в виде материальных точек, обладающих определенными массой и зарядом, которые удерживаются вместе валентными и невалентными взаимодействиями. Сила, действующая на атом, равна градиенту энергии взаимодействия данного атома со всеми остальными, взятому с обратным знаком. Энергия системы есть функция координат ядер, установленная в многомерном пространстве, которая равна сумме энергий всех парных взаимодействий атомов.
Она определяет поверхность потенциальной энергии. Для нахождения поверхности потенциальной энергии используется система потенциальных функций, называемая силовым полем. Поверхность потенциальной энергии системы в методах молекулярной механики зависит от собственных геометрических параметров молекулы и межмолекулярных взаимодействий с ее участием. Всякое отклонение геометрических параметров от их наиболее энергетически выгодных значений, называемых равновесными, ведет к повышению потенциальной энергии.
В методах молекулярной механики учитываются также межмолекулярные взаимодействия, которые можно рассчитать с учетом дисперсионных и полярных взаимодействий [1]. Выпишем отдельно каждую компоненту потенциальной энергии. Энергию ДЕд растяжения и сжатия связи между атомами А и В представим в виде разложения потенциальной энергии двухатомной молекулы в ряд Тейлора в окрестности точки равновесия До. Ограничив ряд третьим членом, имеем ЛЕ 1 г!
Следовательно, это значение можно принять равным нулю, т. Второй член разложения также равен нулю, так как первая производная функции в точке ее экстремума обращается в нуль. Таким образом, получаем, что потенциальная энергия зависит от третьего и высших членов разложения функции в ряд. Расчет энергии деформации по формуле 3 не требует больших затрат машинного времени.
Схема третьей полу заряженной модели молекулы воды Если гипотеза о разном количестве электронов в молекулах воды подтвердится, то этот факт окажется решающим при получении избыточной энергии при электролизе воды. Он определит причину положительных и отрицательных результатов многочисленных экспериментов, которые ставились для проверки факта существования дополнительной энергии при электролизе воды и явлениях её кавитации. Если вода содержит больше заряженных молекул, то эксперимент даст положительный результат. При большем количестве разряженных молекул результат будет отрицательный. Примерные расчеты показывают наличие разницы в массе одного литра заряженной и разряженной воды.
Её можно зафиксировать современными измерительными приборами.
В первом молекулы связаны друг с другом как во льду , а во втором связи нарушены, благодаря чему такие системы более плотные. Наличие этих фаз можно обнаружить при помощи резонансного неупругого рассеяния рентгеновских фотонов водой. При этом виден переход, в котором электрон с занятой молекулярной орбитали заполняет дырку, на месте которой был выбитый ранее фотоном электрон. Эксперимент с жидкой водой показывает расщепление резонанса на два пика.
В научной литературе получившийся дублет приписывается кластерам лёгкого и тяжёлого типов. Чтобы пролить свет на эту фундаментальную проблему, авторы работы провели эксперимент с парами воды, где нет водородных связей. В ходе исследования они измерили спектр резонансного неупругого рассеяния изолированной молекулы. Эксперименты привели к неожиданному результату и показали, что точно такое же расщепление резонанса на два пика присутствует в рентгеновских спектрах рассеяний молекул воды в газовой фазе. Таким образом, исследование свидетельствует о динамической природе расщепления резонанса и опровергает структурный механизм, тем самым демонстрируя, что структура воды однородна. Второй не менее важный результат этой работы — получение детальной структурной информации о том, как влияют водородные связи на силу OH-связи.
Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура - правильный тетраэдр. Но такой тетраэдр — это только самый первый базовый уровень строения воды. Структура молекулы воды: а угловая; б шаровая; в тетраэдрическая Второй уровень химической организации воды определяется возможностью тетраэдров воды образовывать особые связи, названные водородными связями, которые связывают отдельные молекулы друг с другом в ассоциаты. Водородная связь имеет глобальное значение в химии межмолекулярных взаимодействий и обусловлена в основном слабыми электростатическими силами и воздействиями. Она возникает при взаимодействии обедненного электронами атома водорода одной молекулы воды с неподеленной электронной парой атома кислорода соседней молекулы воды. Образование водородной связи Водородная связь намного слабее ковалентной связи, тем не менее играет очень важную роль во внутри - межмолекулярных взаимодействиях. Водородные связи во многом обусловливают аномальные физические свойства воды. Исходя из этого, следует предположить, что внутри воды должны быть пустоты, где нет молекул Н2О, то есть воде присуща особая структура.
Это принципиальное открытие было сделано английским физиком Берналом. С тех пор в этой области проведено множество исследований, но полной ясности в этом вопросе еще нет. Отличительная черта водородной связи — сравнительно низкая прочность, ее энергия в 5—10 раз ниже, чем энергия химической связи. По энергии она занимает промежуточное положение между химическими связями и Ван-дер-ваальсовыми взаимодействиями, теми, что удерживают молекулы в твердой или жидкой фазе. Поскольку каждая молекула воды имеет четыре центра образования водородной связи две неподелённые электронные пары у атома кислорода и два атома водорода , то каждая молекула воды способна образовывать водородные связи с четырьмя молекулами воды, образуя ажурный сетчатый каркас в молекуле льда. Заказать работы Рис. Каждая молекула воды способно образовывать водородные связи с четырьмя соседними молекулами В кристаллической структуре льда каждая молекула участвует в 4 водородных связях, направленных к вершинам тетраэдра. В центре этого тетраэдра находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом.
Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей. Водородные связи в кристаллической решётке льда В отличие от льда, в жидкой воде водородные связи легко разрушаются и быстро восстанавливаются, что делает структуру воды исключительно изменчивой. Именно благодаря этим связям в отдельных микрообъемах воды непрерывно возникают своеобразные ассоциаты воды - её структурные элементы. Всё это приводит к неоднородности в структуре воды. Первым идею о том, что вода неоднородна по своей структуре, высказал Уайтинг в 1884 году. Когда в 20-е годы определили структуру льда, оказалось, что молекулы воды в кристаллическом состоянии образуют трёхмерную непрерывную сетку, в которой каждая молекула имеет четырёх ближайших соседей, расположенных в вершинах правильного тетраэдра. В 1933 году Дж. Бернал и П.
Фаулер предположили, что подобная сетка существует и в жидкой воде. Поскольку вода плотнее льда, они считали, что молекулы в ней расположены не так, как во льду, то есть подобно атомам кремния в минерале тридимите, а так, как атомы кремния в более плотной модификации кремнезёма — кварце. Таким образом, модель Бернала — Фаулера сохранила элемент двухструктурности, но главное их достижение — идея непрерывной тетраэдрической сетки. Тогда появился знаменитый афоризм И. Открыть мини-сайт на портале Pandia для ведения проекта. PR, контент-маркетинг, блог компании, образовательный, персональный мини-сайт.
Физики записали, как молекулы воды движутся вокруг ионов соли
Результаты численного эксперимента с ионами описываются более простой моделью молекулы воды, представляющей собой электрический диполь, сдвинутый от центра молекулы. H2o или молекула воды внутри клетки фуллерен c60. Во всех моделях молекулы воды (рис. 6-9) шестой электрон атома кислорода остается свободным, формируя зону отрицательного потенциала на ее поверхности. Ученые создали струи воды толщиной в 100 нанометров (примерно в 1000 раз тоньше, чем человеческий волос) и заставили молекулы вибрировать с помощью лазерного луча.
Фото по запросу Модель молекулы воды
Ученые Кембриджского университета и Института исследования полимеров Общества имени Макса Планка в Германии обнаружили, что молекулы воды на поверхно. Новости окружающая среда Испарение воды от света уже стало научны. В рамках изучения специалисты создали слои воды толщиной 100 нм и заставили молекулы вибрировать благодаря инфракрасному лазеру, а потом разрушали их короткими импульсами высокоэнергетических электронов от SLAC MeV-UED.
Молекула воды: удивительное строение простого вещества
Другое возможное решение - повторное применение очищенных сточных вод для технических нужд. Это позволит сократить забор воды из природных источников. Однако необходимо совершенствование методов очистки для получения качественной воды, пригодной для повторного использования. Искусственное пополнение запасов подземных вод. В ряде стран применяется закачка поверхностных вод в подземные пласты для пополнения запасов пресных подземных вод. При должной очистке такой метод также весьма эффективен. Атмосферная вода. Находящаяся в воздухе вода является практически неисчерпаемым резервом, однако ее практическое использование пока ограничено. Развитие технологий сбора атмосферной влаги может кардинально изменить ситуацию с водоснабжением в будущем.
Расчеты показали, что молекула воды даже при температуре в 300 градусов по Кельвину постоянно находится в центре молекулы фуллерена. Однако из-за теплового движения ее ориентация в пространстве меняется случайным образом. При включении внешнего электрического поля вдоль упомянутой выше нанотрубки поведение молекулы воды существенно изменяется. Молекула воды представляет собой электрический диполь: положительно-заряженные атомы водорода уравновешиваются отрицательным кислородом. Находясь в электрическом поле, такие диполи не перемещаются в пространстве поскольку являются электрически-нейтральными , а совершают крутильные колебания вокруг оси совпадающей с направлением действия поля. Как оказалось, если молекула воды находится внутри фуллерена, она, не совершая колебаний, просто ориентируется под некоторым углом к линиям поля, причем, чем сильнее электрическое поле, тем меньше этот угол. Колебания в данном случае заменяет вращение молекулы воды вокруг оси, совпадающей с линиями магнитного поля. Сам фуллерен, хоть и остается электрически-нейтральным, перемещается вдоль нанотрубки вдоль линий электромагнитного поля. Еще более странно то, что фуллерен начинает движении в обратном направлении, если напряженность электрического поля превышает некий критический порог в 0,065 В на ангстрем.
Соавтор исследования Андерс Нильссон отметил, что хотя считалось, что в базе многих уникальных показателей воды находится ядерный квантовый эффект, их проект стал первым случаем его прямого наблюдения. В рамках изучения специалисты создали слои воды толщиной 100 нм и заставили молекулы вибрировать благодаря инфракрасному лазеру, а потом разрушали их короткими импульсами высокоэнергетических электронов от SLAC MeV-UED. Как заявили авторы новой научной работы, их результаты приближают понимание свойств воды, которые играют главную функцию в ключевых химических и биологических процессах.
Избыточный отрицательный заряд в количестве двух электронов находится в центре треугольника. Дипольный момент такой молекулы 1. Молекулы плотно упакованы, и радиус Д соответствует плотной упаковке. Кластер состоит из центральной молекулы, ее окружения из 12 молекул и 42 молекул, соприкасающихся с окружением. В начальном состоянии молекулы были ориентированы случайным образом. Специальная программа градиентного спуска в 165-мерном пространстве приводила кластер к минимуму электростатической энергии. Работа программы заключалась в повороте каждой молекулы вокруг всех трех осей. Поворотом вокруг первой оси достигался минимум и происходил переход ко второй оси, а затем к третьей. Потом операция проводилась со второй молекулой и так далее. Весь цикл с 55 молекулами повторялся до тех пор, пока энергия не переставала уменьшаться. В результате становилась известной суммарная энергия кластера и энергия связи центральной молекулы. Каждая реализация случайного кластера давала различающиеся значения энергии. Было проведено 200 реализаций, результаты которых подвергнуты усреднению. Энергия связи центральной молекулы позволяла определить давление насыщения при двух температурах и усреднялось именно давление насыщения. Поскольку моделирование можно считать вполне успешным, далее эта модель использовалась для изучения энергии связи молекул в водяной капле, находящейся под воздействием иона. Было установлено, что отрицательные ионы создают более сильную связь, особенно на малых расстояниях. Причина этой зарядовой асимметрии заключена в ненулевом квадрупольном электрическом моменте молекулы воды и смещении зарядов относительно центра молекулы. Обнаруженная зарядовая асимметрия может быть описана простой моделью диполя, сдвинутого от центра молекулы. Взаимодействие с соседними молекулами заменено воздействием упругой среды, в которую погружена молекула, с модулем упругости g.
Исследование подтверждает, что вода может принимать две различные жидкие формы
Большинство моделей воды с четырьмя участками используют расстояние OH и угол HOH, которые соответствуют расстояниям свободной молекулы воды. Как сообщает информационное издание «МедиаПоток», специалистами Национальной ускорительной лаборатории SLAC Министерства энергетики США впервые была зафиксирована ионизация молекул воды. Так вот, загрузив все необходимые вводные данные в модель, ученые установили, что молекулы воды с повышенной плотностью формируют «топологически сложные структуры». Они создали слои воды толщиной 100 нм и заставили молекулы вибрировать с помощью инфракрасного лазера, а затем разрушали их короткими импульсами высокоэнергетических электронов от SLAC MeV-UED. Однако ученые опровергли общепризнанную модель поведения воды, описанную в учебниках, выяснив, что на самом верху находится слой чистой воды, под которым находится обогащенный ионами слой, а затем идет объемный раствор соли.