Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения. Тем не менее этот вопрос был решен в начале 1980-х годов вместе с введением в теорию струн так называемой “суперсимметрии”. му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии. Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ. В новостях можно иногда встретить утверждение, что отрицательные данные LHC ставят крест на идее суперсимметрии.
Физики думают, что мы найдем доказательства суперсимметрии?
- Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии
- Откройте свой Мир!
- Вы точно человек?
- Теория суперсимметрии под угрозой
- Теория суперсимметрии под угрозой
- «В настоящее время мы не можем описать Вселенную»
«Обнаруженные частицы Хиггса подтверждают теорию суперсимметрии»
К сожалению, в ближайшем будущем суперсимметрия, скорее всего, не может быть подтверждена экспериментально», — пояснил ученый. По некоторым теоретическим предсказаниям, суперпартнеры могут иметь массы, намного превышающие массы уже открытых частиц, и, чтобы обнаружить их на ускорителях, понадобится энергия, которая недостижима на современных машинах и, возможно, даже на ускорителях следующего поколения. Однако суперсимметрия имеет глубокие теоретические следствия, делающие ее незаменимой концепцией. В частности, именно она обеспечивает самосогласованность теории суперструн. Все эти следствия и их непротиворечивость необходимо проверять теоретически. Подтверждение гипотезы, что суперструны описывают все фундаментальные взаимодействия, — кропотливая и долговременная работа», — подчеркнул Евгений Иванов. Суперсимметрия в теории реализуется в суперпространстве, в котором к пространству Минковского добавлены дополнительные фермионные измерения, так называемые грассмановы координаты. Грассмановы координаты не имеют физической интерпретации; каждая из них, возведенная в квадрат, дает ноль. Таким образом, суперпространство является умозрительной вспомогательной структурой, которая позволяет максимально просто и ясно реализовать на ней суперсимметрию. Существуют и теории с настоящими бозонными дополнительными измерениями — суперпространства с 10 бозонными координатами, и еще более сложные теории с 11-мерным пространством. Эти дополнительные бозонные измерения которые не наблюдаются при энергиях, достижимых на настоящий момент необходимы для согласованности теории суперструн на квантовом уровне.
Функции, заданные в суперпространстве суперполя , в разложении по грассмановым переменным дают автоматически все поля, которые объединяются в супермультиплеты. Вскоре после открытия суперсимметрии выяснилось, что простые суперпространства не в полной мере отвечают теории суперструн и ее низкоэнергетическим пределам, и нужно вводить расширенные суперпространства, где грассмановы координаты имеют внутренний индекс, а потому преобразуются еще и по внутренней симметрии.
SUGRA — нарушение суперсимметрии , основанное на взаимодействии с гравитацией; GMSB — нарушение за счёт взаимодействия с дополнительными калибровочными полями с зарядами по группе Стандартной модели ; AMSB — нарушение, также использующее взаимодействие с гравитацией, но с применением конформных аномалий. Достоинства идеи суперсимметрии Теории, включающие суперсимметрию, дают возможность решить несколько проблем, присущих Стандартной модели: Решение проблемы иерархии. Одно из её проявлений — величина радиационных поправок к массе бозона Хиггса. В рамках Стандартной модели поправки к массе скалярного поля имеют квадратичную форму и оказываются существенно больше, чем масса поля, входящая в лагранжиан. Для сокращения таких поправок к массе Хиггса параметры Стандартной модели должны иметь очень точно определённые значения. В рамках MSSM поправки, как к фермионным массам, так и скалярным, имеют логарифмическую форму, и их сокращение происходит более естественно, но требует точной суперсимметрии. Кроме того, данное решение проблемы иерархии предполагает, что массы суперпартнёров не могут быть больше, чем несколько сотен ГэВ. Этот аргумент позволяет ожидать открытие суперсимметрии на коллайдере LHC.
Унификация калибровочных бегущих констант.
Суперсимметричное расширение Стандартной модели Основная физическая модель современной физики высоких энергий — Стандартная модель — не является суперсимметричной, но может быть расширена до суперсимметричной теории. Минимальное суперсимметричное расширение Стандартной модели называется «минимальная суперсимметричная Стандартная модель» MSSM. В MSSM необходимо добавить дополнительные поля так, чтобы построить суперсимметричный мультиплет с каждым полем Стандартной модели.
Для материальных фермионных полей — кварков и лептонов — нужно ввести скалярные поля — скварки и слептоны, по два поля на каждое поле Стандартной модели. Для нарушения электрослабой симметрии в MSSM нужно ввести 2 хиггсовских дуплета в обычной Стандартной модели вводится один хиггсовский дуплет , то есть в MSSM возникает 5 хиггсовских степеней свободы — заряженный бозон Хиггса 2 степени свободы , лёгкий и тяжёлый скалярный бозон Хиггса и псевдоскалярный бозон Хиггса. В любой реалистической суперсимметричной теории должен присутствовать сектор, нарушающий суперсимметрию. Наиболее естественным нарушением суперсимметрии является введение в модель так называемых мягких нарушающих членов.
В настоящее время рассматриваются несколько вариантов нарушения суперсимметрии. SUGRA — нарушение суперсимметрии , основанное на взаимодействии с гравитацией; GMSB — нарушение за счёт взаимодействия с дополнительными калибровочными полями с зарядами по группе Стандартной модели ; AMSB — нарушение, также использующее взаимодействие с гравитацией, но с применением конформных аномалий.
Гольфандом и Е. Суперсимметрия впервые возникла в контексте версии теории струн , которую предложили Пьер Рамон, Джон Шварц и Андре Невё, однако алгебра суперсимметрии позднее стала успешно использоваться и в других областях физики. Суперсимметричное расширение Стандартной модели Основная физическая модель современной физики высоких энергий — Стандартная модель — не является суперсимметричной, но может быть расширена до суперсимметричной теории. Минимальное суперсимметричное расширение Стандартной модели называется «минимальная суперсимметричная Стандартная модель» MSSM. В MSSM необходимо добавить дополнительные поля так, чтобы построить суперсимметричный мультиплет с каждым полем Стандартной модели. Для материальных фермионных полей — кварков и лептонов — нужно ввести скалярные поля — скварки и слептоны, по два поля на каждое поле Стандартной модели. Для нарушения электрослабой симметрии в MSSM нужно ввести 2 хиггсовских дуплета в обычной Стандартной модели вводится один хиггсовский дуплет , то есть в MSSM возникает 5 хиггсовских степеней свободы — заряженный бозон Хиггса 2 степени свободы , лёгкий и тяжёлый скалярный бозон Хиггса и псевдоскалярный бозон Хиггса.
В любой реалистической суперсимметричной теории должен присутствовать сектор, нарушающий суперсимметрию. Наиболее естественным нарушением суперсимметрии является введение в модель так называемых мягких нарушающих членов.
Российский физик — о поисках тёмной материи и её роли во Вселенной
- Физики думают, что мы найдем доказательства суперсимметрии?
- Купить книги в - Магазин научной книги
- Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии
- СУПЕРСИММЕТРИЯ. Достучаться до небес [Научный взгляд на устройство Вселенной]
- Суперсимметрия и суперкоординаты
🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸
особенностями обладают различные элементарные частицы? Когда была была предложена теория, предполагающая связь. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Одна из задач, которую ученые пытаются решить с помощью БАК, – это получение экспериментального подтверждения теории Суперсимметрии. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные.
Гляжусь, как в зеркало: есть ли шансы у суперсимметрии?
Стивен Хокинг надеялся, что M-теория объяснит Вселенную. Что это за теория? | Пикабу | ОКО ПЛАНЕТЫ» Наука и техника» Новость дня» Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел. |
Теория суперструн популярным языком для чайников | Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ. |
Стивен Хокинг надеялся, что M-теория объяснит Вселенную. Что это за теория? | Пикабу | Жесткие требования суперсимметрии при отборе жизнеспособных теорий должны замениться на какой-то руководящий принцип, который, не будучи суперсимметрией, действует по. |
[Перевод] Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи | Теория струн (теория суперструн) и суперсимметрия претендуют на роль Единой Теории Поля. |
Вы точно человек?
В новостях можно иногда встретить утверждение, что отрицательные данные LHC ставят крест на идее суперсимметрии. Теория струн (теория суперструн) и суперсимметрия претендуют на роль Единой Теории Поля. С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии. Суперсимметрия дает способ объединить электрослабое и сильные взаимодействия и в конечном счете создать единую теорию поля.
Откройте свой Мир!
Супервремя — понятие, возникшее как «игрушечная модель» в суперсимметричной теории поля — одномерный слепок суперпространства. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Теория суперсимметрии обобщает часто встречающееся в природе явление симметрии на уровень элементарных частиц и утверждает, что существует некоторое преобразование.
Данные, полученные на БАК, поставили под сомнение теорию суперсимметрии
Частицы-суперпартнеры должны оказаться намного тяжелее обычных частиц. А в настоящее время БАК быстро накапливает данные при еще более высоких энергиях, сокращая "тяжелую область" для суперчастиц. К концу года он достигнет 1000 ГэВ, что потенциально исключит некоторые вариации теории суперсимметрии, которым отдавалось наибольшее предпочтение. Это создает серьезную проблему для теории суперсимметрии. Поскольку суперчастицы оказываются более тяжелыми, чем предполагалось, они уже не так хорошо уравновешивают квантовые колебания. Теоретики все еще могут заставить теорию работать, но только при определенных значениях масс суперчастиц. Получается, что нужна та самая "тонкая настройка", для устранения которой теория была изобретена. Но для физики элементарных частиц в целом это будет очень интересно".
Но ни у одной из этих частиц нет свойств, подходящих для того, чтобы быть кому-то суперпартнёром. Поэтому, если бы суперсимметрия была природной симметрией, у каждого из известных нам типов элементарных частиц должны были бы быть партнёры, пока нами не открытые. А поскольку нам известно более 20 частиц, то работы у нас непочатый край! Так что же это за симметрия? Это симметрия, связывающая пространство и время с направлениями пространства и времени суперпартнёров — иначе говоря, у пространства-времени имеются дополнительные измерения, непохожие на знакомые нам. В бозонном измерении — к ним мы привыкли — можно двигаться сколько угодно далеко, допустим, шаг за шагом продвигаться влево. В фермионном измерении всё устроено так, что можно сделать только один шаг.
Если сделать ещё один шаг, то вы окажетесь нигде. Вы можете только вернуться. Это звучит странно, и это так и есть; в итоге приходится определять такие измерения через математику, а не при помощи слов или аналогий. Теория относительности Эйнштейна прекрасно справляется с описанием и предсказанием множества аспектов нашего мира. Его теория состоит из набора уравнению, подчиняющихся определённому набору симметрий. К примеру — трансляционная симметрия, или симметрия, связанная с переносом эксперимента из одного места пространства-времени в другое: эксперимент, проведённый сегодня в Лондоне, даст такой же результат, как тот же самый эксперимент, проведённый через несколько месяцев в Токио. В 1960-х математически было доказано, что суперсимметрия — это единственная симметрия, которую можно добавить к симметриям теории Эйнштейна так, чтобы получившиеся уравнения не стали расходиться со свойствами реального мира.
В этом смысле суперсимметрия стоит особняком. Где же эти частицы-суперпартнёры? Если бы суперссиметрия была точной симметрией природы, мы бы уже нашли множество суперпартнёров. Перед тем, как следовать далее, давайте вспомним, какие нам известны элементарные частицы. В статье по ссылке рис. Имена у них довольно уродливые, сэлектрон и странный скварк, где «с» означает суперсимметрию. Вы можете спросить, почему их по две и почему для каждого нейтрино всего по одной.
Обратитесь к рис. У фотона есть фотино, у глюонов — глюино, и т. С массивными W-бозонами всё чуть сложнее. К сожалению, в физике частиц с именованием частиц есть постоянная проблема — букв не хватает. У всех этих частиц точно такая же масса, в этом воображаемом суперсимметричном мире. Одна безмассовая, вторая массивная.
Теоретики полагают, что она может быть каким-то образом связана с еще не открытой субатомной частицей. Насчет этой гипотетической частицы есть сразу несколько предположений. Это может быть так называемый лептокварк частица, переносящая информацию между кварками и лептонами или Z-бозон который сам для себя служит античастицей.
Эксперимент был поставлен в Национальной ускорительной лаборатории имени Ферми Фермилаб в городе Батавия, штат Иллинойс, с целью изучения поведения субатомной частицы под названием мюон. Два экспермента изменят наше понимание мира Еще в прошлом месяце физики, проводившие эксперимент на Большом адронном коллайдере в Европе, отмечали, что полученные результаты могут свидетельствовать о наличии новой частицы и силы. Долгое время в ЦЕРНе физики сталкивали протоны друг с другом, чтобы посмотреть, что произойдет после. Один из экспериментов измеряет, что происходит при столкновении частиц, называемых красными или нижними кварками. Стандартная модель предсказывает, что эти крушения красивых кварков должны приводить к равному количеству электронов и мюонов. Но этого не произошло. При этом электронов значительно больше, чем мюонов, сказал исследователь эксперимента Шелдон Стоун из Университета Сиракьюса. Что в итоге? Первый результат нового эксперимента полностью согласуется с результатами Брукхейвена, что усиливает свидетельство того, что предстоит открыть новую физику.
Объединенные результаты Фермилаба и Брукхейвена показывают отличие от Стандартной модели при значении 4,2 сигмы или стандартных отклонений , что немного меньше, чем 5 сигм, которые необходимы ученым, чтобы заявить об открытии, но все же убедительное свидетельство новой физики. Вероятность того, что результаты являются статистическими колебаниями, составляет примерно 1 из 40 000. И все же данные заставили физиков во всем мире задуматься, верно ли наше понимание мира. Такого не было со времен открытия бозона Хиггса, часто называемого «частицей Бога». Британский Совет по научно-техническому оборудованию уже объявил, что результаты экспериментов в США дают весомые подтверждения существованию доселе неизвестной субатомной частицы или новой силы. По словам исследователей, повторное проведение экспериментов — запланированное в обоих случаях — через год или два позволит достичь невероятно строгих статистических требований, предъявляемых физиками к открытию. Если результаты подтвердятся, они перевернут «все остальные вычисления», сделанные в мире физики элементарных частиц. Как только ученые овладеют этой новой физикой, она сможет дать информацию космологическим и квантово-механическим моделям или даже помочь ученым изобрести новые технологии в будущем — возможно, следующую термоусадочную пленку.
В настоящее время рассматриваются несколько вариантов нарушения суперсимметрии. SUGRA — нарушение суперсимметрии , основанное на взаимодействии с гравитацией; GMSB — нарушение за счёт взаимодействия с дополнительными калибровочными полями с зарядами по группе Стандартной модели ; AMSB — нарушение, также использующее взаимодействие с гравитацией, но с применением конформных аномалий. Достоинства идеи суперсимметрии Теории, включающие суперсимметрию, дают возможность решить несколько проблем, присущих Стандартной модели: Решение проблемы иерархии. Одно из её проявлений — величина радиационных поправок к массе бозона Хиггса. В рамках Стандартной модели поправки к массе скалярного поля имеют квадратичную форму и оказываются существенно больше, чем масса поля, входящая в лагранжиан. Для сокращения таких поправок к массе Хиггса параметры Стандартной модели должны иметь очень точно определённые значения. В рамках MSSM поправки, как к фермионным массам, так и скалярным, имеют логарифмическую форму, и их сокращение происходит более естественно, но требует точной суперсимметрии. Кроме того, данное решение проблемы иерархии предполагает, что массы суперпартнёров не могут быть больше, чем несколько сотен ГэВ. Этот аргумент позволяет ожидать открытие суперсимметрии на коллайдере LHC.
Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
Однако суперсимметрия имеет глубокие теоретические следствия, делающие ее незаменимой концепцией. В частности, именно она обеспечивает самосогласованность теории суперструн. Все эти следствия и их непротиворечивость необходимо проверять теоретически. Подтверждение гипотезы, что суперструны описывают все фундаментальные взаимодействия, — кропотливая и долговременная работа», — подчеркнул Евгений Иванов. Суперсимметрия в теории реализуется в суперпространстве, в котором к пространству Минковского добавлены дополнительные фермионные измерения, так называемые грассмановы координаты. Грассмановы координаты не имеют физической интерпретации; каждая из них, возведенная в квадрат, дает ноль. Таким образом, суперпространство является умозрительной вспомогательной структурой, которая позволяет максимально просто и ясно реализовать на ней суперсимметрию. Существуют и теории с настоящими бозонными дополнительными измерениями — суперпространства с 10 бозонными координатами, и еще более сложные теории с 11-мерным пространством. Эти дополнительные бозонные измерения которые не наблюдаются при энергиях, достижимых на настоящий момент необходимы для согласованности теории суперструн на квантовом уровне. Функции, заданные в суперпространстве суперполя , в разложении по грассмановым переменным дают автоматически все поля, которые объединяются в супермультиплеты. Вскоре после открытия суперсимметрии выяснилось, что простые суперпространства не в полной мере отвечают теории суперструн и ее низкоэнергетическим пределам, и нужно вводить расширенные суперпространства, где грассмановы координаты имеют внутренний индекс, а потому преобразуются еще и по внутренней симметрии.
Для описания таких расширенных суперпространств наиболее естественным и простым образом необходимо, кроме пространственных координат и грассмановых переменных, ввести дополнительные координаты, а именно т. Гармоническое суперпространство было открыто в Дубне коллективом авторов.
Ваш эксперимент даст один и тот же ответ вне зависимости от его ориентации. Кстати, измерения света, испущенного очень удалёнными атомами, подтверждают эту теорию. Земля нас запутывает. Она заставляет нас думать, что направление вниз отличается от направления вверх или влево. Но это явное различие не является свойством законов природы.
Различие возникает из-за близости Земли, прячущей от нашего взора вращательную симметрию. Вопрос в том, что если какой-то аспект нашего мира не такой грубый, как Земля, но какой-нибудь незаметный, вроде поля Хиггса прячет от нашего взора суперсимметрию по всей Вселенной? Что тогда? Оказывается, что довольно легко получить такой же мир, как наш, где суперпартнёры известных части существуют, просто стали тяжелее — слишком тяжёлыми для того, чтобы мы обнаружили их в экспериментах. Вы видите, что нарушение суперсимметрии то, что она прячется и её нелегко обнаружить увеличило масштаб масс всех суперпартнёров так, что вся массовая шкала находится выше массы верхнего кварка. И это не так искусственно или глупо, как кажется — математика с готовностью принимает этот эффект. Существует множество точных примеров того, как это может произойти — но их слишком много для того, чтобы мы догадались, какой из них наиболее вероятен.
И это не единственная схема, способная возникнуть при нарушении суперсимметрии! Существует большое количество других возможностей, которые я буду называть вариантами суперсимметрии. Но представленный мною вариант — наиболее популярный среди теоретиков и экспериментаторов, особенно в Европе в США он менее популярен, про другие места я не знаю. Этой популярности есть веские причины; оказывается, что существует несколько независимых способов получить схему, сходную с этой. Однако популярность всегда порождает предвзятость, а нам необходимо рассматривать все возможности, не делая предположений касательно этих аргументов. Но если суперпартнёры очень массивные, не может ли получиться так, что мы не сможем произвести ни одного из них в ближайшие десятилетия или даже столетия? Не занимаемся ли мы подсчётом количества ангелов, способных уместиться на кончике иглы?
Из всего вышеизложенного пока действительно следует, что такой риск существует. Однако есть и более тонкий аргумент в пользу наличия суперсимметрии, благодаря которому у многих физиков есть надежда на то, что все эти суперпартнёры находятся в пределах досягаемости Большого адронного коллайдера. Это следует из того факта, что суперсимметрия решила бы проблему иерархии — одну из величайших загадок нашего мира. Проблема иерархии Важным свойством природы, ставящим в тупик учёных, а в их числе и меня, является свойство иерархии — огромной разницы между свойствами слабого ядерного взаимодействия и гравитации. Эту иерархию можно описать несколькими разными способами, каждый из которых упирает на одно из её свойств. Например: Масса мельчайшей возможной чёрной дыры определяет то, что известно, как планковская масса. В связи с этим существует огромная иерархия масштабов массы между слабым ядерным взаимодействием и гравитацией.
Сталкиваясь с таким огромным числом, как 10 000 000 000 000 000, десять квадриллионов, физики естественным образом задают вопрос: откуда оно взялось?
Сегодня наша программа нацелена немного на другую физику — коллайдерами мы больше не занимаемся. Одна из самых интересных областей — нейтрино.
В настоящее время мы проводим несколько экспериментов по его изучению. Они нацелены на исследование взаимодействия нейтрино с веществом и нейтринными осцилляциями. Также мы начали работу по сооружению нейтринного эксперимента следующего поколения, названного LBNF , что в переводе на русский означает «Нейтринный эксперимент с большой базой».
Стандартная модель сейчас более или менее оформилась. Когда построили LHC, перед физиками стояло две задачи — найти бозон Хиггса его нашли и подтвердить, что существует суперсимметрия. Вторая задача была, пожалуй, основной.
Суперсимметрия, казалось бы, объясняет многое в физике элементарных частиц. Но проблема в том, что ничего из того, что предсказали теоретики, в эксперименте не обнаружилось. Поэтому сейчас мы наблюдаем «кризис суперсимметрии».
Несмотря на большое количество идей и публикаций, никто не знает, существует ли суперсимметрия и если да, то где ее искать. Может быть, необходима энергия в 10 раз большая, чем на LHC, а может быть — в 100 раз, а может быть, суперсимметрии вообще не существует. В конце 1990-х выяснилось, что у разных типов нейтрино разные массы.
В действительности это высказывание не очень аккуратно. Более аккуратно физики говорят, что каждый тип нейтрино электронное, мюонное и тау представлен квантово-механической смесью трех массовых состояний — или, упрощая, смесью трех частиц. Мы пытаемся разобраться, как реально все устроено.
Сначала мы производим нейтрино — хорошо сфокусированный протонный сгусток сбрасывается на мишень, из мишени вылетают пи-мезоны, которые при распаде рождают мюоны и нейтрино. После выхода из распадного тоннеля мюоны останавливаются, а нейтрино пролетают 800 км под землей, и маленькая часть из них регистрируется детектором. Поскольку каждое нейтрино состоит из «частиц» с разными массами, которые двигаются с разными скоростями, то после пролета большого расстояния квантовомеханическое смешивание приводит к изменению типа нейтрино, осциллирующему с расстоянием.
Это называется нейтринными осцилляциями. Цель нашего эксперимента — посмотреть, какое количество разных типов нейтрино мы реально регистрируем, разобраться с их массовыми состояниями и выяснить, как они смешиваются. Они же «бесплатные».
Сейчас мы используем уже очень большой детектор — 14 килотонн, но поскольку взаимодействие нейтрино с веществом очень слабое, только очень маленький процент частиц регистрируется даже в таком большом детекторе. Его стоимость оценивается примерно в 3 млрд долларов. Сейчас мы находимся на этапе разработки проекта.
LBNЕ подразумевает создание и установку детектора в 40 кт на глубине по 1,5 км и увеличение мощности пучка, с помощью которого производятся нейтрино, с 700 кВт до 1,2—2 МВт. Это огромная мощность! И вся эта мощность сконцентрирована в мишени для производства нейтрино, которая представляет собой маленький цилиндр длиной порядка метра и диаметром сантиметр.
При этом пучок сфокусирован в еще меньший размер, то есть плотность энергии еще выше. Параметры пучка и мишени выбраны так, что мишень находится на грани взрыва. Чем больше энергия, тем больше «открывательная» способность.
Но максимальная энергия ограничена размерами ускорителя. Хотя intensity frontier эксперименты не могут доставить такую же детальную картину, как energy frontier, они могут видеть эффекты, которые недоступны экспериментам в energy frontier, проводя измерения редких процессов с очень высокой точностью. LHC успешно работает, и сейчас обсуждается возможность строительства установки еще большего размера.
На данном этапе определенности нет, все упирается в стоимость. Решение может быть принято как через 5 лет, так и через 50.
Оба коллектива видят отклонение в схожих, но всё же не идентичных, процессах. Статистическая значимость превышения невелика, около 3 стандартных отклонений, но это превышение дает новую надежду на то, что физика за пределами Стандартной модели уже не за горами. Физика элементарных частиц сегодня: краткий набросок Современная физика элементарных частиц находится последние годы в достаточно некомфортной ситуации. С одной стороны, в ее распоряжении есть теория — так называемая Стандартная модель , — которая замечательно согласуется с экспериментами.
Она была построена в 60-70-е годы, привела к множеству предсказаний, которые великолепно подтвердились в последующие десятилетия. Последним в этой серии достижений стало открытие бозона Хиггса в 2012 году и последовавшее за ним присуждение Нобелевской премии по физике авторам хиггсовского механизма. Все эти годы Стандартная модель выдерживала тысячи экспериментальных проверок. Всевозможные тонкие и замысловатые эффекты, которые она предсказывала и которые удавалось сосчитать теоретически, неизменно подтверждались. С другой же стороны, физикам давно достоверно известно, что Стандартная модель не может быть окончательной теорией устройства микромира. Стандартная модель не способна объяснить наличие темной материи и доминирование вещества над антивеществом в нашей Вселенной.
Она никак не объясняет разнообразные закономерности, которые обнаружены в свойствах кварков и особенно нейтрино. Наконец, многие численные величины в ней выглядят противоестественными, и сама Стандартная модель никакого объяснения им не дает. Физики уверены, что Стандартная модель — это лишь осколок какой-то другой, всеобъемлющей и более фундаментальной, теории устройства нашего мира, которую ученые условно называют физика за пределами Стандартной модели или «Новая физика». Что это за теория — пока неизвестно, но именно с ней связываются большие надежды на поиск ответов на неудобные для Стандартной модели вопросы. Чтобы не создавалось неправильного впечатления, надо обязательно оговориться, что проблема — не в том, чтобы придумать хоть какую-то теорию. Таких теорий придуманы, наверное, сотни.
Проблема в том, чтобы теория давала новые, нестандартные предсказания и чтобы эти предсказания подтверждались на опыте. А вот с этим пока сложности: ни один прямой эксперимент с элементарными частицами не обнаружил никакого достоверного отклонения от Стандартной модели. Так что Большой адронный коллайдер он же LHC — это не просто установка, которая сталкивает частицы и что-то там измеряет. Это тот инструмент, который должен помочь нам дотянуться до Новой физики, до нового пласта реальности, лежащего под Стандартной моделью. Первый маленький шаг в этом направлении сделан: открыт хиггсовский бозон и началось его изучение. Но это был подготовительный шаг, а настоящая задача коллайдера — достоверное обнаружение хоть какого-то отклонения от Стандартной модели — пока не решена.
Как ищут проявления суперсимметрии Рис. Типичный подход к поиску суперсимметрии на Большом адронном коллайдере. Частицы-суперпартнеры рождаются в парах, но распадаются поодиночке, и после каскада распадов от них остаются стабильные и неуловимые легчайшие суперсимметричные частицы, например нейтралино. Среди всех моделей особняком стоят теории, опирающиеся на суперсимметрию. Это слово обозначает глубокую, математически самосогласованную идею о том, что наш мир обладает симметрией нового типа, которая связывает между собой, говоря совсем условно, частицы материи и действующие между ними силы.
Комментарии
- Доказательство суперсимметрии полностью изменит наше понимание
- Купить книги в - Магазин научной книги
- Где же эти частицы-суперпартнёры?
- Физики открыли пятую силу природы. Главное об эксперименте с мюоном g-2
- Поиски суперсимметрии на коллайдере принесли новую интригу
Большой адронный коллайдер подорвал позиции теории суперсимметрии
К примеру, ученым очень хотелось, но не удалось найти подтверждения суперсимметрии — теории о том, что у каждой элементарной частицы есть гораздо более тяжелый «суперпартнер». Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели. К примеру, ученым очень хотелось, но не удалось найти подтверждения суперсимметрии — теории о том, что у каждой элементарной частицы есть гораздо более тяжелый «суперпартнер». Однако Тара Шиарс отказалась полностью отвергнуть теорию суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта. Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН).
[Перевод] Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
Существует много споров об этой теории, но суперсимметрия является одним из наиболее привлекательно возможных расширений Стандартной модели и ведущим претендентом в. Теория предсказывает наличие закона периодического изменения вероятности обнаружения частицы определённого сорта в зависимости от прошедшего с момента создания частицы. Поскольку суперсимметрия является необходимым компонентом теории суперструн, любая обнаруженная суперсимметрия будет согласована с теорией суперструн.