Кратковременный дождь с грозой и порывами ветра до 11-18 м/с выпадает на последнее воскресенье апреля. Опасные явления — шквалистый ветер, сильные ливневые осадки, град — живут недолго, поэтому о них часто предупреждают лишь за несколько часов до возникновения. Фото: Владимир Астапкович / РИА Новости. Прогноз осадков на 2 часа (наукастинг). По данным центра «ФОБОС», Ленобласть находится под воздействием активного атлантического циклона, центр которого выходит в акваторию Ботнического залива. Совместная технология детерминистского наукастинга и сверхкраткосрочного прогноза осадков на основе экстраполяции данных.
Как мы отказались от нейросетей, а затем вернули их в прогноз осадков Яндекс.Погоды
Наукастинг — это сверхкраткосрочный прогноз, на 2–5 часов вперёд. Чаще всего говорят о наукастинге развития конвективных (кучево-дождевых) облаков и связанных с ними опасных метеорологических явлений (ОЯ) — ливневых осадков, гроз, града, шквалов, смерчей. Нейросетевые методы наукастинга осадков: обзор и апробация существующих решений.
10 самых точных сервисов прогноза погоды
Прогноз осадков на 2 часа (наукастинг). Сотрудники «Фобоса» предупредили россиян о мощнейшей за шесть лет вспышке на Солнце. Погода в Казахстане 16 февраля: ожидаются сильные морозы, на юго-востоке — осадки. Фобос – последние новости. Прогноз осадков на 2 часа (наукастинг). Согласно прогнозу, который озвучил ведущий специалист центра погоды «Фобос» Евгений Тишковец, первый весенний месяц будет холодным – усилятся морозы, будет идти снег. Порядка 30% от месячной нормы осадков прольется на Москву в субботу, сообщил ведущий специалист центра погоды "Фобос" Евгений Тишковец в своем Telegram-канале. Наукастинг — это сверхкраткосрочный прогноз, на 2–5 часов вперёд.
Наукастинг осадков на 2 часа
Дословно «наукастинг» с английского переводится как «прогноз на сейчас», хотя на самом деле технология позволяет узнать о распределении осадков во временном промежутке от двух часов назад до двух часов вперед. Экстази может стать лекарством Кейсы Наукастинг работает на основе данных сети метеорологических радиолокаторов Росгидромета в этом году Яндекс получил официальный доступ к измерениям, которые на них проводятся и позволяет описывать текущую погоду с точностью до небольшого микрорайона. Радиолокатор работает следующим образом: примерно раз в 10 минут он строит трехмерный снимок атмосферы в радиусе 200 километров от своего местоположения по горизонтали и до 10 километров по вертикали. По принципу действия радиолокатор очень похож на авиационный радар, только на снимке видны не самолеты, а области атмосферы, где есть капли воды размером более 50 микрометров. Если такие капли и правда есть, то, скорее всего, из облака, в котором они находятся, выпадают осадки.
На мартовские праздники в Москве температура составит около 4 градусов мороза, сообщил руководитель Росгидромета Максим Яковенко. Он отметил, что это еще "тепло". В 1914 году температура в этот день опускалась до 32 градусов мороза. С этого года Росгидромет начнет создавать высокоточные краткосрочные прогнозы погоды для Москвы и еще 15 городов-миллионников, сообщил сегодня на коллегии Росгидромета Максим Яковенко. И отметил, что есть поручение президента о создании подобных программ для городов-миллионников. Столица станет пионером при создании таких прогнозов. В прошлом году был проведет "пилотный" проект по наукастингу осадков - высокоточным прогнозам на несколько часов - в зоне действия девяти радаров Кострома, Нижний Новгород, Валдай, Внуково, Воейково, Тула, Смоленск, Брянск, Курск. Наукастинг является перспективным направлением, которое позволяет создавать высокоточные краткосрочные прогнозы на малых территориях. К примеру, он позволяет информировать людей о погоде в определенном районе города или улице, что очень актуально для больших городов, в которых климат центра и окраин отличается.
Вообще, предсказать шквалы ветра и сильные ливни — не всегда просто в силу их короткого периода "жизни". Но тем не менее, кое-что сегодня благодаря современным технологиям построить удается... Несколько наиболее "точных" примет я собрал ниже...
Мы взяли за основу thin plate spline transform — преобразование картинки, которое представляет ее в виде тонкой резиновой пластины и растягивает некоторые места. Мы параметризуем это преобразование всего несколькими опорными векторами, а все остальные вектора движения внутри картинки восстанавливаем сплайновой интерполяцией. Такая технология используется, например, в восстановлении движения по последнему кадру из видео. Известная научная работа. Вооружившись полученными знаниями, мы начали пытаться строить прогноз.
Первое решение, которое пришло в голову, — просто обучить несколько нейросетей так, чтобы первая нейросеть предсказывала ситуацию на радаре через 10 минут, вторая — через 20 минут, третья — через 30. Требование было следующим: предсказывать радарные данные где-то на два часа вперед. Предсказания получались вот такие. Примерно тогда же, когда мы обучили 12 нейросетей, у нас появилась возможность визуализировать данные на карте. Посмотрев на скачущие облака, менеджеры сказали: это мы выпускать точно не будем. Один из них сказал: конечно, я понимаю, что это максимизирует вероятность чего-то там, но пользователю такое не объяснить — в жизни облака так не скачут. Во время следующей итерации мы решили считать только векторное поле и умножать опорные вектора на 2 и 3, чтобы получить перенос не на 10, а на 20 минут и 30 минут соответственно. На ближних горизонтах результаты выглядели довольно прилично, но чем дальше, тем чаще с краю появлялись артефакты.
Оказалось, что в векторном поле слишком большие вектора разрывают thin plate spline, и у нас появляется второе зеркальное отражение нашей картинки. Потом отражения сливаются. На ближних горизонтах артефакт не был заметен, но на дальних проявлялся очень сильно. Из ниоткуда возникало облако. Третьим решением стало последовательное применение одного и того же преобразования thin plate spline к одной картинке. С одной стороны, оно способствовало накоплению ошибок. Это было первое реально работающее решение, которое мы показывали при внутреннем бета-тесте. Нейросеть получала на вход шесть радарных снимков за последний час, несколькими свертками приводила их к тензору из 16 векторов 4 x 4.
Cплайновое преобразование восстанавливалось по векторам и последовательно применялось к картинке для получения каждого следующего горизонта прогноза. Решение довольно хорошо себя показало, но оставался единственный вопрос: зачем нужна нейросеть? Если красные свертки — единственная часть, которую мы обучаем, почему бы нам не вычислить векторное поле самостоятельно, алгоритмически? Так что четвертое решение, которое заметно улучшило результат, использовало явную минимизацию loss-функции. Мы искали векторное поле, которое бы одинаково хорошо приближало переход на 10 минут в последний час. От —60 минут до —50, потом до —40 и т. Мы применяли это векторное поле к t0, чтобы получить прогноз на 10 минут дальше. Алгоритмически гораздо лучше находить векторное поле с помощью минимизации.
Оно быстрее работает, не требует обучения. Самое интересное — оно не требует всех данных. Можно пропустить какие-то данные — а радары довольно часто запаздывают. Мы долго думали, что же оставить — нейронные сети или алгоритмические вычисления векторного поля. Но всё победил тот самый лазерный меч в Иваново.
Что сейчас на улице
За рубежом в сверхкраткосрочных прогнозах выделяют ещё прогноз текущей погоды, или наукастинг nowcasting. Его заблаговременность составляет от нескольких минут до 6 часов. Обычно наукастинг и сверхкраткосрочный прогноз тоже активно используется в аэропортах, морских портах, космодромах, во время олимпийских игр. Внезапные порывы ветра, резкое ухудшение видимости из-за тумана или осадков могут сыграть злую шутку. Перенос запуска ракеты из-за порывов ветра обходится в огромную сумму порядка нескольких млн. Примеров можно привести множество, суть ясна.
Барические системы с именами Подробнее о проекте На сегодняшний день практически каждый метеолюбитель имеет в своём распоряжении ряд сайтов, которыми пользуется, наблюдая за погодной обстановкой. Представленная выше подборка ресурсов включает в себя как наиболее популярные сайты, которыми пользуются практически все метеолюбители, так и ряд более специализированных ресурсов, находящихся в почёте у профессионалов. Спутниковые снимки Спутниковые снимки облачности позволяют оценить состояние облачного покрова на обширной территории в целом, выявить некоторые его структурные особенности, а также направление движения облачности разных ярусов. Особенно важны наблюдения за кучево-дождевой облачностью, поскольку с нею связаны такие явления, как грозы, шквалы, ливни, град, торнадо, и в ряде случаев они носят локальный характер.
Одним из методов прогнозирования может быть применение различных моделей искусственных нейронных сетей. Описание метода Исходные данные представляют из себя матрицу числовых значений, которые в дальнейшем переводятся в графическое изображение при помощи специализированного ПО [1]. Для решения задачи можно обозначить две возможные архитектуры: сверточные нейронные сети [3]; многослойные персептроны [4]. Первый тип нейросетей целесообразно применять в том случае, если мы используем данные большого размера в изначальном, матричном виде, так как сверточные нейронные сети предназначены для обработки данных, имеющих топологию в виде сетки Второй тип подойдет в том случае, если мы используем данные небольшой размерности. Например, это может быть, когда размерность была сознательно уменьшена в целях облегчения данных для тестирования новых моделей и проверки гипотез. Для использования данного метода будет необходимо использовать данные в виде одномерного массива. Задача нейронной сети — спрогнозировать значения ошибок на основе входных данных радарных наблюдений. Рассмотрим применение второго типа нейронных сетей. Работа с данными В качестве исходных данных имеем следующее: Input — Объединенные поля радиолокационных наблюдений. Регион: Центральный федеральный округ. Период испытаний: июнь — сентябрь 2020 г.
Под влиянием арктического антициклона на территории Уральского региона и Сибири 27-28 сохранится сухая холодная погода с большим суточным ходом температуры воздуха, ночью и утром на отдельных участках дорог гололедица. Такое развитие синоптической истории ранее прогнозировали и местные синоптики: «29 апреля обходными путями до Урала доберется черноморский циклон, которому придется обогнуть массив антициклона на востоке Европейской части России, прежде чем подобраться к нашему региону. Циклон вызовет 29-30 кратковременные дожди и понизит температуру на 8-10 градусов», рассказывала главный синоптик Уральского УГМС Галина Шепоренко. Что касается детализированной сводки погоды для Челябинской области, то 27 апреля будет облачно с прояснениями, в северной половине местами пройдут небольшие дожди, днем в субботу возможны грозы.
Арбат, Москва
Мониторинг метеорологических условий и состояния поверхности дорог Контроль качества данных Формирование и передача сообщений в ИТС Контроль состояния поверхности дорог коэффициент сцепления Специализированный прогноз зимней скользкости на 4 часа Прием данных от прогностических центров Расчет статистических характеристик на основе архивных данных Подготовка рекомендаций по количеству внесения реагента Прием данных от прогностических центров Расчет статистических характеристик на основе архивных данных Наукастинг осадков по данным ДМРЛ на 2 часа Мониторинг состояния автомобильных дорог, рекомендации по обработке Наукастинг осадков по данным ДМРЛ на 2 часа Специализированный прогноз зимней скользкости Для специализированного прогноза зимней скользкости используются: Численная гидротермодинамическая модель пограничного слоя атмосферы Данные дорожных метеостанций.
Соловьево — глубина затопления от 138 см —2 см за сутки ; р. Торопа у ст. Старая Торопа — глубина затопления от 36 см -3 см за сутки. В ближайшие сутки на Западной Двине, Днепре и на реках их бассейнов уровень воды продолжит снижение. В ближайшие 1-2 суток на Днепре у г. Дорогобуж пройдёт пик дождевого паводка.
Сохранятся затопления поймы на Днепре участок Дорогобуж-Соловьево и на Торопе. Бассейн Верхней Волги и верхняя часть бассейна Ветлуги За прошедшие сутки на р. Волга выше Иваньковского вдхр. На притоках Иваньковского, Угличского и Вазузского вдхр. На реках Ярославской и Ивановской областей — притоках Рыбинского и Горьковского вдхр. Продолжается регулирование Иваньковского и Угличского, наполнение Рыбинского водохранилищ.
Уровень Иваньковского вдхр. На 1 см повысился уровень воды в оз. Селигер, на оз. Плещеево, уровень воды не изменился, на оз. Неро уровень воды снизился на 1 см. Уровень воды на оз.
Селигер на 10 см превышает опасную отметку ОЯ «Высокое половодье», на оз. Плещеево до отметки ОЯ остается 14 см. Уровень воды р. Кострома на участке Гнездиково — Буй продолжил снижение на 16-23 см; у д. Исады — снижение на 2 см. На притоках Костромы уровень воды снижается на 3-17 см.
В бассейне Унжи на р. Унжа у г. Кологрив уровень снизился на 39 см; у г. Макарьев — снижение на 21 см. На притоках Унжи рр.
В этом случае хватает традиционных погодных трендов. Но если вы идёте обедать на улицу или на прогулку с ребёнком и при этом не хотите попасть под дождь, то важно знать точный момент начала дождя в течение ближайшего получаса. В таких ситуациях приходит на помощь наша карта осадков aka nowcasting. Рисунок 1. Карта осадков Яндекс. Погоды Nowcasting — это сверхкраткосрочный прогноз погоды до 2—6 часов с шагом в 5—15 минут, предсказывающий поведение погодных явлений с коротким жизненным циклом. Такой прогноз в той или иной степени сводится к задаче экстраполяции наблюдаемых метеорологических явлений, так как настоящие тяжёлые физические модели для него менее приспособлены и не могут оперативно учитывать быстро меняющие условия. Раз мы говорим о карте осадков, нам интересен источник данных об областях скопления влаги в воздухе, обладающий относительно высокой частотой обновления. Лучше всего для этого подходят метеорологические радары, предоставляющие такую информацию напрямую в виде изображений, и геостационарные спутники, снимки с которых надо предварительно обработать. Как решать Если исходить из того, что наукастинг сводится к задаче экстраполяции рисунок 2 , то формальное определение будет выглядеть так: где — количество кадров, на основе которых делается предсказание, — количество предсказываемых кадров. При этом можно интерпретировать кадр как обычную картинку и свести задачу к работе с видеоизображением. Рисунок 2. Пример изображений с метеорологического радара. Вверху: пример входных кадров для модели. Внизу: ожидаемые кадры во время предсказания. Здесь , а Мы предсказываем на два часа вперёд с шагом 10 минут.
Радиолокатор работает следующим образом: примерно раз в 10 минут он строит трехмерный снимок атмосферы в радиусе 200 километров от своего местоположения по горизонтали и до 10 километров по вертикали. По принципу действия радиолокатор очень похож на авиационный радар, только на снимке видны не самолеты, а области атмосферы, где есть капли воды размером более 50 микрометров. Если такие капли и правда есть, то, скорее всего, из облака, в котором они находятся, выпадают осадки. В России радиолокаторы установлены в наиболее населенных и интересных с метеорологической точки зрения регионах. Рэй Курцвейл: «В ближайшие 10 лет мы начнем печатать себе одежду дома» Мнения Ранее «Хайтек» писал о портативно детекторе погоды — разработке компании BloomSky.
Кабинет синоптика
Распределение атмосферного давления и осадков на Земле 6 лет назад. Просмотры: 36658 Youtube - Образование. Обучение - Znaika TV. Погоды 6 лет назад. Прогноз осадков на два часа — Алексей Преображенский 5 декабря 2016 года команда Яндекс. Погоды запустила алгоритм, предсказывающий осадки на ближайшие два часа....
Такие условия отмечаются в северной половине Европейской части, которую заморозил Арктический 05. Массы студеного арктического воздуха, проникшие на территорию России, продолжают выхолаживаться в условиях континента и большой продолжительности ночи и удерживают значительную отрицательную аномалию температуры. Подробнее 05.
Погода и Виджет — Weawow. Windfinder: ветер и погода Скачать GISMETEO: Радар Гисметео — реальный инструмент наукастинга града и фотоизображения Наукастинг осадков на 2 часа - это процесс прогнозирования количества осадков, которые ожидаются в течение двух часов. Для получения таких прогнозов используются различные методы и модели, которые учитывают данные о погоде, атмосферных условиях и других факторах. Наукастинг осадков на 2 часа основан на анализе исторических данных о погоде, а также на использовании современных технологий и моделей прогнозирования. Эти модели учитывают такие факторы, как температура, влажность, давление, направление и скорость ветра, а также другие параметры, которые могут влиять на формирование и интенсивность осадков. Прогнозы наукастинга осадков на 2 часа могут быть полезными для различных целей, включая планирование деятельности на открытом воздухе, сельское хозяйство, гидрологию и другие области, где знание о количестве и интенсивности осадков имеет важное значение.
На картах погоды дается прогноз по часам на несколько дней вперед. Представлены карты: прогноз осадков и облачности, анимация ветра, карта температуры воздуха, карта атмосферного давления и карта качества воздуха. На карте осадков и облачности вы найдете движение областей с различной интенсивностью осадков, а также распределение количества облаков, которое визуально имитирует спутниковые снимки. На карте анимации ветра вы наглядно увидите движение атмосферного воздуха, на ней также хорошо видны атмосферные вихри, такие как циклоны, тайфуны и ураганы.
Онлайн-словарь отраслевых терминов
Прогноз осадков на 2 часа (наукастинг). За сутки выпадет около 20,7 мл осадков. Прогноз осадков на 2 часа (наукастинг). Смотрите карты погоды высокого разрешения с центром в Спутнике с почасовыми прогнозами погоды осадков, облачности, анимации ветра, температуры, атмосферного давления и индекса качества воздуха. В отдельных районах менее чем за час выпало свыше 70% месячной нормы осадков. Наукастинг представляет собой детализированный прогноз погоды на ближайшие время (до 2-6 часов), основанный на численном решении системы уравнений гидротермодинамики с учетом процессов в атмосфере.