Новости индекс джини по странам

Показатели индекса Джини в России в 1990-е годы. Индекс Джини, измеряющий неравенство возможностей, превышает российский только в нескольких странах из рассма-триваемых ЕБРР – в Казахстане, Армении, Молдавии, Грузии, Турции, Косово, Латвии, Эстонии (см. рис. 3, левая ось). Индекс Джини (GTI) или Коэффициент Джини – это статистический показатель неравенства распределения доходов среди различных групп населения.

Gini index (World Bank estimate)

Consumption is usually a much better welfare indicator, particularly in developing countries. Second, households differ in size number of members and in the extent of income sharing among members. And individuals differ in age and consumption needs. Differences among countries in these respects may bias comparisons of distribution.

World Bank staff have made an effort to ensure that the data are as comparable as possible. Wherever possible, consumption has been used rather than income. Income distribution and Gini indexes for high-income economies are calculated directly from the Luxembourg Income Study database, using an estimation method consistent with that applied for developing countries.

Statistical Concept and Methodology: The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line.

Коэффициент Джини является важным инструментом для анализа распределения дохода или богатства в стране или регионе, но его не следует путать с абсолютным измерением дохода или богатства. Страна с высоким доходом и страна с низким доходом могут иметь одинаковый коэффициент Джини, если доходы распределяются одинаково внутри каждой из них: например, в Турции и США коэффициент Джини дохода составляет около 0,39—0,40, согласно Организация экономического сотрудничества и развития ОЭСР ,. Графическое представление индекса Джини Индекс Джини часто представляется графически в виде кривой Лоренца ,. Коэффициент Джини равен площади под линией совершенного равенства 0,5 по определению минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства.

Другими словами, это удвоенная площадь между кривой Лоренца и линией идеального равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2. Вычитая эту цифру из 0,5 площадь под линией равенства , мы получаем 0,3, которую затем делим на 0,5. Другой способ представить коэффициент Джини как меру отклонения от идеального равенства. Чем дальше кривая Лоренца отклоняется от идеально ровной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем менее равноправным является общество.

В приведенном выше примере Гаити более неравноправно, чем Боливия. В 1820 г. Источник: Всемирный банк. COVID-19, вероятно, окажет дальнейшее негативное влияние на равенство доходов. По данным Всемирного банка ,.

Кривая Лоренца показывает кумулятивный процент общего дохода, полученного от общего числа получателей, начиная с беднейших индивидов или домохозяйств. Индекс Джини измеряет площадь между Кривой Лоренца и гипотетической линией абсолютного равенства, выраженной как процент от максимальной площади под Кривой.

Наконец, самым минимальным он стал в 2017 году, достигнув 0,410. Ниже этого уровня индекс Джини в России был только в 2005 году 0,409. Как обратила внимание в документе «Комментарии о государстве и бизнесе» заместитель директора Центра развития ВШЭ Светлана Мисихина, в 2018 году индекс Джини в России вновь начал расти. За январь-сентябрь 2018 года индекс вырос с 0,400 до 0,402 в сравнении с тем же периодом 2017 года.

Также было заявлено о разных темпах роста инфляции: для бедных она росла медленнее, чем для богатых. Это привело к росту потребления малообеспеченных групп населения, что и дало сокращение неравенства. Как определялась инфляция для бедных? На основе индекса прожиточного минимума. Росстат полагает, что бедность тем ниже в стране, чем ниже прожиточный минимум. Однако в этом есть только теоретическая логика.

В то же время коэффициент Джини ведь растет, показывая реальное положение дел. В расчетах федеральных ведомств немало ошибок. Дело не в сознательном занижении инфляции, попытках «не увидеть» реальный рост цен или понизить показатели коэффициента Джини. Дело в большей степени состоит в проблемной выборке для статистической оценки. Так, например, индекс прожиточного минимума высчитывает Минтруд, который не учитывает полное изменение стоимости услуг по всей стране, что на выходе дает более красивую картину по прожиточному минимуму, а значит, население кажется менее бедным, чем есть на самом деле. В обзоре ВШЭ сказано, что Росстат тоже не безгрешен.

Он определяет инфляцию и прожиточный минимум на основе цен в городах и не учитывает стоимость товаров в несетевых магазинах в сельской местности.

Human Development Insights

Есть какие-нибудь пособия? С 1997 года в Китае действует система дибао — аналог нашего пособия по бедности. Главный недостаток системы в том, что сложно получить выплаты: документы подаются в центр и проходят долгий бюрократический отбор. Система очень слабо распространена вне городских районов. Лишь в 2016 году были слиты воедино городская и сельская системы медицинского страхования.

Рассказать друзьям в соцсетях Спасибо! Мы обещаем присылать только полезную информацию Подписаться Нажимая на кнопку, вы даёте согласие на обработку своих персональных данных При полном или частичном использовании материалов обязательна гиперссылка на сайт. Неравенство имеет значение. Если вы не согласны с этим, то можете покинуть сайт.

Простите, такие законы. Ок, не показывать больше.

For example, for a series that shows the percentage of female population, double-click on the series Population, Female. Then double click on the series Population, Total. After the formula is complete, you can verify its syntax by clicking the Validate button. Give a name to your custom indicator and click on Add. To have "not available" values in the database treated as zero within your formula, use the NA function. Later if you wish to see or change the formula for an indicator you have created, from the right side current selection panel click the Edit. Use the DEL key to delete the last entry and step backwards to edit the formula.

Click the Clear button to erase the custom indicator formula. Note: Validation will verify a formula for proper syntax only. Derived indicators may yield inappropriate results and caution should be observed.

Download data API Definition: Gini index measures the extent to which the distribution of income or, in some cases, consumption expenditure among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against the cumulative number of recipients, starting with the poorest individual or household.

Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение. Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование. И с рекордным количеством участников — 5169. Porto Seguro — бразильская компания, специализирующаяся в области автострахования. Датасет состоял из 595207 строк в трейне, 892816 строк в тесте и 53 анонимизированных признаков. Напишем простенький бейзлайн, благо это делается в пару строк, и построим графики. Коэффициент Джини победившей модели — 0. Это одна из причин, почему все модели, в том числе и победившие, по сути получились мусорные. Наверное, просто пиар, раньше никто в мире не знал про Porto Seguro кроме бразильцев, теперь знают многие. Целевой маркетинг В этой области можно лучше всего понять истинный смысл коэффициента Джини и Lift Curve.

Коэффициент Джини (индекс концентрации доходов, индекс неравенства). Индекс качества жизни по странам 2023, Рейтинг стран мира по уровню жизни в 2023 году. Для составления рейтинга исползовался Индекс Джини.

Gini Coefficient by Country 2022

Индекс Джини — процентное представление этого коэффициента. Расчёт коэффициента Джини базируется на кривой Лоренца — для её построения требуется частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака. Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют 5 групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими.

По определению Всемирного банка, есть ещё такая категория граждан, которую называют «экономически уязвимой». Сюда относятся люди, которые живут меньше чем на 10 долларов или примерно на 700 рублей в день. То есть это те, чей доход составляет менее 21000 рублей в месяц. К слову, это больше половины россиян. По данным Росстата показатели в России не так плохи. Такая высокая планка держалась вплоть до 2010 года, а затем постепенно начала снижаться. Рост неравенства возобновился в 2018 году и продолжается до сих пор. Данных на 2020 пока нет, но учитывая кризисную ситуацию прогноз неутешительный.

Межрегиональное и внутрирегиональное неравенство Всемирный банк опубликовал исследования, в которых наглядно видно, что процесс сокращения неравенства в России постепенно замедляется. Это тенденция характерна для всей глобальной экономики. Расслоение в нашей стране проявляется не только на уровне классов общества, но и на уровне регионов. Во многом такая ситуация обусловлена историческим прошлым и высоким процентом безработицы. Однако по данным Росстата региональное неравенство на территории страны выражено не так сильно, как неравенство внутри самих регионов, что довольно любопытно. Это наглядно демонстрирует уровень расслоения общества в столице, когда доходы самых бедных и самых богатых отличаются в 40 раз. Социальное неравенство в мире Парадокс, но факт — увеличение уровня занятости в развитых странах не приводит к сокращению числа бедных. Несмотря на то, что ситуация на рынке труда улучшается, риск бедности не снижается. К этому выводу пришли эксперты немецкого Фонда Бертельсмана в своем исследовании «Индекс социальной справедливости», которое было опубликовано в 2018 году. По сути, это та же «бедность работающего населения», которая так процветает в нашей стране.

Однако рост занятости мало повлиял на ситуацию неравенства и процент бедных. Более свежих данных пока нет, поэтому придется оценивать ситуацию по тем цифрам, которые есть.

The first index of its kind published in 2010, the GGEI has been tracking country performance in the green economy throughout the past decade, taking an integrated view of relative country performance around climate change, sector decarbonization, green markets, and the environment. With this edition, we retooled the methodological approach. For each of the 160 countries tracked in the GGEI, there is a measurement of both progress tracking and target verification that will offer stakeholders in the green economy a new way to understand how policies, investment, and activism can best ensure a real and just transition. Continue reading below for much more detail on these changes, as well as a wide range of videos, data files, and other links to learn more about this new GGEI. You can learn more about this novel measurement approach in Chapter 3. The GGEI was the first green economy index, launched in 2010, and today is the most widely referenced product of its kind internationally, utilized by policymakers, international organizations, ESG investors, and companies to evaluate and understand linkages between country green economy performance and their own commercial or organizational agendas.

Like many indices, the GGEI is used to benchmark performance, inform ESG investment strategy, communicate areas that need improvement, and educate diverse stakeholders how they too can promote progress. The GGEI is also useful as the foundation for creating customized sustainability measurement frameworks for a diverse range of stakeholders. Learn more here about subscribing to the GGEI or leveraging our model to create bespoke sustainability frameworks. Is this change an improvement or a decline in performance? We also calculate its distance from globally accepted targets associated with emission reductions, SDGs and other environmental, social and governance goals. For example, what are the efficiency improvements in sectors like buildings, transport and energy and how does this rate compare to what is required to keep on track to limit warming to 1,5 degrees Celsius?

You can learn more about this novel measurement approach in Chapter 3.

The GGEI was the first green economy index, launched in 2010, and today is the most widely referenced product of its kind internationally, utilized by policymakers, international organizations, ESG investors, and companies to evaluate and understand linkages between country green economy performance and their own commercial or organizational agendas. Like many indices, the GGEI is used to benchmark performance, inform ESG investment strategy, communicate areas that need improvement, and educate diverse stakeholders how they too can promote progress. The GGEI is also useful as the foundation for creating customized sustainability measurement frameworks for a diverse range of stakeholders. Learn more here about subscribing to the GGEI or leveraging our model to create bespoke sustainability frameworks. Is this change an improvement or a decline in performance? We also calculate its distance from globally accepted targets associated with emission reductions, SDGs and other environmental, social and governance goals. For example, what are the efficiency improvements in sectors like buildings, transport and energy and how does this rate compare to what is required to keep on track to limit warming to 1,5 degrees Celsius?

These two measurement components — the change in performance over time and the distance from global targets — offer new insight to market actors prioritizing ESG-aligned investment and commercial opportunities. The rate of change indicates green market momentum. Markets that are rapidly evolving towards more sustainable models may offer greater green investment opportunities. And the distance of each country from globally established targets conveys just how genuinely each market is realizing green growth.

Беларусь вошла в Топ-10 стран с самым низким имущественным неравенством

Это ведущая страна по неравному распределению доходов с индексом Джини 63, 4. Индекс Джини (GTI) или Коэффициент Джини – это статистический показатель неравенства распределения доходов среди различных групп населения. Индекс Джини по странам: коэффициент концентрации доходов. Индекс Джини по странам: коэффициент концентрации доходов. Покажите мне индекс джини вашего журнала – и я скажу, насколько азартный вы автор!

Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства

Countries in Sub-Saharan Africa and South America, such as Brazil and Botswana, feature prominently among the nations with the highest wealth and income inequality. Conversely, several European nations, like Slovenia, Czech Republic, and Belarus, exemplified lower Gini coefficients, implying a more equitable distribution of wealth and income. Iceland had a Gini coefficient as low as 26. These insights equip us with a clearer understanding of financial inequality on a global scale, drawing attention to areas where action is needed to reduce economic disparities and foster more equitable growth. With lower values indicating equal wealth distribution and higher values suggesting greater wealth disparities.

World Databank. DDAY Как распределены доходы? Как распределены доходы? Что сильнее всего влияет на неравенство?

В Китае регионы развиты очень неравномерно, и в этом он похож на Россию. Наибольший вклад в неравенство даёт расслоение между городскими и сельскими районами. Что правительство Китая думает о неравенстве? На государственном уровне неравенство считается серьёзной проблемой. По данным Pew Research, среди самих китайцев проблема неравенства находится на третьем месте после коррупции и экологии. Официальная оценка неравенства от китайского правительства заметно ниже — индекс Джини 46,7 в 2016 году. Более того, в 2008 году на волне кризиса неравенство в Китае впервые за 30 лет перестало расти и даже снизилось с высшей официальной отметки индекса Джини в 49,1.

То есть, строится график отсортированных прогнозных target-значений рис. Затем рассчитывается площадь под кривой — площадь фигуры под линией прогнозных значений. Так мы узнаем качество работы нашего алгоритма. Данный показатель прост в расчёте и легко интерпретируем, а значит популярен и часто используется в моделях банковского скоринга. Но достаточно ли одной метрики и можно «положиться» на Gini в управленческих вопросах? Возникает необходимость управления кредитным риском. А значит, появляется задача улучшения модели рейтингования заемщиков. В качестве примера возьмем датасет с наблюдениями по количественным и качественным характеристикам заемщиков на протяжении экономического цикла и более, для которых проставлен признак дефолта. В таблице ниже представлен пример маркированных данных. Необходимо преобразовать качественные показатели. Многие модели машинного обучения работают только с числовыми факторами и не чувствительны к иным. Однако, в бизнесе не всегда важные показатели являются числовыми.

По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него. Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку. Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи. Для этого импортируем необходимую библиотеку и вычислим ошибку для модели с дополнительным фактором и без него. По результатам видно, что модель с дополнительным фактором предсказала с меньшей ошибкой. Сравним все полученные результаты метрик. Из таблицы следует, что включение нового фактора F18 увеличивает прогнозную силу модели. Однако, такой вывод стал доступен после расчета дополнительной метрики. Напрашивается вывод, что коэффициента Джини недостаточно для оценки качества модели. Чтобы подтвердить гипотезу, необходимо большее количество экспериментов. А в данной статье положено начало для этого.

Индекс Джини: в каких странах мира самая маленькая разница между доходами богатых и бедных

Коэффициент Джини (индекс концентрации доходов, индекс неравенства). Индекс Джини интересен с точки зрения оценки страны для переезда на длительный срок. На этой карте представлено распределение Коэффициента Джини по странам (данные Всемирного Банка от 2018 года).

GINI INDEX The Gini index is also known as Gini coefficient. It is used to measure the inequality between the inhabitants of a region, by comparing their incomes. The combination of GDP per capita with the Gini coefficient is a useful gauge of the extent to which an economy's inhabitants find mass market goods and services affordable and provides valuable information to portfolio investors and to development agencies. The Sustainable Development Report 2023 tracks the performance of all 193 UN Member States on the 17 Sustainable Development Goals. Индекс Джини по странам: коэффициент концентрации доходов.

Коэффициент джини в России

Наиболее близкими и весомыми факторами экономической модели Соединенных Штатов и Российской Федерации являются политические, их способность определять экономическую конкурентную политику, а также неформальные правила, действующие по секторам экономики [15]. С одной стороны, в условиях антироссийских санкций политические факторы обеспечат устойчивое экономическое развитие, но с другой — замедлят экономический рост в рыночных условиях. Ранжирование стран по НДФЛ НДФЛ исчисляется в процентах от совокупного дохода физических лиц за вычетом необлагаемого минимума и других льгот, документально подтвержденных в соответствии с действующим законодательством. Порядок взимания подоходного налога в каждой стране индивидуален и зависит от уровня доходов и шкалы налогообложения табл.

Следует подчеркнуть, что в большинстве развитых стран действует прогрессивная ставка подоходного налога. В целях привлечения иностранных инвестиций и состоятельных граждан ряд стран предлагают специальные налоговые режимы для новых налоговых резидентов, которые могут быть длительными как в Швейцарии, Великобритании, Мальте или ограниченными во времени как в Канаде и Португалии. Следовательно, на уровне НДФЛ, основного прямого налога на доходы физических лиц, возникает препятствие для реализации Российской Федерации партнерских отношений с мировыми лидерами экономического роста.

Единая ставка налогообложения ограничивает возможности для пополнения российского государственного бюджета, в том числе основных более 1 трлн руб. Ожидаемый в 2018 г. Прогнозируемый объем ВВП — 97,462 трлн руб.

Более чем в два раза будут сокращены программы поддержки малого бизнеса, комплексного развития моногородов и электронного здравоохранения. В Российской Федерации наблюдается снижение темпов роста НДФЛ, что обусловлено ухудшением общеэкономической конъюнктуры и сокращением численности работающего населения, значительной долей неформальной занятости, а также сосредоточенностью большей части занятого населения в сфере оптовой и розничной торговли, которая подвержена высокому риску сокрытия доходов1. Снижение поступлений в государственный бюджет вернет российское правительство к вопросу введения прогрессивной шкалы НДФЛ.

Для сохранения социальной направленности налоговой политики необходимо установление прогрессивной шкалы НДФЛ с дифференцированными ставками и механизмом предоставления налоговых вычетов по НДФЛ, в том числе семейного налогообложения доходов граждан2 с учетом дополнительной информации о налоговых парах, основанных на их совместном доходе, включении дивидендов, процентного дохода и вычета иждивенцев из налоговой базы [16]. Следует особо выделить США и Китай, где применяется прогрессивная шкала подоходного налога, с доходами государственного бюджета в 2017 г. При этом с единой ставкой налогообложения Российская Федерация население — 146 880 432 чел.

США, отстает даже от Мексики — 292,8 млрд долл. США и Швеции население более 10 млн чел. Например, в Российской Федерации средняя номинальная начисленная заработная плата на март 2018 г.

США по курсу 1 долл. Минимальной суммой дохода в Германии признается 646 евро больше 46 тыс. США более 57 тыс.

США в день, 247 долл. США в месяц более 16 тыс. Тем самым в развитых странах поддерживается уровень потребления.

В Российской Федерации действие единой ставки НДФЛ не только снижает возможности населения к потреблению, но и не обременяет государство оказанием помощи малоимущим гражданам, минимальный прожиточный уровень на дееспособных граждан в месяц составляет 10,7 тыс.

Страна считается бедной страной из-за ограниченных ресурсов в ее границах. Он сильно зависит от Южной Африки в плане финансовой помощи. В то время как большая часть населения страны работает на шахтах в Южной Африке, остальная часть населения занимается сельским хозяйством. Лесото является восьмой страной с самым неравным распределением доходов среди граждан с индексом Джини 54, 2. Белиз Белиз - независимая центральноамериканская нация.

Белиз с населением всего 387 890 человек является одной из наименее населенных стран Центральной Америки. Благодаря живописному прибрежному региону в Белизе, жизненно важным источником дохода страны является туризм. Страна также экспортирует сельскохозяйственную продукцию, а также нефть и нефть. Основная проблема страны - незаконный оборот наркотиков и финансовые преступления, такие как отмывание денег. В результате незаконных операций в Белизе, это одна из стран в черном списке США. Белиз имеет наиболее неравное распределение ресурсов, занимая девятое место в списке стран с неравным распределением доходов.

Индекс Джини составляет 53, 3. Свазиленд Свазиленд является независимым государством в южном регионе Африки. Он считается развивающейся нацией. Свазиленд зависит от сельского хозяйства, большая часть населения работает на фермах. В стране также процветающий производственный сектор. В последние годы в стране наблюдается замедление экономического роста из-за продолжительной засухи, плохого сельскохозяйственного производства и чрезмерных государственных расходов.

Свазиленд входит в число стран с наиболее неравным распределением доходов.

С 1950 по 1970 год неравенство имело тенденцию к снижению, поскольку ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снизилось с ростом ВВП на душу населения , а затем резко сократилось. Три графика, показывающие поведение ВВП в три разных момента времени. Корреляция между коэффициентами Джини и ВВП на душу населения за три периода времени. Источник: Моатсос и Батен. Недостатки коэффициента Джини Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от достоверных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, составляет большую часть реального экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран.

В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов. Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ офшорных зон. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку индекс Джини пытается разделить двумерную область разрыв между кривой Лоренца и линией равенства до одного числа, он скрывает информацию о «форме» неравенства. В повседневных терминах это было бы похоже на описание содержимого фотографии только по ее длине вдоль одного края или простому среднему значению яркости пикселей.

The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.

Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства

Graph and download economic data for GINI Index for the United States (SIPOVGINIUSA) from 1963 to 2021 about gini, indexes, and USA. Gini index measures the extent to which the distribution of income (or, in some cases, consumption expenditure) among individuals or households within an economy deviates from a perfectly equal distribution. A Lorenz curve plots the cumulative percentages of total income received against. Собрали рейтинг стран по качеству жизни, основанный на данных сайта Numbeo.

Похожие новости:

Оцените статью
Добавить комментарий