Это ведущая страна по неравному распределению доходов с индексом Джини 63, 4.
Неравенство в Китае
World Bank Indicatorss | See the complete list of world stock indexes with points and percentage change, volume, intraday highs and lows, 52 week range, and day charts. |
Gini Coefficient by Country 2022 | Согласно индексу Джини, который измеряет степень доходового неравенства в стране, Бразилия занимает одно из первых мест в списке стран с самым высоким уровнем неравенства. |
Коэффициент Джини
Индекс Джини – это то же самое, что и коэффициент Джини, только переведенное в проценты. Индекс Джини, или коэффициент Джини, – это показатель распределения доходов среди населения, разработанный итальянским статистиком Коррадо Джини в 1912 году. В 2023 году был определен рейтинг стран по индексу джини, который отображает наиболее неравные страны в мире.
Рейтинг стран по индексу джини 2023
Обновите эту статью, чтобы отразить недавние события или новую доступную информацию. Июнь 2020 г. Мировая карта коэффициентов Джини по странам.
Выбирайте страну для релокации с умом!
Индекс Джини дает на них убедительные ответы. Вопрос «зачем» обычно интересует свергнутых правителей и их покровителей. Они знают, что спонтанных революций не бывает: технологии давно описаны. А у победителей есть ответ: «Не «зачем? Посмотрите на индекс Джини».
Так ли все просто? И когда ожидать, скажем, революции в США? Сначала пара фраз о самом показателе. Его смысл улавливается с помощью графика. Одно из преимуществ индекса Джини — анонимность.
In collating this survey data the World Bank takes a range of steps to harmonize it where possible, but comparability issues remain.
The PIP Methodology Handbook provides a good summary of the comparability and data quality issues affecting this data and how it tries to address them. The surveys underlying the data within a given spell for a particular country are considered by World Bank researchers to be more comparable. The breaks between these comparable spells are shown in the chart below for the share of population living in extreme poverty. You can select to see these breaks for any indicator in our Data Explorer of the World Bank data. These spells are also indicated in our data download of the World Bank poverty and inequality data.
Yahoo Finance
Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов.
Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале. Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться. Обозначим как вероятность того, что объект примет значение , и как вероятность того, что объект примет значение. Тогда и Имея априорную вероятность для каждого объекта выборки, можем записать формулу, определяющую вероятность того, что объект примет значение : Пример того, как могут выглядеть функции распределения для двух классов в задаче кредитного скоринга: На рисунке также показана статистика Колмогорова-Смирнова, которая также применяется для оценки моделей. Запишем формулу Вилкоксона в вероятностном виде и преобразуем её: Аналогичную формулу можем выписать для площади под Lift Curve помним, что она состоит из суммы двух площадей, одна из которых всегда равна 0. Практическое применение Как упоминалось в начале статьи, коэффициент Джини применяется для оценки моделей во многих сферах, в том числе в задачах банковского кредитования, страхования и целевом маркетинге. И этому есть вполне разумное объяснение.
Эта статья не ставит перед собой целью подробно остановиться на практическом применении статистики в той или иной области. На эту тему написаны многие книги, мы лишь кратко пробежимся по этой теме. Кредитный скоринг По всему миру банки ежедневно получают тысячи заявок на выдачу кредита. Разумеется, необходимо как-то оценивать риски того, что клиент может просто-напросто не вернуть кредит, поэтому разрабатываются предиктивные модели, оценивающие по признаковому пространству вероятность того, что клиент не выплатит кредит, и эти модели в первую очередь надо как-то оценивать и, если модель удачная, то выбирать оптимальный порог threshold вероятности. Выбор оптимального порога определяется политикой банка. Задача анализа при подборе порога — минимизировать риск упущенной выгоды, связанной с отказом в выдаче кредита. Но чтобы выбирать порог, надо иметь качественную модель. Основные метрики качества в банковской сфере: Страхование В этой области всё аналогично банковской сфере, с той лишь разницей, что нам необходимо разделить клиентов на тех, кто подаст страховое требование и на тех, кто этого не сделает. Рассмотрим практический пример из этой области, в котором будет хорошо видна одна особенность Lift Curve — при сильно несбалансированных классах в целевой переменной кривая почти идеально совпадает с ROC-кривой. Это было очень странное и в то же время невероятно познавательное соревнование.
И с рекордным количеством участников — 5169. Porto Seguro — бразильская компания, специализирующаяся в области автострахования.
Список стран по равенству доходов - List of countries by income equality Статья со списком Википедии Мировая карта коэффициентов Джини по странам.
На основе данных Всемирного банка за период с 1992 по 2018 год. Это список стран или зависимостей по показателям неравенства доходов , включая коэффициенты Джини.
Гаити, площадь которого составляет 10 714 квадратных миль, входит в число самых густонаселенных стран Карибского региона и входит в число самых бедных стран мира. Страна обременена коррупцией, неадекватными системами здравоохранения, неразвитой инфраструктурой и отсутствием надлежащего образования. Что касается распределения доходов, Гаити занимает третье место по неравномерности распределения доходов с показателем Джини 60, 8. Ботсвана Ботсвана - это страна в регионе африканских стран.
Это одна из наименее населенных стран мира с населением всего 2 миллиона жителей. Страна функционирует как экономика свободного рынка, крупнейшим сектором которой является добыча полезных ископаемых. Несмотря на быстрое расширение экономики в последние годы, сельское население Ботсваны остается крайне бедным. Это четвертая страна с самым неравным распределением доходов в мире, где коэффициент Джини составляет 60, 5. Суринам Суринам - независимая нация, расположенная вдоль Атлантического побережья в Южной Америке. Это самая маленькая нация Южной Америки с площадью 63 707 квадратных миль.
Основным источником дохода Суринама является горнодобывающая промышленность. Сельское хозяйство является еще одним важным сектором в стране. Несмотря на то, что в стране относительно высокий уровень жизни, Суринам занимает пятое по величине неравное распределение доходов в мире, индекс Джини составляет 57, 6. Замбия Замбия является суверенным государством в южном регионе Африки. Нация имеет исключительно высокий уровень бедности, особенно в сельской местности. Основным источником дохода Замбии является горнодобывающая промышленность, на которую влияют падающие цены.
Большинство замбийцев в сельской местности практикуют натуральное хозяйство. Страна занимает шестое место в списке стран с самым неравным уровнем доходов среди своих граждан.
Колумбия 0. Неравномерное распределение доходов может влиять на стабильность социально-экономического развития страны и приводить к социальным конфликтам. Усиление усиления мер по борьбе с неравенством и создание более справедливой экономической системы являются неотъемлемыми задачами для данных стран. Это может включать в себя такие меры, как повышение налогообложения для богатых слоев населения, создание социальных программ поддержки для малообеспеченных групп и улучшение доступности образования и здравоохранения для всех слоев населения.
Топ-страны с наибольшим неравенством Вот список стран, занимающих топ-позиции по индексу Джини в 2023 году: Сьерра-Леоне — Сьерра-Леоне является страной с самым высоким уровнем неравенства в мире. Это может быть связано с тем, что страна испытывает множество проблем, таких как очень низкий уровень экономического развития, высокий уровень безработицы и распространенность бедности. Ботсвана — Ботсвана, хотя и является одной из наиболее экономически развитых стран в Африке, также имеет высокий уровень неравенства. Это может быть связано с неравномерным распределением богатства и доступа к образованию.
Индекс Джини по странам: коэффициент концентрации доходов
Индекс Джини • Отражает степень неравномерности распределения статей в журнале. Graph and download economic data for GINI Index for the United States (SIPOVGINIUSA) from 1963 to 2021 about gini, indexes, and USA. В 2023 году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос до 0,403 против 0,395 годом ранее, следует из доклада Росстата о социально-экономическом положении .pdf). Согласно индексу Джини, который измеряет уровень неравенства распределения богатств в стране, страна занимает пятое место по уровню неравенства в мире.
Ниже этого уровня индекс Джини в России был только в 2005 году (0,409). Get Free Economic Indicators Charts, Historical Data and Forecasts for 196 Countries. Согласно индексу Джини, который измеряет уровень неравенства распределения богатств в стране, страна занимает пятое место по уровню неравенства в мире. Индекс Джини – это то же самое, что и коэффициент Джини, только переведенное в проценты. Пенза А.С. 8 (495) 568-00-42 (доб. 99729). ca_PenzaAS@ Коэффициент Джини (индекс концентрации доходов) по субъектам Российской Федерации.
Коэффициент Джини. Формула. Что показывает
Необходимо принимать решения, математически и статистически обоснованные. То есть, строится график отсортированных прогнозных target-значений рис. Затем рассчитывается площадь под кривой — площадь фигуры под линией прогнозных значений. Так мы узнаем качество работы нашего алгоритма. Данный показатель прост в расчёте и легко интерпретируем, а значит популярен и часто используется в моделях банковского скоринга. Но достаточно ли одной метрики и можно «положиться» на Gini в управленческих вопросах? Возникает необходимость управления кредитным риском. А значит, появляется задача улучшения модели рейтингования заемщиков. В качестве примера возьмем датасет с наблюдениями по количественным и качественным характеристикам заемщиков на протяжении экономического цикла и более, для которых проставлен признак дефолта.
В таблице ниже представлен пример маркированных данных. Необходимо преобразовать качественные показатели. Многие модели машинного обучения работают только с числовыми факторами и не чувствительны к иным.
The third highest Gini Coefficient is Suriname with a score of 57. Zambia comes in fourth with a Gini Coefficient of 57. The Central African Republic also presents a significant income disparity, with a Gini Coefficient of 56. Eswatini Swaziland and Mozambique report similar Gini Coefficients at 54. Brazil and Botswana rank ninth and tenth, both having Gini Coefficients over 53.
Основными источниками данных для корректного измерения GTI являются торговая статистики на уровне фирмы и база данных Евростата о торговле с разбивкой по характеристикам предприятий TEC. База данных TEC показывает количество микро менее 10 сотрудников , малых менее 50 сотрудников , средних менее 250 сотрудников и крупных фирм более 250 сотрудников , занятых в торговле, и категории товаров, экспортируемые каждым классом фирм. Торговый индекс Джини может быть рассчитан для всех этих четырех размерных классов экспортеров, начиная от микрофирм и заканчивая «суперэкспортерами» крупными предприятиями. Несмотря на то, что главы государств обычно не подкрепляют свои заявления торговой статистикой на уровне компаний, они стараются проводить целенаправленную торговую политику для поддержки участия своих МСП в глобальных цепочках поставок. Так, в ноябре 2023 года президент Франции Эммануэль Макрон, ссылаясь на статистические данные, которые указывают на неиспользованный экспортный потенциал, заявил, что доля французских МСП в общем объеме французского экспорта невелика и ниже, чем у немецких и итальянских коллег. Он также выступил в поддержку нескольких инициатив, направленных на увеличение числа французских фирм-экспортеров. А новый министр Южной Кореи по делам малых предприятий и стартапов объявил об обязательстве поддержать все существующие 90 000 корейских фирм-экспортеров в расширении их экспортной деятельности. Таким образом, индекс Джини используется не только для выявления неравенства среди населения, но и для выявления секторов государственной политики, которые требуют особого внимания для повышения уровня жизни населения, а также улучшения общих экономических показателей страны. В этих странах правительства предпринимают шаги для снижения неравенства доходов и бедности, в том числе через программы социальной поддержки, налоговые реформы и инвестиции в образование и здравоохранение. Индекс Джини в России Если Запад использует индекс Джини в целях перестройки торговой политики, то в России этот показатель используется Федеральной службой государственной статистики для его первоначальной задачи - расчета финансового неравенства среди населения. По заявлению экспертов, показатели финансового неравенства в России остаются высокими — 40. В последние годы наблюдается низкий уровень безработицы, рост заработной платы, а также активная поддержка вопросов материнства и детства.
На основе данных Всемирного банка за период с 1992 по 2018 год. Это список стран или зависимостей по показателям неравенства доходов , включая коэффициенты Джини. Коэффициент Джини - это число от 0 до 1, где 0 соответствует полному равенству где у всех одинаковый доход , а 1 соответствует полному неравенству когда один человек имеет весь доход, а все остальные не имеют дохода.
Графическое представление индекса Джини Индекс Джини часто представлен графически через кривую Лоренца , которая показывает распределение доходов или богатства путем нанесения процентиля населения по доходу на горизонтальную ось и совокупного дохода на вертикальной оси. Коэффициент Джини равен площади под линией полного равенства 0,5 по определению за вычетом площади под кривой Лоренца, деленной на площадь под линией абсолютного равенства. Другими словами, это вдвое больше площади между кривой Лоренца и линией полного равенства. Чтобы оценить коэффициент Джини дохода для Гаити в 2012 году, мы найдем площадь под кривой Лоренца: около 0,2. Вычитая это число из 0,5 площадь под линией равенства , мы получаем 0,3, которое затем делим на 0,5. Другой способ восприятия коэффициента Джини — это показатель отклонения от идеального равенства. Чем дальше кривая Лоренца отклоняется от идеально равной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем менее равным является общество.
В приведенном выше примере Гаити более неравное, чем Боливия. Индекс Джини во всем мире Глобальный Джини По оценкам Кристофа Лакнера из Всемирного банка и Бранко Милановича из Городского университета Нью-Йорка , коэффициент Джини для глобального дохода составлял 0,705 в 2008 году по сравнению с 0,722 в 1988 году. Однако цифры значительно различаются. Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Лакнер и Миланович показывают снижение неравенства примерно в начале 21 века, как и книга Бургиньона 2015 года: Источник: Всемирный банк. Экономический рост в Латинской Америке, Азии и Восточной Европе во многом стал причиной недавнего снижения неравенства доходов.
В то время как неравенство между странами в последние десятилетия снизилось, неравенство внутри стран возросло. Джини внутри стран Ниже приведены коэффициенты Джини дохода для каждой страны, по которой в CIA World Factbook представлены данные: Некоторые из беднейших стран мира Центральноафриканская Республика имеют одни из самых высоких в мире коэффициентов Джини 61,3 , тогда как многие из самых богатых стран Дания имеют одни из самых низких 28,8. Однако взаимосвязь между неравенством доходов и показывают, что с 1820 по 1929 год неравенство несколько увеличивалось, а затем постепенно уменьшалось по мере увеличения ВВП на душу населения. С 1950 по 1970 год неравенство, как правило, уменьшалось, поскольку ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снизилось с ростом ВВП на душу населения, а затем резко увеличилось. Корреляция между коэффициентами Джини и ВВП на душу населения за три периода времени.
Источник: Моатсос и Батен. Недостатки Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от достоверных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, составляет большую часть истинного экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран. В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов.
Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ. Коэффициент Джини Gini coefficient — метрика качества, которая часто используется при оценке предсказательных моделей в задачах бинарной классификации в условиях сильной несбалансированности классов целевой переменной. Именно она широко применяется в задачах банковского кредитования, страхования и целевом маркетинге. Для полного понимания этой метрики нам для начала необходимо окунуться в экономику и разобраться, для чего она используется там. Экономика Коэффициент Джини изменяется от 0 до 1. Чем больше его значение отклоняется от нуля и приближается к единице, тем в большей степени доходы сконцентрированы в руках отдельных групп населения и тем выше уровень общественного неравенства в государстве, и наоборот.
В экономике существует несколько способов рассчитать этот коэффициент, мы остановимся на формуле Брауна предварительно необходимо создать вариационный ряд — отранжировать население по доходам : где — число жителей, — кумулятивная доля населения, — кумулятивная доля дохода для Давайте разберем вышеописанное на игрушечном примере, чтобы интуитивно понять смысл этой статистики. Предположим, есть три деревни, в каждой из которых проживает 10 жителей.
Страна Распределение доходов семьи - индекс Джини Afghanistan.
По данным Азиатского банка развития, это самый высокий показатель неравенства в Азии. Ещё в 1980-м году индекс Джини в Китае был около 30. С тех пор, вслед за стремительным ростом китайской экономики, сильно росло и неравенство. Китай обогнал по этому показателю США только в 2003 году. Для сравнения, индекс Джини в России в 2016 году был 42. Государство ставит задачу сократить количество бедных к концу 2018 года на 10 млн, после чего останется 27 млн остро нуждающихся. Источник: World Bank 2017.
World Databank. DDAY Как распределены доходы? Как распределены доходы? Что сильнее всего влияет на неравенство?
Список стран по равенству доходов - List of countries by income equality Статья со списком Википедии Карта мира коэффициентов Джини по странам. На основе данных Всемирного банка за период с 1992 по 2018 год. Это список стран или зависимостей по показателям неравенства доходов , включая коэффициенты Джини.