По коэффициенту Джини (статистический показатель степени экономического неравенства в обществе) Россия уступает лишь Бразилии.
Кривая Лоренца
- Индекс Джини в 1980–2022 годах
- Маленький статистический ликбез - коэффициент неравенства доходов Джини | Пикабу
- Что такое индекс Джини?
- Как измеряют социальное неравенство
- Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства
- Индекс Джини: новые горизонты применения
39 стран с высшей степенью неравенства
Например, дисперсия, которая должна быть одной из самых простых мер неравенства, не является независимой от шкалы доходов: простое удвоение всех доходов приведет к четырехкратному увеличению оценки неравенства доходов. Федеральная служба статистики Российской Федерации в качестве меры измерения социального неравенства использует децильный коэффициент фондов, который рекомендован в качестве одного из показателей оценки состояния экономической безопасности[7]. Однако на международном уровне зачастую используется другой показатель оценки социального неравенства — коэффициент Джини, который обладает своими плюсами и минусами по сравнению с коэффициентом фондов и может быть использован в качестве дополнительного показателя в оценки экономической безопасности. Методика расчета коэффициента Джини основывается на построении кривой Лоренца. Коэффициент Джини определяется как отношение двух площадей: площадью между кривой Лоренца распределения доходов и диагональной линией полного равенства, выраженная как доля треугольной области между кривыми полного равенства и неравенства. Величина коэффициента Джини может принимать значения в пределах от 0 до 1. Чем ближе значение коэффициента к 1, тем выше уровень неравенства в распределении совокупного дохода. Чем ближе коэффициент к 0, тем равномернее распределение. Коэффициенту Джини свойственны следующие признаки: Анонимность: не имеет значения, какие социальные группы обладают высоким или низким заработком. Показатель неравенства не должен зависеть от какой-либо характеристики отдельных лиц, кроме их дохода.
Независимость от масштаба экономики: коэффициент Джини не учитывает размер экономики. Независимость от размера населения: не имеет значения, насколько велико население страны. Независимость от шкалы доходов. Мера неравенства является инвариантной к равномерным пропорциональным изменениям: если доход каждого человека изменяется в той же пропорции как, например, происходит при смене валютной единицы , то неравенство не должно меняться[4]. Преимущества применения Коэффициента Джини[6]: Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной.
The Gini index measures the area between the Lorenz curve and a hypothetical line of absolute equality, expressed as a percentage of the maximum area under the line. Thus a Gini index of 0 represents perfect equality, while an index of 100 implies perfect inequality.
Те, кто сегодня находится у власти, в том числе и в министерских кабинетах, в 90-х уничтожали, разворовывали страну, всё то что люди строили дважды, после Гражданской, после Отечественной... К 00-ым страна была освоена и поделена, и те, кто "заработал" на уничтожении промышленности, сельского хозяйства начали строить свой бизнес, осваивая уже людской ресурс. Что сделал Путин? Вопрос можно поставить иначе...
COVID-19, вероятно, окажет дальнейшее негативное влияние на равенство доходов. По данным Всемирного банка ,. Экономисты считают, что COVID-19 вызвал ежегодное увеличение коэффициента Джини на 1,2—1,9 процентных пункта в 2020 и 2021 годах. Джини внутри стран Ниже приведены коэффициенты Джини по доходам для каждой страны, для которой CIA World Factbook предоставляет данные: Некоторые из беднейших стран мира имеют одни из самых высоких в мире коэффициентов Джини, в то время как многие из самых низких коэффициентов Джини встречаются в более богатых европейских странах. Однако взаимосвязь между неравенством доходов и ВВП на душу населения не является идеальной отрицательной корреляцией, и со временем эта взаимосвязь менялась. Майкл Моатсос из Утрехтского университета и Джори Батен из Тюбингенского университета показывают, что с 1820 по 1929 год неравенство немного росло, а затем уменьшалось по мере роста ВВП на душу населения. С 1950 по 1970 год неравенство имело тенденцию снижаться по мере того, как ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снижалось с ростом ВВП на душу населения, а затем резко возрастало. Ограничения индекса Джини Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от надежных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, представляет большую часть реального экономического производства в развивающихся странах и находится в нижней части распределения доходов внутри стран. В обоих случаях это означает, что индекс Джини измеренных доходов будет завышать истинное неравенство доходов. Точные данные о богатстве получить еще труднее из-за популярности налоговых убежищ.
Все новости
- Коэффициент Джини | Истории | Что такое коэффициент 7 июня 2021
- Как построить кривую Лоренца
- В России зафиксирован рост доходного неравенства - АБН 24
- Индекс Джини в странах мира
- Gini Coefficient By Country
- Уровень жизни. Динамические ряды
Список стран по равенству доходов
В РФ, по данным конца 2014 года, коэффициент Джини по доходам был равен 0,42, а по имуществу – 0,921, что свидетельствует о высоком уровне общественного неравенства. Децильный коэффициент (соотношение мин доходов 10% наиболее обеспеченного населения и макс доходов 10% наименее обеспеченного населения). Коэффициент Джини (или индекс Джини), кривая Лоренца, TPR (true positive rate) и FPR (false positive rate) – одни из самых популярных атрибутов экономических задач, решаемых с помощью машинного обучения. вы делаете те новости, которые происходят вокруг нас. В итоге после учета всех трансфертов и всех налогов коэффициент Джини для США сокращается вдвое – с 0,45 до 0,23 и из страны с самым высоким они становятся страной с самым низким неравенством среди всех развитых стран! Европейский союз коэффициенты Джини государств-членов, согласно Евростат.
Индекс Джини: в каких странах мира самая маленькая разница между доходами богатых и бедных
Почему так происходит? Последние новости сегодня. Свежие новости. Проблема социального неравенства — не исключительно российская. Это явление вообще свойственно любой общности людей и существовало во все времена во всех странах. В то же время показатель неравенства является одним из основных для оценки того, куда вообще движется экономика государства, оказывается своего рода лакмусовой бумажкой. При этом отсутствие расслоения общества, конечно, не наблюдается нигде. Показателем стабильности же является неизменность год от года разрыва между бедными и богатыми. Государства могут бесконечно говорить о росте ВВП, бюджетных доходах, рекордах промышленности. Однако если при этом постоянно растет социальное неравенство, значит все идет не так уж хорошо. Примером такой страны стала и Россия, где уровень неравенства в последние годы стабилизировался, но на фоне победных реляций правительства о росте уровня жизни, доходов, профицитном бюджете внезапно вновь стал расти.
Почему это происходит и каковы последствия этого явления? Выпуская Джини из бутылки Наиболее распространенным в мире показателем имущественного расслоения общества является коэффициент Джини. Он сравнивает годовые доходы бедных и богатых граждан и показывает уровень отклонения от абсолютной нормы, то есть одинакового роста доходов социальных групп. В индексе «0» означает равенство, а «1» — полное неравенство. Чем больше индекс, тем больше неравенство. По данным Росстата, за последнее десятилетие в России коэффициент Джини показывал максимальные значения в 2008 и 2010 годах — 0,421 в 2007 году был немного больше — 0,422.
Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство. Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться.
Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными. Кроме того, страны могут собирать данные по-разному, что затрудняет сравнение статистических данных между странами. Экономики с одинаковыми доходами и одинаковыми значениями коэффициентов Джини могут иметь различное распределение доходов. В качестве примера, экономика, в которой половина домохозяйств не имеет дохода, а другая половина имеет равный доход, имеет значение коэффициента Джини, равное 0,5, а экономика с полным равенством доходов, за исключением одного состоятельного домохозяйства, которое имеет половину общего дохода, также имеет значение коэффициента Джини, равное 0,5. В целом коэффициент Джини является более универсальным показателем неравенства в доходах, чем фондовый и децильный коэффициенты. Он полностью учитывает разброс значений признака вариационного ряда, в то время как фондовый и децильный коэффициенты учитывают разрыв, складывающийся между крайними децильными группами[3]. Таким образом, коэффициент Джини может быть использован как дополнительный показатель к коэффициенту фондов в оценке состояния экономической безопасности по уровню неравенства населения по доходам.
Список источников и литературы: 1. Указ Президента РФ от 13. Указ Президента РФ от 7 мая 2018 г.
Для простоты понимания рассмотрим рисунок 1. Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов. На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини. Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент. При абсолютном равенстве он достигает нуля.
Приведем пример расчета коэффициента Джини на основе данных о распределении общего объема денежных доходов населения России в 2021 году по квинтильным группам.
Индекс Джини при этом изменялся незначительно, оставаясь для большинства регионов в пределах 0,27—0,45 с центром 0,33—0,35. Коэффициенты корреляции невелики и то положительны, то отрицательны. Костромская, Тверская, Кировская, Оренбургская области, республики Калмыкия, Карелия, Дагестан, Карачаево-Черкесская и ряд других постоянно сохраняют низкий уровень неравенства в пределах 0,35 , хотя некоторые из них при этом имеют высокие темпы роста Дагестан, Тверская область, Владимирская область. Проверялось также предположение о том, что корреляция коэффициента Джини и индексов ВРП изменяется в периоды экономического роста и падения. Рисунок 7. На этом графике, который нивелирует скачки региональной экономики, можно видеть более заметную положительную связь коэффициента Джини и индекса ВВП, особенно после 2002 года. Это подтверждает и коэффициент корреляции 0,224, хотя и небольшой, но уже превышающий уровень случайных колебаний. Можно также заметить, что уровень неравенства следует за падением ВВП в 1999, 2008 и 2011 годах, но изменяется намного меньше. Рисунок 8.
Этот график показывает более устойчивую связь между коэффициентом Джини и индексами ВРП, с отрицательным коэффициентом корреляции, хотя и небольшим, но достаточно явным особенно если учесть большой массив данных. Поспелова Е. Но на первой мы видим процесс во времени, а на второй усредненные по времени данные по регионам, разделенным в пространстве. То есть первая показывает нам, что с ростом всех регионов, усредненных по всей России, неравенство также растет. Вторая показывает, что неравенство выше в более богатых регионах. Изучение диаграмм привело к мысли о том, что коэффициент Джини часто оказывается больше для более богатых регионов. Для проверки этой гипотезы была построена диаграмма рассеяния для зависимости Джини не от индекса, а от величины ВРП на душу населения рис. Рисунок 9. Эта диаграмма показывает, что неравенство действительно больше в более богатых регионах, что подтверждается коэффициентом корреляции в 0,55, который для выборки в 85 пар данных считается достоверным. Заключение Экономика России в исследуемый период сталкивалась с большими проблемами, циклы быстрого подъема сменялись столь же быстрым падением.
Если на уровне страны эти взлеты и падения нивелировались, то на региональном уровне они очень велики. В то же время такие параметры, как экономическое неравенство, более инерционны, поэтому изучение социально-экономических процессов на региональном уровне требует усреднения по промежуткам в три-пять лет. Темп роста регионов с низким уровнем неравенства выше, чем регионов с высоким. При стабильной экономической ситуации это должно вести к выравниванию экономического развития по стране. Неравенство намного выше в более богатых регионах России. Но это говорит не о том, что неравенство стимулирует рост. Скорее, неравенство — это результат роста регионов, которым повезло с теми или иными ресурсами, а также регионов, в которых сконцентрирована политическая и экономическая власть; там быстро возникает слой богатых и просто обеспеченных людей. Низкое неравенство бедных регионов — это равенство в нищете. При интенсивном развитии часть населения уходит вперед, отрываясь от основной массы. Но общество в целом может стать развитым, только если в дальнейшем эта масса будет подтягиваться к более высокому уровню, в противном случае возникают страны с низким уровнем средних доходов, где островки дворцов окружены океаном хижин.
Общий уровень экономического развития таких стран невысок. Источники: 1. Сочинения в четырех томах. Сочинения: В 4 т. Сорокин П. Мыслители XX века.
Среди населения России растет доходное неравенство: почему ускорился этот процесс?
About In the News Newsletter API. Это список стран или зависимостей по показателям неравенства доходов, включая коэффициенты Джини. Децильный коэффициент (соотношение мин доходов 10% наиболее обеспеченного населения и макс доходов 10% наименее обеспеченного населения). Коэффициент Джини для США — 0,39 — пятый по величине среди 38 стран — участниц ОЭСР. Коэффициент Джини (индекс Джини) — это статистический показатель, свидетельствующий о степени расслоения общества данной страны или региона по отношению к какому-либо изучаемому признаку (к примеру, по уровню годового дохода — наиболее частое применение.
Gini Coefficient
Росстат приводит несколько другие данные: по его оценкам, коэффициент Джини составлял в России в 2021 году 0,408. Ниже представлен список стран по показателям неравенства доходов, включая коэффициент Джини, по данным Организации Объединённых Наций (ООН). Ниже приведены коэффициенты Джини по доходам для каждой страны, для которой CIA World Factbook предоставляет данные. 7 Среднее значение коэффициента Джини в ЕС–28 отличается от коэффициента Джини в целом по ЕС– 28, так как является простой средней от значений коэффициента во всех странах союза.
Минфин пообещал больше не повышать налоги на богатых
Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям. Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм? Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего.
Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии , проверенной 13 июня 2019; проверки требуют 2 правки. Различия в равенстве доходов в разных странах по коэффициенту Джини , согласно данным Всемирного банка.
Коэффициент Джини — это статистический показатель, характеризующий степень неравномерности распределения доходов между разными социальными группами. Можно также встретить его другие названия, например, индекс Джини, индекс справедливости, индекс социального неравенства. Изначально данная модель оценки финансового неравенства между слоями населения была разработана и предложена итальянским статистиком и демографом Коррадо Джини в 1912 году в работе под названием «Вариативность и изменчивость признака» известна также как «Изменчивость и непостоянство» , в честь которого впоследствии и была названа. Данный коэффициент показывает отклонение фактического распределения доходов между разными социальными группами от абсолютно равного.
Это список стран или зависимостей по показателям неравенства доходов , включая коэффициенты Джини. Коэффициент Джини - это число от 0 до 1, где 0 соответствует полному равенству где у всех одинаковый доход , а 1 соответствует полному неравенству когда один человек имеет весь доход, а все остальные не имеют дохода. Распределение дохода может сильно отличаться от распределения богатства в стране см.
Некоторые равнее: что такое коэффициент Джини и зачем он нужен
В США самый высокий разрыв в доходах среди западных промышленно развитых стран. Каждое государство в стране испытывает влияние неравенства в доходах, которое поднимает судьбу богатых и оставляет остальных рабочих позади. Согласно отчету, штат Юта имеет наиболее равномерное распределение доходов с коэффициентом Джини 0, 419. За ним следуют Аляска, Вайоминг и Нью-Гемпшир с показателями 0, 422, 0, 423 и 0, 425 соответственно. Округ Колумбия и Нью-Йорк имеют самые высокие различия в доходах между наемными работниками во всех категориях доходов с коэффициентом Джини 0, 532 и 0, 499 соответственно. Другие государства, которые также показали большие различия, включают Коннектикут, Массачусетс и Луизиану. Неравенство в доходах значительно выросло за последние четыре десятилетия во всех штатах США.
Неравномерность роста заработка по отраслям.
За счет продолжения в 2023 г. Несмотря на отсутствие официальных данных о росте зарплат в ВПК, полная загрузка производственных мощностей в отрасли увеличила спрос на кадры, а следовательно, и уровень дохода сотрудников. Дефицит кадров в определённых отраслях. Например, за счет значительного сокращения в 2022 г.
Коэффициент Джини - это число от 0 до 1, где 0 соответствует полному равенству где у всех одинаковый доход , а 1 соответствует полному неравенству когда один человек имеет весь доход, а все остальные не имеют дохода. Распределение дохода может сильно отличаться от распределения богатства в стране см. Список стран по распределению богатства.
В США в 2000-х и 2010-х годах показатель доходил до 0,450, а вот в Великобритании был на уровне 0,360, в Германии — 0,280. Разница очень наглядная. Еще раз доказывающая, что в России действует американская, а не европейская и тем более не восточноазиатская модель экономики. Это тоже официальные данные Росстата, который порой склонен сглаживать реальность в угоду, например, «беспрецедентному росту зарплат». Причина роста дохода богатых и хорошо обеспеченных людей кроется отчасти в уходе экономики «в тень». Иными словами, в стране растет сектор серых зарплат, тогда как малообеспеченные граждане не получают прибавок к социальным выплатам в таком же объеме. Кроме того, богатые люди по факту оказываются куда обеспеченнее, чем могут показать коэффициенты Росстата или даже ООН. Многие из них вкладывают средства в активы за рубежом, кладут на депозиты, приобретают высокодоходные ценные бумаги. Наконец, и инвестиции в недвижимость в Москве обещают богатым людям неплохую прибавку, тогда как менее обеспеченные люди часто не могут себе позволить приобрести даже жилье эконом-класса. Под оценки Росстата и Минтруда также не попали данные, которые возможно оценить лишь с имиджевой точки зрения. Богатым людям необходим статус, а его обеспечивают лишь приобретения дорогих машин, вилл, яхт и так далее. Именно поэтому с показателями социального неравенства в России сложилась двоякая ситуация. С одной стороны, Россия не показывает колоссальной разницы с другими странами, если верить официальной статистике. С другой стороны, все более очевидной становится «серая» зона в оценке неравенства, которая не поддается подсчетам. В современной России реальные показатели децильного коэффициента и коэффициента Джини установить практически невозможно. Зато более чем очевидно вызывающее потребление хозяев жизни и беспросветная нищета тех, кто не успел на короткий поезд околобюджетного благоденствия.
Содержание
- Россия – чемпион мира по расслоению богатства населения
- Понимание индекса Джини
- Индекс Джини | Investor's wiki
- Что дает индекс?
- Коэффициент Джини (распределение дохода) - Европейский портал информации здравоохранения
- Индекс Джини: в каких странах мира самая маленькая разница между доходами богатых и бедных
В Турции рекордно увеличился разрыв между богатыми и бедными
В России коэффициент Джини в последние годы держится на уровне 0,41. 28 фев в 21:49. Пожаловаться. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. (Для педантов – между «индексом» и «коэффициентом» есть небольшое отличие, индекс Джини считается в процентах, а коэффициент Джини – в дробных числах от нуля до единицы. Коэффициент Джини – статистический показатель, который используется для характеристики уровня экономического неравенства в стране. Данные официальной статистики опери-руют также и другими характеристиками дифференциации доходов, среди которых – децильный коэффициент фондов и ин-декс Джини. Ниже представлен список стран по показателям неравенства доходов, включая коэффициент Джини, по данным Организации Объединённых Наций (ООН).
Штаты США по коэффициенту Джини
Коэффициент или индекс Джини позволяют оценить экономическое неравенство в конкретной стране или между государствами. The Gini coefficient measures inequality on a scale from 0 to 1. Higher values indicate higher inequality. Depending on the country and year, the data relates to income measured after taxes and benefits, or to consumption, per capita. Рейтинг был составлен согласно коэффициенту Джини (статистическому показателю степени расслоения общества страны или региона по определенному признаку). Income and wealth inequality remains a global concern with varying levels of disparity seen across countries. The Gini coefficient, a measure used by economists, offers a numerical representation of this distribution. Ranging from 0 to 1, or 0% to 100%, a Gini coefficient of 0 signals perfect equality. На этой карте представлено распределение Коэффициента Джини по странам (данные Всемирного Банка от 2018 года): Коэффициент Джини карта. Коэффициент Джини — статистический показатель степени расслоения общества данной страны или региона по какому-либо изучаемому признаку.