Это тяжелая патология, которая характеризуется полиморфизмом и прогрессирующим расстройством функций центральной нервной системы. Многие методы, стимулирующие нервную систему, также могут привести к развитию рака, манипулируя проводящими путями, связанными с признаками рака. Пожаловаться. Петербургские врачи оказывают медпомощь ребенку из ЛНР с агрессивной опухолью нервной системы. В случае нейробластомы, эти клетки-предшественницы продолжают делиться, что приводит к развитию злокачественной опухоли, особенно распространенной у детей.
Современные технологии в Крыму выявляют опухоли и нарушения нервной системы
Важно сразу сообщить своему врачу, если у вас возникли симптомы, которые могут указывать на нарушение нервной системы.
У большинства пациентов эти метастазы являются поздним проявлением прогрессирующего, широко распространенного заболевания. Лептоменингеальные метастазы всегда следует подозревать у онкологических больных с неврологическими признаками и симптомами, указывающими на дисфункцию более чем одного анатомического участка нервной системы например, судороги и снижение рефлексов ног. Признаки и симптомы со стороны позвоночника включают боль в шее или спине, асимметричные рефлексы или слабость конечностей. Боль часто бывает выраженной и может проявляться в виде ригидности шеи, локализованной болезненности позвоночника или корешкового дискомфорта, иррадиирующего от позвоночника в руку или ногу. Более половины больных с лептоменингеальными метастазами страдают параличами черепных нервов. Общие симптомы включают диплопию, потерю зрения, дисфагию, потерю слуха и онемение лица.
Мозг поражается примерно у половины больных лептоменингеальными метастазами. Наиболее распространенными симптомами являются головная боль, когнитивные изменения, нарушения походки, судороги, тошнота и рвота. Психический статус и когнитивные изменения часто возникают по мере того, как лептоменингеальная опухоль распространяется на полушария головного мозга, вызывая двустороннюю кортикальную дисфункцию. Если МРТ-исследование однозначно положительно на лептоменингеальные метастазы, люмбальная пункция может быть ненужной. Лептоменингеальные метастазы лечат комбинацией лучевой терапии и интратекальной химиотерапии. Лучевая терапия может быть направлена на всю нервную систему, на участки с симптомами или на области усиления массивного заболевания. Фокальная лучевая терапия головного мозга или позвоночника обычно рекомендуется пациентам с симптоматическим заболеванием.
Интратекальная химиотерапия проводится посредством люмбальной пункции или с помощью устройства для желудочкового доступа, такого как резервуар Оммайя. Использование резервуара Ommaya может помочь обеспечить более равномерную концентрацию лекарства по всей нервной системе. Нервно-мышечные осложнения Рак может поражать нервы и мышцы в результате прямой инфильтрации или сдавления опухолью, как побочный эффект лечения рака или как паранеопластический эффект рака. Опухоли могут повредить черепные нервы после того, как они вышли из субарахноидального пространства. Рак молочной железы, легких и предстательной железы часто метастазирует в кости , а поражения основания черепа могут вызвать дисфункцию черепных нервов. Расширенные исследования МРТ могут быть полезны в определении этиологии синдрома краниальной нейропатии. Лечение состоит из лучевой терапии, направленной на симптоматическую область.
Хотя плечевые и пояснично-крестцовые плексопатии чаще всего обусловлены опухолевой инфильтрацией или сдавлением, сходные клинические синдромы могут развиваться и вследствие лучевой терапии. Неопластическая плечевая плексопатия обычно вызывается образованием на верхушке легкого например, опухолью Панкоста или раком молочной железы, метастазировавшим в подмышечные лимфатические узлы. По мере увеличения опухоли или лимфатических узлов сплетение прорастает или сжимается снизу. Первоначальным симптомом обычно является тупая, ноющая боль, охватывающая плечо и руку. Боль становится все более сильной и позже часто сопровождается онемением, парестезиями и слабостью руки или кисти. Электромиография может помочь локализовать болезненный процесс в сплетении.
Среди доброкачественных опухолей плечевого сплетения иного не неврального происхождения в литературе описывают менингиомы, липомы, лимфангиомы, десмоидные опухоли. Эти объемные образования, локализуясь в области плечевого сплетения, изначально трактуются как опухоли сплетения, но во время операции при экспресс-биопсии устанавливается истинная гистологическая природа новообразований. Менингиомы возникают из производных ТМО интравертебрально, но при распространении экстравертебрально могут имитировать опухоль плечевого сплетения. Липомы — безболезненные образования, практически не вызывают неврологического дефицита. Десмоидная опухоль — доброкачественное мезенхимное новообразование, развивается в мышце и вторично захватывает, а иногда инфильтрирует нерв. Злокачественные опухоли не неврального происхождения, поражающие плечевое сплетение, — это обычно метастазы РМЖ, легких, либо непосредственное прорастание рака верхушки легкого рак Pancoast. В последнем случае в клинике преобладает поражение нижнего первичного ствола плечевого сплетения с развитием паралича типа Дежерина — Клюмпке и упорный болевой синдром в дистальных отделах руки. После лучевой терапии могут возникнуть сложности в дифференциальной диагностике лучевой плексопатии и рецидива метастатической опухоли. При лучевой плексопатии клинические симптомы развиваются обычно в течение года после проведенного лечения, причем наличие лимфостаза более характерно именно для плексопатии. Определенные трудности могут возникать в дифференцировке опухолевого поражения и плексопатии воспалительно-аллергического генеза. Основные клинические симптомы такой плексопатии — выраженная боль и снижение мышечной силы. При КТ может выявляться объемное образование в проекции плечевого сплетения, что обусловливает показания к хирургическому вмешательству по поводу предполагаемой опухоли. При гистологическом исследовании обнаруживается продуктивное локальное хроническое воспаление. Лабораторные данные выявляют в крови больных повышение титра антител к миелину периферических нервов. Эта патология имеет общие механизмы с синдромом Guillain — Barre и обычно развивается после иммунизации и вирусных инфекций. При правильном диагнозе отмечается спонтанный, почти полный регресс неврологических симптомов в течение нескольких месяцев. Клинические симптомы опухоли других нервов определяются локализацией и степенью нарушения функции пораженного опухолью нерва. МРТ при шванномах и других новообразованиях в проекции нервного ствола выявляет гиперинтенсивное объемное образование; потерю фасцикулярного рисунка нервов в прилегающей области; участки ствола, граничащие с образованием, имеют гиперинтенсивный сигнал в T2 режиме. Шванномы представляют собой дольковые инкапсулированные округлые или овальные образования, гиперинтенсивные в T2-режиме, изо— или гиперинтенсивные в T1-режиме рис. Более чем в половине случаев в строме шванном выявляются участки некроза и кистозной дегенерации, они проявляются негомогенными гиперинтенсивными областями в T2-режиме. Нейрофибромы представляют собой неинкапсулированные грибовидные, менее четко отграниченные образования по сравнению со шванномами. В отличие от шванном, нейрофибромы обычно не могут быть отделены от материнского нерва, так как нервные волокна проходят через опухоль. Рисунок 1. Нейрофиброма плечевого сплетения МРТ, Т2-взвешенные изображения Хирургическое лечение Положение больного на операционном столе должно быть адекватным для доступа к опухоли. Отграничивать операционное поле надо так, чтобы визуально контролировать сокращение дистальных мышечных групп в процессе интраоперационной электростимуляции. Одна из нижних конечностей может быть подготовлена для забора аутонейротрансплантатов поверхностного кожного нерва голени. Операции следует производить под микроскопом. Используются: набор общих инструментов для выполнения доступа и набор специальных микроинструментов для манипуляций на нервных стволах, а также набор электродов для интраоперационной нейростимуляции. Обнажение нерва, пораженного опухолью, производится по стандартной методике. Разрез кожи и мягких тканей выполняется в соответствии с линиями проекционных разрезов и доступов к периферическим нервам в различных отделах верхних и нижних конечностей.
В то время как адренергические сигналы в TME эпителиальных опухолей способствуют росту и прогрессированию опухоли, эти же сигналы в нише костного мозга защищают от аберрантной пролиферации и экспансии ГСК. Подобная связь между нервами и развитием онкологического заболевания наблюдалась в первичных и метастатических опухолях ЦНС. В отличие от периферической, ЦНС обладает чрезвычайно высокой плотностью нейронов, они составляют примерно половину всех клеток головного мозга [73]. Нейроны связаны друг с другом посредством синаптической передачи. Несколько недавних исследований показали, что глиомы опухоли головного мозга, происходящие из глиальных клеток также могут образовывать сеть возбуждающих глутаматергических синапсов в головном мозге, стимулируя рост опухоли [73, 74]. Аналогичным образом, недавнее исследование показало, что метастазы рака молочной железы в мозге также образуют возбуждающие глутаматергические синапсы, стимулирующие рост опухоли через экспрессируемые ею метаботропные глутаматные рецепторы, известные как N-метил-d-аспартатные рецепторы NMDAR [75]. Экспрессированные опухолью NMDAR также связаны с агрессивностью нескольких новообразований, локализованных вне ЦНС, включая рак поджелудочной железы и яичников [76]. Было показано, что опухоли поджелудочной железы также вырабатывают глутамат, который используется для аутокринной регуляции [76, 77]. Учитывая эти данные, можно предположить, что вегетативная адренергическая, холинергическая и чувствительная передача сигналов влияет на эпителиальные опухоли, тогда как глутаматергическая передача сигналов в ЦНС регулирует первичные и метастатические опухоли в головном мозге. Рисунок 2 Адаптировано из Ali H. Zahalka, et al, 2020 [14]. Реактивация нервно-опосредованных путей роста и регенерации в опухоли. Фаза нервной стимуляции части a — c. Связывание нейротрофина с его родственным рецептором на нервах приводит к образованию импульса, который ретроградно распространяется к соме, влияя на экспрессию генов и рост аксонов. Нервно-опосредованная регуляция фазы роста части d—f. Симпатические нервы способствуют образованию сосудистой сети. Аналогично, в опухоли симпатические нервы способствуют образованию сосудов, кровоснабжающих растущую опухоль, а парасимпатические нервы подают сигналы опухолевым клеткам к митозу и миграции, что, в свою очередь, приводит к увеличению роста и образованию микрометастазов. Реактивация нервно-опосредованных путей Чтобы лучше понять механизмы, с помощью которых нервы взаимодействуют с ТМЕ и влияют на опухоль, нужно получить представление о влиянии нервов на развитие и регенерацию Рис. Во время своего развития железы и эпителиальные органы подвергаются процессу, известному как лобуляция. Было показано, что этот процесс сильно зависит от развития и роста нервов [78—83] Рис. В качестве модели для исследования эмбрионального морфогенеза поднижнечелюстная слюнная железа изучена лучше всего. Это произошло благодаря возможности культивировать ее ex vivo.. Как и многие железы, поднижнечелюстная слюнная железа максимизирует пространство и площадь поверхности благодаря ветвящимся протокам и ацинусам, чтобы произвести необходимый объем секрета [84]. Концевые эпителиальные утолщения и протоки секретируют нейротурин, который вызывает однонаправленный рост аксонов из парасимпатического субмандибулярного ганглия [78]. Эти парасимпатические нервы, в свою очередь, высвобождают ацетилхолин, который передает сигналы через мускариновые рецепторы в SRY-box 2 SOX2 , вызывая разветвление и созревание ацинусов, и высвобождает вазоинтестинальный пептид VIP , который стимулирует тубулогенез [78—80,86] Рис. Адренергические нервы также играют важную роль в развитии желез. В позднем пренатальном периоде адренергические нервы начинают иннервировать слюнные железы, способствуя созреванию железистых ацинусов и формированию сосудистой сети [50,81] Рис. Эта иннервация необходима для органогенеза. Исследования показывают, что симпатэктомия или генетическая делеция основного адренергического нейротрофина NGF ингибирует образование желез [87,88]. NGF играет решающую роль в инициации и дальнейшей иннервации железы. Однако при завершении органогенеза уровни NGF падают, и аксоногенез, соответственно, снижается [89]. Синтезируемый железой NGF, связываясь с родственным рецептором TRKA на нейрональной пресинаптической мембране, влияет на экспрессию генов и аксоногенез [90, 91] Рис. В эмбриональной поджелудочной железе начало адренергической иннервации ассоциировано с фазой быстрого роста и созревания железы, а генетическая делеция NGF или нейрон-специфическая делеция TRKA приводит к неполной адренергической иннервации поджелудочной железы и, как следствие, нарушению её структуры, а симпатэктомия — к фенокопии [82,88,92]. Помимо вклада в органогенез, нервы также необходимы для формирования и роста конечностей. У развивающегося эмбриона один из самых высоких уровней NGF обнаруживается в зачатке конечности, в недифференцированной мезенхиме, примыкающей к апикальному эктодермальному гребню тонкий эпителиальный слой, необходимый для правильного формирования конечности [89]. До дифференцировки и формирования конечности в мезенхиме её зачатка появляются чувствительные нервы [93], и наблюдается конденсация мезенхимы начальный этап дифференцировки структуры конечности в тесной связи с разветвлением и ростом нервов [93]. Подобная роль нервов наблюдается при регенерации конечностей Рис. У саламандр регенерация структур конечностей дистальнее ампутации зависит от наличия нервов, так как денервация слоев проксимальнее места ампутации препятствует восстановлению [95]. Эти нервы передают сигналы вышележащим эпителиальным и мезенхимальным клеткам бластеме , которые обуславливают клеточную миграцию и контролируют пролиферацию клеток [96] Рис. Нервы важны не только для формирования кровеносных сосудов во время органогенеза [97,98], но и для их восстановления в процессе регенерации [99]. Этот феномен формирования сосудов и эпителия был продемонстрирован на Xenopus laevis гладкая шпорцевая лягушка. После ампутации передней конечности и последующего хирургического перенаправления иннервации с задней конечности, в результате наблюдалась гипериннервация и ускоренная регенерация в зоне ампутации [100]. В данном случае влияние нервов на регенерацию реализуется через комбинацию эффектов от действия нейротрансмиттеров и факторов роста, таких как специфичный для саламандры секретируемый белок nAG , который не имеет функционально сходного ортолога у млекопитающих [101]. У млекопитающих включая людей происходит нервно-зависимая регенерация кончика пальца [102], это связано с сигнальным путем WNT Рис. Делеция WNT в эпителиальных клетках кончика пальца снижала экспрессию нейротрофинов и ингибировала рост аксонов и регенерацию у мышей [103]. Зависимость регенерации аксонов от WNT является общим путем для органогенеза во время эмбрионального развития [103—105]. Существуют также другие состояния, при которых нервы поддерживают регенерацию. Во время инициации и на ранних стадиях прогрессирования опухоль реактивирует нервно-зависимые пути, сходные с теми, что задействованы для обеспечения роста Рис. Как уже обсуждалось в предыдущем разделе, плотность нервов увеличивается более чем в два раза во время предраковой стадии развития опухоли. Это подобно тому, что наблюдается при формировании желез во время органогенеза и формирования бластемы в процессе регенерации. При этом увеличение числа нервов сопровождается увеличением образования нейротрофинов [110] Рис. В этом исследовании уровни нейротрофинов продолжали расти по мере того, как заболевание прогрессировало до агрессивной аденокарциномы, превышая в 6 раз уровни в сопоставимых по возрасту контрольных группах. Кроме того, было обнаружено, что у мышей с протоковой аденокарциномой поджелудочной железы имеется десятикратное повышение плотности нервов по сравнению с сопоставимой по возрасту контрольной группой одна треть этих нервов является адренергической [4]. Также в исследовании было обнаружено повышение уровня Ngf в эпителиальном компартменте опухоли поджелудочной железы. Когда авторы селективно повысили экспрессию NGF в эпителии поджелудочной железы с использованием трансгенной Ngf-knock-in модели, наблюдалось увеличение плотности адренергических нервов. И наоборот, снижение экспрессии NGF генетическим путем с использованием небольшой интерферирующей РНК siRNA или путем блокады антителами NGF ингибирует прогрессирование рака поджелудочной железы и метастазирование [112,113]. В отличие от экспрессии NGF в эпителии протоковой аденокарциномы мыши, уровни нейротрофинов в образцах полученных из опухоли человека были повышены в стромальном компартменте, а уровни их родственных рецепторов были повышены в эпителиальном компартменте [4,114]. Поэтому необходимы дальнейшие исследования, чтобы выяснить место образования нейротрофина, способствуещего равитию рака. Повышенная экспрессия нейротрофина ассоциирована с плохим клиническим исходом при различных типах рака. В образцах рака простаты человека повышенная экспрессия pro-NGF — предшественника белка NGF — связана с более агрессивным заболеванием, и наибольшее количество NGF и BDNF было обнаружено в стромальном компартменте этих опухолей [115,116]. Аналогично, повышенная экспрессия NGF была обнаружена в тканях рака молочной железы человека, а повышенные уровни BDNF были обнаружены в опухолях яичников человека и были связаны с более высокой плотностью нервов и повышенной смертностью [117,118]. Сверхэкспрессия NGF в эпителиальных клетках желудка увеличивала иннервацию его слизистой оболочки и индуцировала развитие аденокарциномы желудка у мышей дикого типа [60]. Было также показано, что сигнальный путь WNT является ключевым нейротрофическим фактором стимуляции нервов [3,103]. В клинических образцах рака желудка повышенные уровни WNT коррелировали как с большей плотностью нервов в опухоли, так и стадией опухоли [3]. А денервация желудка на мышиной модели рака желудка снижала уровни WNT и рост опухоли. В органогенезе и регенерации нервы выполняют несколько функций, в том числе стимулируют пролиферацию эпителия, миграцию и формирование стромы. Парасимпатические нервы регулируют экспансию ацинарных клеток через передачу сигналов M1R к SOX2 [80]. Некоторые виды рака могут взаимодействовать с нервами для активации сходных путей Рис. Рак предстательной железы происходит из ацинарных эпителиальных клеток. Недавние исследования показали, что усиление парасимпатических сигналов способствует метастазированию рака предстательной железы. Кроме того, опухоли предстательной железы мыши и человека демонстрируют повышенную экспрессию SOX2 в раковых клетках [119]. Другие доказательства того, что парасимпатические нервы регулируют раковые стволовые клетки РСК в опухолях железистого происхождения, получены в трансгенных мышиных моделях рака. Например, холинергические нервы иннервируют стволовые клетки желудка, экспрессирующие фактор транскрипции MIST1 также известный как bHLHa15 , а условная делеция Chrm3 кодирующая M1R в этих клетках ингибирует рост опухоли желудка in vivo [60]. Поскольку парасимпатические нервы оказывают антагонистическое действие в мышиных моделях рака поджелудочной железы то есть они подавляют рост опухоли , введение агониста мускариновых рецепторов бетанхола снижает количество РСК поджелудочной железы [44]. Необходимы дальнейшие исследования, изучающие иннервацию РСК в различных опухолях, чтобы определить, участвует ли адренергическая иннервация непосредственно в экспансии РСК, а также для определения характеристики рецепторов вегетативных нервов, экспрессируемых РСК. Формирование иннервации зависит от сочетания нейрональной миграции и аксоногенеза. Недавние исследования обнаружили увеличение количества клеток, экспрессирующих даблкортин маркер, связанный с нейрональными предшественниками, а также с конусом роста аксонов [120,121] в трансгенных опухолях предстательной железы мыши [122]. Это открытие предполагает, что нейронные предшественники могут перемещаться по кровотоку от мозга к предстательной железе. Происходит ли подобный процесс при других типах опухолей или в раковых опухолях человека, требуется изучить в дальнейшем. Однако это наблюдение вызывает множество вопросов, например, как нейронные предшественники преодолевают гематоэнцефалический барьер, каковы сигнальные пути от мозга к опухоли простаты и дифференцируются ли эти предшественники в полноценные функциональные вегетативные нервы. Поскольку клетки рака предстательной железы также могут экспрессировать даблкортин [123], потребуются углубленные исследования для определения происхождения новообразованных аксонов в опухолях. Нервная регуляция TME Последние достижения в области генной инженерии привели к большему пониманию молекулярных основ нервной регуляции опухоли. Эксперименты in vitro показали, что нейротрансмиттеры передают сигналы непосредственно опухолевым клеткам, способствуя пролиферации, выживанию и миграции клеток, как было рассмотрено ранее [124]. Следует отметить, что прямая иннервация эпителиального компартмента то есть клеток, из которых происходят солидные опухоли действительно может играть роль в возникновении и прогрессировании опухолей, как это было показано для рака желудка [60]. В некоторых органах, таких как простата, эпителиальные клетки гистологически отделены от нервов барьером из гладких мышц, тогда как в других, например, в слюнных железах, эпителиальные клетки подвергаются прямой иннервации. Таким образом, специфические для эпителиальных клеток нокауты генов, кодирующих вегетативные и сенсорные рецепторы Adrb2, Adrb3, Chrm1 и Chrm3 и ген, кодирующий рецептор субстанции P Nk1r, также известный как Tacr1 в моделях автохтонного рака у мышей, позволяют получить представление о вкладе эпителиального компартмента в нервно-опосредованную регуляцию опухоли. Гистологические исследования показывают, что нервы проходят через стромальный компартмент и непосредственно иннервируют структуры стромы [40,125,126]. Работы на животных in vivo свидетельствуют о взаимодействии в TME между нервами, стромой и эпителиальным компартментом. Например, недавнее исследование показало, что адренергические нервы косвенно регулируют пролиферацию опухолевых клеток, стимулируя ангиогенез и, таким образом, доступность питательных веществ для опухоли [2]. Далее обсудим влияние нервов на отдельные компоненты TME Рис. Zahalka, et al, 2020 [14] Нервная регуляция опухолевого микроокружения Нервы взаимодействуют со множеством стромальных и злокачественных эпителиальных компонентов, способствуя росту и распространению опухоли. Опухоль создает вокруг себя иммуносупрессивное микроокружение. Передача сигналов от адренергических нервов стимулирует секрецию интерлейкина-8 IL-8 , которые в свою очередь привлекают опухоль-ассоциированные макрофаги ТАМ , способствующие ангиогенезу и дальнейшей иммуносупрессии. Ангиогенез, ключевой компонент развития опухоли, напрямую регулируется нервами. Как упоминалось ранее, парасимпатическая передача импульсов через холинергические рецепторы, экспрессируемые опухолевыми клетками, способствует миграции опухолевых клеток и образованию микрометастазов. Ангиогенез и лимфангиогенез Ангиогенез необходим для роста опухоли [127]. В стромальном компоненте тканей адренергические нервы тесно связаны с сосудистой сетью главным образом, с артериолами и капиллярами [128,129]. Недавно было обнаружено, что адренергические нервы регулируют инициацию и ангиогенез на ранних стадиях рака простаты с помощью механизма, называемого «ангиометаболический переключатель» angiometabolic switch [2] Рис. Эндотелиальные клетки обычно регулируются гликолитической метаболической программой при направленной миграции клеток, необходимой для ангиогенеза при нормальном развитии и при раке [130,131]. В TME мышиной модели рака предстательной железы было обнаружено, что эндотелиальные клетки демонстрируют более высокую экспрессию Adrb2, а симпатэктомия или условная делеция Adrb2 в эндотелиальных клетках ингибирует ангиогенез путем смещения метаболизма эндотелиальных клеток от гликолиза к окислительному фосфорилированию за счет активации регуляции цитохром С оксидазы фактора сборки 6 Coa6 [2]. Подобно сосудистой сети, лимфатическая система высоко иннервирована адренергическими нервами [132,133]. В ортотопических и трансгенных моделях рака молочной железы лимфангиогенез и ремоделирование лимфатической системы зависели от адренергической передачи сигналов через рецептор Adrb2 на лимфатическом эндотелии, что способствовало метастазированию опухоли [57]. Было показано, что симпатическая денервация уменьшает образование лимфатических сосудов, что коррелирует с уменьшением агрессивности рака [17]. Иммунитет и воспаление Внутри TME вегетативные нервные волокна иннервируют иммунную сеть. Вырабатываемый T-клетками ацетилхолин, в свою очередь, ингибирует продукцию фактора некроза опухоли TNF в макрофагах, экспрессирующих никотиновый ацетилхолиновый рецептор [135]. Хотя эта нейроиммунная сеть, называемая «воспалительным рефлексом», отвечает за иммуносупрессию в условиях стресса, вегетативная иннервация также напрямую влияет на привлечение и стимуляцию иммунных клеток в TME. Инфильтрация опухоли лимфоцитами и их активация являются ключевыми компонентами противоопухолевого иммунного ответа [136]. Повышенный уровень стресса связан с повышенной активацией лимфоцитов посредством производства провоспалительных цитокинов, таких как интерлейкин-6 IL-6 [137]. Опухоли яичников, резецированные у пациенток, находящихся в состоянии стресса, по сравнению с опухолями яичников, резецированных у пациенток, не испытывающих стресс, но сопоставимых по возрасту и стадии заболевания, имеют повышенный внутриопухолевый уровень норадреналина и IL-6 [138]. Тем не менее, в тканях с высокой степенью иннервации, таких как поджелудочная железа и предстательная железа, были обнаружены низкие уровни T-хелперов 1 TH1 [136, 140—142]. Адренергические нервы вносят свой вклад в это иммуносупрессивное окружение несколькими способами Рис. Лимфатическая система, которая отвечает за транспортировку лимфоцитов, высоко иннервирована адренергическими нервами. На ортотопической мышиной модели рака молочной железы нокаут Adrb2 в MDSC замедляет рост опухоли, снижает экспрессию PDL1 и уровни иммуносупрессивных цитокинов в сыворотке крови [146]. Эти наблюдения, а также тот факт, что опухоли с хорошим ответом на иммунотерапию, по-видимому, обильно инфильтрированы TH1 клетками [136], предполагают, что денервация или прекращение адренергических сигналов может обеспечить новые подходы для улучшения иммунотерапевтического ответа в высокоиннервированных опухолях [147]. TNF является основным хемоаттрактантов для клеток врожденного иммунитета, таких как макрофаги. Стимуляция блуждающего нерва активирует постсинаптические адренергические нервы в чревном ганглии, который иннервирует селезенку, ингибируя высвобождение TNF из макрофагов. А ваготомия устраняет эту иммуносупрессию, повышая тем самым системные уровни TNF [134,148]. Ацетилхолин, в свою очередь, стимулирует никотиновые АХ-рецепторы на макрофагах селезенки, ингибируя высвобождение TNF [148]. В трансгенных моделях рака поджелудочной железы ваготомия существенно увеличивала уровни TNF, приводя к увеличению количества TAM [43,44]. В ортотопической модели рака молочной железы увеличение адренергической передачи сигналов в условиях стресса увеличивало количество внутриопухолевых TAM [58]. Аналогичным образом, при раке предстательной и поджелудочной желез нервно-зависимое увеличение количества ТАМ было ассоциировано с прогрессированием опухоли. Тогда как снижение числа макрофагов ингибировало рост опухоли [19,43,44,46,149]. Суммируя эти данные, можно предположить, что нейроиммунная связь является важным регуляторным компонентом TME, где отдельные ветви вегетативной нервной системы действуют противоположно друг другу, обеспечивая тем самым баланс, который нарушается при возникновении рака. Фибробласты и внеклеточный матрикс Изменения в 3D-структуре и составе TME значительно влияют на прогрессирование опухоли и метастазирование Рис. Например, во многих опухолях плотный внеклеточный матрикс ВКМ действует как физический и химический барьер для инфильтрации иммунных клеток, создавая привилегированную в иммунном отношении среду [150]. В то же время, изменения в составе ВКМ по отношению к среде, богатой коллагеном I типа, приводят к тому, что она действует как ангиогенный суперполимер, способствуя ангио- и нейрогенезу [151—154]. Кроме того, в то время как повышенная плотность ВКМ помогает предотвратить иммунный ответ на ранних стадиях развития опухоли, деградация ВКМ матриксными металлопротеазами MMP способстет миграции и распространению опухолевых клеток метастазов на поздних стадиях развития заболевания [155]. При воспалительных процессах, таких как цирроз печени, наблюдается повышенная адренергическая передача сигналов [156]. В ответ на повышенный уровень норадреналина в печени повышается пролиферация фибробластов и выработка коллагена I типа [152]. На более поздних стадиях онкологического заболевания ремоделирование коллагена необходимо для распространения рака. На ортотопических мышиных моделях протоковой аденокарциномы поджелудочной железы повышенная адренергическая передача сигналов, вызванная стрессом, более чем в 100 раз увеличивала экспрессию MMP в стромальном компартменте, увеличивая метастазирование. В ортотопической мышиной модели рака молочной железы адренергическая иннервация стромы усиливает ремоделирование коллагена, тем самым стимулируя метастазирование, снижение уровня норадреналина ингибирует этот процесс [159]. Таргетная терапия, направленная на иннервацию опухоли Поскольку передача нервных импульсов тесно связана с возникновением и развитием опухолей, таргетная терапия, нацеленная на иннервацию, стала областью большого клинического интереса [160]. Хирургическая денервация с целью противоопухолевой терапии, включая пересечение крупных нервных стволов, содержащих смешанные двигательные и вегетативные нервные волокна, была описана еще в начала 19 века, однако была неточной, и эта методикаприводила к серьезным побочным эффектам [13]. По мере развития хирургической техники и лучшего понимания вегетативной нейроанатомии были разработаны более точные методы денервации. Например, интраоперационная химическая денервация ложа поджелудочной железы, называемая «спланхникэктомия» для некупируемой боли при неоперабельном раке поджелудочной железы, показала хорошие результаты выживаемости в рандомизированных плацебо-контролируемых клинических исследованиях [161]. Однако химическая денервация была непостоянной, и со временем боль прогрессировала. В тоже время временная денервация ботулиническим токсином ортотопического рака предстательной железы у мышей оказалась эффективной [33], но испытания на людях не имели такого же успеха [162]. Методология временной денервации как терапии все еще требует дальнейшего изучения. Однако эффект хирургической денервации в клинических условиях изучался лишь при некоторых патологиях. При лечении рака желудка у пациентов, перенесших ваготомию в дополнение к гастрэктомии, наблюдалось снижение частоты рецидива опухоли по сравнению с теми, кто перенес только гастрэктомию [3]. Это говорит о том, что денервация может быть дополнительным фактором эффективности хирургического лечения рака. Фармакологическое ингибирование нервной передачи стало перспективной терапевтической мишенью в противоопухолевой терапии. Использование этого класса препаратов, первоначально разработанных для лечения сердечно-сосудистых заболеваний, было описано в ретроспективных исследованиях. Работы были посвящены снижению риска смертности, связанной с множеством видов солидных опухолей, включая рак поджелудочной, молочной и предстательной желез, опухолей яичников, а также меланомы [19,163-166]. Уровень катехоламинов в периоперационном периоде повышается, что, как полагают, частично связано с хирургическими манипуляциями с опухолью или тканями организма, а также с операционным стрессом [169—171]. Ингибирование сигнальных путей нейротрофинов является еще одной новой областью клинического интереса. В то время как нацеливание на передачу сигналов TRKA при раке в доклинических исследованиях на грызунах показало многообещающие результаты, клинические испытания имели смешанные результаты. Теоретически, нацеливание на TRKA у взрослых должно ингибировать инфильтрацию нервов, при этом оказывая минимальное влияние на установленные нервы, поскольку сенсорные и симпатические нейроны теряют трофическую зависимость NGF во взрослом возрасте [179]. Хотя низкомолекулярные ингибиторы рецептора TRKA увеличивают выживаемость при злокачественных новообразованиях, где опухоль экспрессирует аберрантные рецепторы TRKA, они, как было показано, не влияют на выживаемость или прогрессирование заболевания в солидных опухолях с низкой частотой хромосомных перестроек TRK [180—183]. Кроме того, поскольку эти ингибиторы обладают сродством к тирозинкиназам других рецепторов, они имеют множество побочных эффектов, не связанных с основным местом приложения [184]. Таргетирование самого NGF антителами к NGF хорошо переносится пациентами, с минимальными нейрональными или когнитивными побочными эффектами. Было обнаружено, что моноклональное антитело, специфичное к NGF, — танезумаб — эффективно уменьшает боль, вызванную метастазированием в кости [185,186], но его влияние на прогрессирование опухоли еще предстоит оценить. Выводы В этой статье представлены данные, свидетельствующие о том, что реактивация путей развития и регенерации для стимуляции нейрогенеза является важным компонентом при инициации и прогрессирования опухолей. Вклад различных вегетативных и чувствительных нервных волокон отличается в зависимости от типа опухоли и зависит как от типа ткани, из которой образуется злокачественная опухоль, так и от характера иннервации ткани. Несмотря на последние достижения в области генной инженерии, а также технологий визуализации, которые привели к успехам в изучении роли нервной системы в TME, многие вопросы остаются без ответа. Например, было установлено, что на ранних стадиях рака наблюдается увеличение числа нервов, сопровождающееся повышением уровня нейротрофинов, но еще предстоит выяснить, какие клетки в ТМЕ являются источником нейротрофинов, и какова природа стимулов, которые инициируют выработку нейротрофина. И остается открытым вопрос, как мы можем селективно нацеливаться на возможные терапевтические точки, не затрагивая существующие нервные связи в других частях тела? Хотя ингибирование нервных сигнальных путей оказывает существенное влияние на предотвращение прогрессирования рака на доклинических моделях, трансляция этих методов и технологий все еще находится на самых ранних стадиях и потребует междисциплинарного сотрудничества для успешного внедрения их в клинику. Список литературы Hanahan, D. Hallmarks of cancer: the next generation. Cell 144, 646—674 2011. Zahalka, A. Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358, 321—326 2017. This article shows that adrenergic nerves regulate the vasculature in the TME to promote tumour growth and cancer progression. Zhao, C. Denervation suppresses gastric tumorigenesis. Transl Med. This article shows that surgical transection of the vagus nerve inhibits development of gastric cancer. Renz, B. Magnon, C. Autonomic nerve development contributes to prostate cancer progression. Science 341, 1236361 2013. This paper showed a role for adrenergic and cholinergic nerves in prostate tumour growth and metastasis. Langley, J. Heffer, W. Erin, N. Capsaicin-induced inactivation of sensory neurons promotes a more aggressive gene expression phenotype in breast cancer cells.
Нейробластома и ганглионейробластома центральной нервной системы у взрослых пациентов
Наш проект посвящён раку центральной нервной системы. В его основе – истории пациентов, прошедших или проходящих лечение, комплексные рекомендации от ведущих. Особенность рака в том, что больные клетки подчиняют себе работу сосудов, соединительной ткани и даже нервной системы. Вместе с парасимпатической нервной системой она регулирует работу внутренних органов, действуя во многом независимо от головного мозга (отчего симпатическую и парасимпатическую нервную систему объединяют под общим названием автономной нервной системы). Непростая связь между раком и нервами оказалась гораздо глубже, чем предполагалось, недавние исследования показали, что злокачественные опухоли не только используют нервную систему для поддержания своего роста, но и взаимодействуют с ней активно. Как правило, это связано с химиотерапией и некоторыми видами рака, которые поражают центральную нервную систему и оставляют метастазы в головном мозгу.
Нервы в раковых опухолях
Исследователи поняли, что раковые клетки в состоянии подчинять себе соединительные ткани, кровеносные сосуды и даже нервную систему. При этом долгое время считалось, что взаимодействие онкологии и нервной системы ограничивалось передачей болевых сигналов. Но проведение экспериментов в конце 1990-х годов показало, что нейроны играют более активную роль в росте и развитии опухолей. В ходе исследований было установлено, что нервные волокна проникают в опухоль, образуя своеобразные «мостики» к здоровым клеткам, в результате чего происходит рост опухоли.
Например, при терапии болей в позвоночнике, крупных и мелких суставах необходимо активное участие самого пациента, а также использование вспомогательных средств-ортезов. Во время лечения и реабилитации многие онкопациенты перестают активно двигаться. Это абсолютно неверная тактика, обязательно нужно соблюдать двигательный режим! Чем меньше человек двигается, тем больше это сопряжено с болевыми ощущениями и тем меньше ему хочется двигаться, — получается замкнутый круг.
Таким образом человек самостоятельно ухудшает качество своей жизни. Движение улучшает не только физическое состояние, но и эмоциональное. И для того, чтобы вести активный образ жизни, сейчас есть множество вспомогательных средств — это и стельки, и корсеты, трости и т. Беседовала специалист по связям с общественностью НМИЦ онкологии им. Петрова Минздрава России, получить очную или заочную консультацию по диагностике и лечению, записаться на приём, ознакомьтесь с информацией на официальном сайте.
Eichmann, A. Arterial innervation in development and disease. Carmeliet, P. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193—200 2005. De Bock, K. Cell 154, 651—663 2013. Schoors, S. Cell Metab. Felten, D. Sympathetic noradrenergic innervation of immune organs. McHale, N. Sympathetic stimulation causes increased output of lymphocytes from the popliteal node in anaesthetized sheep. Rosas-Ballina, M. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98—101 2011. This study shows that the autonomic nervous system can directly regulate the immune system. Wang, H. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421, 384—388 2003. Salmon, H. Host tissue determinants of tumour immunity. Cancer 19, 215—227 2019. Maes, M. The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a Th1-like response in stress-induced anxiety. Cytokine 10, 313—318 1998. Computational identification of gene-social environment interaction at the human IL6 locus. USA 107, 5681—5686 2010. Shahzad, M. Stress effects on FosB- and interleukin-8 IL8 -driven ovarian cancer growth and metastasis. Feig, C. USA 110, 20212—20217 2013. Miller, A. Bronte, V. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. Nakai, A. Control of lymphocyte egress from lymph nodes through beta2-adrenergic receptors. Qiao, G. Cancer Immunol. Wong, C. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334, 101—105 2011. Mohammadpour, H. Bucsek, M. Borovikova, L. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458—462 2000. Cheng, Y. Depression-induced neuropeptide Y secretion promotes prostate cancer growth by recruiting myeloid cells. Joyce, J. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74—80 2015. Hisasue, S. Cavernous nerve reconstruction with a biodegradable conduit graft and collagen sponge in the rat. Twardowski, T. Type I. Collagen and collagen mimetics as angiogenesis promoting superpolymers. Tuxhorn, J. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Burns-Cox, N. Changes in collagen metabolism in prostate cancer: a host response that may alter progression. Egeblad, M. New functions for the matrix metalloproteinases in cancer progression. Cancer 2, 161—174 2002. Henriksen, J. Noradrenaline and adrenaline concentrations in various vascular beds in patients with cirrhosis relation to haemodynamics. Oben, J. Norepinephrine and neuropeptide Y promote proliferation and collagen gene expression of hepatic myofibroblastic stellate cells. Kim-Fuchs, C. Chronic stress accelerates pancreatic cancer growth and invasion: a critical role for beta-adrenergic signaling in the pancreatic microenvironment. The antidepressant desipramine and alpha2-adrenergic receptor activation promote breast tumor progression in association with altered collagen structure. Cancer Prev. Chen, D. Innervating prostate cancer. Lillemoe, K. Chemical splanchnicectomy in patients with unresectable pancreatic cancer. A prospective randomized trial. Al-Wadei, H. Prevention of pancreatic cancer by the beta-blocker propranolol. Anticancer Drugs 20, 477—482 2009. Powe, D. Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget 1, 628—638 2010. De Giorgi, V. Treatment with beta-blockers and reduced disease progression in patients with thick melanoma. Diaz, E. Impact of beta blockers on epithelial ovarian cancer survival. Grytli, H. Use of beta-blockers is associated with prostate cancer-specific survival in prostate cancer patients on androgen deprivation therapy. Prostate 73, 250—260 2013. Improved survival outcomes with the incidental use of beta-blockers among patients with non-small-cell lung cancer treated with definitive radiation therapy. Neeman, E. A new approach to reducing postsurgical cancer recurrence: perioperative targeting of catecholamines and prostaglandins. Bahnson, R. Catecholamine excess: probable cause of postoperative tachycardia following retroperitoneal lymph node dissection RPLND for testicular carcinoma. Halme, A. On the excretion of noradrenaline, adrenaline, 17-hydroxycorticosteroids and 17-ketosteroids during the postoperative stage. Acta Endocrinol. Lindenauer, P. Perioperative beta-blocker therapy and mortality after major noncardiac surgery. Blessberger, H. Perioperative beta-blockers for preventing surgery-related mortality and morbidity. Cochrane Database Syst. Al-Niaimi, A. The impact of perioperative beta blocker use on patient outcomes after primary cytoreductive surgery in high-grade epithelial ovarian carcinoma. Yap, A. Effect of beta-blockers on cancer recurrence and survival: a meta-analysis of epidemiological and perioperative studies. Musselman, R. Association between perioperative beta blocker use and cancer survival following surgical resection. Cata, J. Perioperative beta-blocker use and survival in lung cancer patients. Horowitz, M. Exploiting the critical perioperative period to improve long-term cancer outcomes. Denk, F. Nerve Growth Factor and Pain Mechanisms. Smith, M. Collins, C. Preclinical and clinical studies with the multi-kinase inhibitor CEP-701 as treatment for prostate cancer demonstrate the inadequacy of PSA response as a primary endpoint. Cancer Biol. Drilon, A. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. Chan, E. Drugs 26, 241—247 2008. Shabbir, M. Lestaurtinib, a multitargeted tyrosine kinase inhibitor: from bench to bedside. Drugs 19, 427—436 2010. US National Library of Medicine. Sopata, M. Efficacy and safety of tanezumab in the treatment of pain from bone metastases. Pain 156, 1703—1713 2015. Barford, K. TrkA bumps into its future self. Cell 42, 557—558 2017. Spitzer, N. Neurotransmitter Switching? No Surprise. Neuron 86, 1131—1144 2015. Habecker, B. Noradrenergic regulation of cholinergic differentiation. Science 264, 1602—1604 1994. Yang, B. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Yamamori, T. The cholinergic neuronal differentiation factor from heart-cells is identical to leukemia inhibitory factor. Science 246, 1412—1416 1989. Amit, M. Mechanisms of cancer dissemination along nerves. Cancer 16, 399—408 2016. Taylor, H. Epithelial invasion of nerves in benign diseases of the breast. Cancer 20, 2245—2249 1967. Ali, T. Perineural involvement by benign prostatic glands on needle biopsy. Cracchiolo, J. Patterns of recurrence in oral tongue cancer with perineural invasion. Fagan, J. Perineural invasion in squamous cell carcinoma of the head and neck. Head Neck Surg. Al-Hussain, T. Significance of prostate adenocarcinoma perineural invasion on biopsy in patients who are otherwise candidates for active surveillance. Beard, C. Perineural invasion is associated with increased relapse after external beam radiotherapy for men with low-risk prostate cancer and may be a marker for occult, high-grade cancer. Kraus, R. The perineural invasion paradox: is perineural invasion an independent prognostic indicator of biochemical recurrence risk in patients with pT2N0R0 prostate cancer? A multi-institutional study. Zurborg, S. Generation and characterization of an Advillin-Cre driver mouse line. Lau, J. Temporal control of gene deletion in sensory ganglia using a tamoxifen-inducible Advillin-Cre-ERT2 recombinase mouse. Nassar, M. Nociceptor-specific gene deletion reveals a major role for Nav1. USA 101, 12706—12711 2004. Chen, X. A chemical-genetic approach to studying neurotrophin signaling. Neuron 46, 13—21 2005. Karai, L. Investigation 113, 1344—1352 2004. Capsaicin-mediated denervation of sensory neurons promotes mammary tumor metastasis to lung and heart. Vincenzi, F.
Прогноз при первичных опухолях головного и спинного мозга зависит от локализации и распространённости опухоли, своевременности диагностики, адекватности лечения, но в первую очередь — от гистологической принадлежности новообразования. Вторичные метастатические опухоли Заболеваемость составляет 14-16 случаев на 100 000 населения в год. Большинство метастатических опухолей бывают внутримозговыми. У детей чаще всего обнаруживают метастазы нейробластомы, рабдомиосаркомы и опухоли Вильмса нефробластомы. Клиническая картина, как и при первичных опухолях, складывается из местных локальных симптомов, симптомов «на отдалении» и общемозговых симптомов. Карциномы и саркомы чаще метастазируют в паренхиму мозга, метастазы при лейкозах преимущественно поражают мягкие мозговые оболочки, карциномы молочной железы имеют тенденцию к метастазированию в твёрдую мозговую оболочку с распространением в ткань мозга. Карциномы простаты чаще всего метастазируют в кости черепа и позвоночник, но могут давать метастазы как в головной, так и в спинной мозг.
Развитие опухолей зависит от нервной системы
Взаимосвязь между раком и нервами была известна уже более двух веков, но роль нервов в росте опухолей рассматривалась лишь в контексте передачи болевых сигналов. Однако новые эксперименты показали, что нейроны играют активную роль в развитии рака. Нервные волокна проникают в опухоль и способствуют ее росту. Если перерезать эти нервные волокна, рост опухоли останавливается.
Речь идет о фактически доброкачественной, медленно растущей опухоли: ее степень злокачественности грейд равна единице, это минимальное значение. И в подавляющем большинстве случаев для выздоровления вполне достаточно хирургического удаления. Однако бывает, что опухоль не получается удалить полностью, она вновь и вновь начинает расти, и нужны специальные меры лучевая терапия, химиотерапия , чтобы с ней справиться. А вот другой пример: самая распространенная злокачественная опухоль мозга у детей — медуллобластома. Это очень агрессивная опухоль. Тем не менее существуют протоколы, часто позволяющие добиться успеха даже при этом диагнозе.
Речь идет о сложном комбинированном лечении, которое включает в себя и хирургическое удаление, и химиотерапию, и лучевую терапию, а в некоторых случаях и высокодозную терапию с аутотрансплантацией стволовых клеток. Многое определяется и молекулярными особенностями опухоли, поэтому современное лечение медуллобластомы требует углубленных лабораторно-диагностических исследований. В 2016 году Полина лечилась от медуллобластомы. С тех пор в ее жизни произошло много событий: например, она дважды успешно участвовала в Играх победителей! Когда Антон был ребенком, ему пришлось перенести несколько операций по поводу пилоидной астроцитомы и лечение на аппарате «Гамма-нож». С тех пор он вырос, закончил школу и техникум, поступил на заочное отделение вуза. У него много друзей Коллаж: Анна Сокальская Есть и особые вспомогательные методы, применяемые именно при опухолях головного мозга. Так, уже говорилось, что при поступлении в нейрохирургические отделения тяжесть состояния больных нередко связана с повышением внутричерепного давления. И для улучшения состояния таких детей часто имеет смысл сначала «разгрузить» головной мозг от излишков жидкости.
Для этого часто применяется процедура шунтирования — к месту скопления жидкости проводят специальную трубочку с клапаном, чтобы жидкость могла оттекать от мозга в другие участки тела. Есть и другие методы, позволяющие быстро снизить давление жидкости и улучшить состояние ребенка. Другие методы лечения Бывает так, что небольшой очаг опухоли расположен в глубине головного мозга. В этом случае не всегда целесообразно хирургическое удаление: можно использовать аппарат «Гамма-нож».
После долгих и тяжёлых месяцев лечения Амин в начале лета дождался такой желанной и необходимой в его состоянии "фиесты". У мальчика уже не выдерживал организм, поэтому врачи решили сделать короткий перерыв в лечении.
Вынужденные каникулы закончились, пора снова подключать терапию. Амин сейчас на лекарствах, ему нельзя находиться в местах, где много народу, иммунитет мальчика для этого слишком слаб. Даже малейший вирус может спровоцировать очередной удар РАКа. Поэтому вынужденные каникулы у мальчика прошли в жёстких ограничениях. Но даже этому Амин был рад, ведь он увидел любимых сестрёнок, обнимал их, учил чему-то и поддерживал. С того момента, как от них из-за болезни сына ушёл папа, мальчик чувствует за маму и сестёр свою мужскую ответственность.
Сбор идёт очень медленно. Уже подошёл срок оплаты счёта.
Но я не имею право. Без сил, денег, но с огромной верой я продолжаю просить, умолять каждого помочь мне спасти сына. Я падаю, встаю и иду снова просить Вас, самые добрые люди на свете, о помощи.
Не бросайте нас в беде. Без вас мой сын умрёт». Мама Захара.
Рак нервной системы. Опухоли ЦНС: причины, симптомы, диагностика и лечение
Редкими типами опухолей центральной нервной системы, относящиеся к группе нейроэктодермальных опухолей, являются. Врачи совершили научный прорыв в лечении рака. Бороться с онкологией предлагают с помощью нервной системы. Об этом сообщают корреспонденты РИА «Новости». Диагностировать рак нервной системы, симптомы которого возникают при травмах ЦНС и других заболеваниях, по симптомам в таких случаях сложно. развитие нейрофиброматоза 2-го типа (это заболевание, связанное с поломками генов, при котором формируются множественные опухоли – шванномы либо менингеомы в области нервов и нервной системы).
Микробиом, нервная система и канцерогенез
Международный коллектив молекулярных биологов открыл свидетельства того, что клетки нейробластомы, одной из форм рака нервной системы, используют белок CKLF для того, чтобы подавлять иммунитет и. Новый коронавирус, согласно предположению зарубежных ученых, способен вызвать опухоль мозга и ускорить развитие уже имеющейся. Опухоли центральной нервной системы — различные новообразования спинного и головного мозга, их оболочек, ликворных путей, сосудов. Например, при полиневропатии основное лечение направлено на регенерацию поврежденных нервных волокон, восстановление миелиновой оболочки, улучшение нервно-мышечной передачи. Неврологические осложнения системного рака, возникающие за пределами нервной системы, могут быть мучительными, инвалидизирующими, а иногда и фатальными.
Микробиом, нервная система и канцерогенез
Под руководством Харви-Джампера команда исследователей рекрутировала 15 волонтеров среди пациентов, ожидающих своей очереди на операцию по удалению глиобластомы. Их опухоль удобно расположилась в речевой зоне коры головного мозга. Каждый из волонтеров прошел через следующую процедуру непосредственно перед операцией. Харви-Джампер устанавливал цепь миниатюрных электродов на поверхность речевой зоны коры мозга, после чего пациенту показывали картинку и спрашивали, что он видит на ней. Показания датчиков затем сравнили с показаниями здоровых участков мозга тех же пациентов.
Оказалось, что инфильтрованная раком речевая зона для ответа на вопрос задействовала гораздо более широкие нейронные сети, выходя за свои собственные границы. Харви-Джампер считает, что мощность механизма обработки информации затронутого опухолью участка мозга значительно снижается. Он сравнивает эти процессы с выступлением оркестра, в котором все музыканты играют синхронно, что, собственно, и делает музыку музыкой. Клетки мозга, захваченные опухолью, так сильно повреждены, что нейроны более дальних участков рекрутированы на выполнение тех задач, с которыми раньше справлялась меньшая область коры.
Результаты исследования показывают, что именно это взаимодействие приводит к снижению когнитивных способностей пациента с раком мозга, а вовсе не воспалительный процесс или давление растущей опухоли на остальные участки, как в науке считалось до сих пор. Он регулируется нервной системой. Он ведет разговоры с окружающими его клетками и активно интегрируется в нейронные контуры, изменяя их поведение», — говорит нейрохирург. Открываются новые перспективы лечения Можно ли повлиять на избыточную активность мозга, которая возникает благодаря опухоли и, в свою очередь, способствует ее росту?
Того же самого можно добиться, если подавить общение Т-лимфоцитов с симпатическими нервами — например, с помощью вещества адреноблокатора, которое не пустит норадреналин к рецептору на лимфоцитах. В экспериментах с мышами удалось с помощью адреноблокатора заметно повысить эффективность иммунотерапии при раке поджелудочной железы — без норадреналиновых сигналов лимфоциты чувствовали себя лучше и сильнее атаковали опухоль. Причём одновременно иммунитет создавал много иммунных клеток памяти, которые тоже помогают в иммунотерапии, улучшая клинический прогноз. Уставшие Т-лимфоциты с повышенной чувствительностью к норадреналину накапливаются не только у мышей, но и у людей — например, у пациентов с некоторыми видами рака лёгких и у пациентов с ВИЧ. И уровень норадреналина у онкобольных повышается— возможно, с этим отчасти связано то, что их иммунитет не слишком активно борется с опухолью. Хотя авторы работы не говорят собственно о стрессе, есть много исследований о том, как связаны стресс , иммунная система и онкозаболевания ; возможно, что новые данные о норадреналине и Т-лимфоцитах добавят ясности в эту картину.
Возможно, в ближайшем будущем в клинической онкологии примут на вооружение новые методы лечения, усиленные антинорадреналиновыми и антистрессовыми средствами.
Потому до родов операцию откладывать было нельзя. Выбрали именно такой срок, когда уже, с одной стороны, работает плацента, функционирует, а с другой стороны, можно еще хирургически подойти к этой опухоли, снизить риски прерывания беременности — раз, второе — технически можно было удалить эту опухоль», — сказал руководитель института акушерства Национального центра акушерства, гинекологии и перинатологии им. Кулакова Роман Шмаков.
И если бы она была беременна в тот момент — спасти ребенка врачи бы не смогли. Беременность пришлось бы прервать, это был самый безопасный вариант для жизни матери. А уже сегодня российская медицина способна спасти сразу две жизни — 98 пациенток из ста рожают здоровых детей и сами успешно проходят лечение. Центром, где отрабатываются эти технологии и где получают помощь эти замечательные женщины, которые готовились или готовятся к самому лучшему — рождению новой жизни, и все это протекает на фоне таких фатальных ситуаций», — сказал руководитель Национального центра акушерства, гинекологии и перинатологии им.
Сегодняшняя операция завершилась успешно. Пациентка останется под наблюдением.
В контрольную группу включили 61660 человек. Крипторхизм в анамнезе чаще встречался у пациентов исследуемой группы. У 8,8 процента участников из группы опухоли яичек и у 8,3 процента участников контрольной группы были какие-либо психические отклонения.
Разница оказалась статистически незначимой, следовательно психические отклонения не влияли на риск развития опухоли. Однако психические болезни повышали риск смерти от всех причин у мужчин с опухолью. При этом нарушения развития нервной системы наблюдались у 1,1 процента пациентов с семиномой и у 0,7 процента контрольной группы, а психотические расстройства острые психозы наблюдались у 0,6 процента пациентов с семиномой и у одного процента контрольной группы.
Российские ученые намерены бороться с раком через нервную систему
Вероятно, нейротерапия рака может стать новым методом лечения в дополнение к химиотерапии, хирургии, иммунотерапии. Ранее стало известно, что российские врачи достигли невероятных высот в области лечения рака. В этом им помогли передовые технологии, которые упростили и улучшили раннюю диагностику болезни. Подпишитесь и получайте новости первыми Читайте также.
Утоняется однако, что для ученых это возможность найти слабое место. Вероятно, нейротерапия рака может стать новым методом лечения в дополнение к химиотерапии, хирургии, иммунотерапии.
Ранее стало известно, что российские врачи достигли невероятных высот в области лечения рака. В этом им помогли передовые технологии, которые упростили и улучшили раннюю диагностику болезни.
Обнажение нерва, пораженного опухолью, производится по стандартной методике. Разрез кожи и мягких тканей выполняется в соответствии с линиями проекционных разрезов и доступов к периферическим нервам в различных отделах верхних и нижних конечностей. При этом необходимо создать условия для четкого выявления интактных участков нерва проксимальнее и дистальнее локализации опухоли. Если операция производится в непосредственной близости от анатомической зоны возможного ущемления нерва например в области карпального или кубитального каналов , следует заранее предусмотреть выполнение дополнительных декомпрессивных манипуляций для предотвращения ущемления нерва в послеоперационном периоде. Важный этап операции — определение соотношений фасцикул, пучков нервного ствола и опухоли. Чтобы уменьшить степень повреждения фасцикулярных групп, целесообразно производить рассечение эпиневрия и поверхностной капсулы опухоли при наличии таковой в продольном направлении от проксимального к дистальному полюсу опухоли. Как правило, необходимости в уменьшении размеров опухоли не возникает.
При шванномах в результате тщательной препаровки обнаруживается фасцикулярная группа, из которой развивается опухоль. Обычно это мелкий пучок, которым можно пожертвовать. Интраоперационная стимуляция нерва должна подтвердить, что проводимость непораженной части нервного ствола при удалении опухоли останется сохранной. В редких случаях невозможно выделить фасцикулы из опухолевого конгломерата, и после иссечения опухоли возникает анатомический дефект. В этих ситуациях необходима аутонейротрансплантация. Если шваннома исходит из малого и несущественного кожного нерва, детальная микрохирургическая препаровка не требуется: опухоль может быть резецирована вместе с участком нерва. Для остановки кровотечения из эпиневральных сосудов используется биполярная коагуляция, орошение раны физиологическим раствором. После удаления нейрофибром в большинстве случаев из-за особенностей их роста возникает потеря функции тех элементов, из которых исходит опухоль. Обычно определяется утолщение или «вздутие» нерва с нечеткими верхними и нижними границами.
Одиночные нейрофибромы сравнительно редки в сравнении с единичными шванномами. Внешний вид нейрофибром достаточно характерен и в основном отличается от классической шванномы. Чаще дефект нервного ствола после удаления опухоли значителен, и его приходится замещать трансплантатом из кожного нерва голени. Объем резекции опухоли и предлежащих фасцикулярных структур представляет собой непростую задачу, так как нет убедительной границы в проксимальном и дистальном направлениях, нет четкой капсулы опухоли, которые могли бы оптимизировать уровень резекции. У больных с множественными опухолями нервных стволов, в т. Целесообразно уточнить, имеется ли ситуация, обусловленная шванномой, нейрофибромой или злокачественной опухолью периферических нервов. У некоторых пациентов могут определяться и редкие гроздевидные разрастания окончаний кожных нервов — плексиформные нейрофибромы. Радикальное удаление этих патологических образований затруднительно вследствие биологических особенностей данного вида опухолей. Хирургическое лечение может быть предпринято при явном прогрессировании заболевания, при больших размерах опухоли, мучительных болях, нарастании неврологического дефицита.
Множественные нейрофибромы, в т. Злокачественные опухоли оболочек периферических нервов Характерная особенность — аксиальное внутриствольное распространение опухоли. Нередко отмечается гематогенное метастазирование, в первую очередь, в легкие и печень. Не связанные с НФ1 шванномы подвергаются озлокачествлению крайне редко, тогда как у больных с НФ1 риск озлокачествления опухоли возрастает. Хирург может подозревать злокачественную природу опухоли нерва, если имеется быстрое увеличение опухоли в размерах, сопровождающееся выраженным болевым синдромом.
Пока ученые не могут сказать, что провоцирует болезнь. Предполагают, что играет роль наследственность. Среди косвенных факторов, как считают некоторые исследователи, нужно отметить нейрофиброматоз. Это заболевание, как известно, также может передаваться между поколениями. Лечение невриномы возможно тремя способами.
Можно ожидать, назначить больному облучение или оперирование. Конкретное решение принимают, ориентируясь на особенности случая. Важно проанализировать габариты образования, локализацию, состояние организма, тонус, качество слуха. Учитывают пожелания нуждающегося. Как уточнить При подозрении на невриному нужно проверить слух. Отоларинголог может заметить ухудшение функции при плановом осмотре пациента. Организуют слуховой тест, дающий представление о реакции мозгового ствола. Рекомендована электронистагмография — исследование, при котором определяют нистагм, то есть непроизвольную активность элементов глаза. В ушной канал подается жидкость; аппаратура, подключенная к человеку, фиксирует ответные движения глаз. Если на основании проведенных исследований можно предположить онкологическое заболевание, необходимо сделать МРТ.
Будем ждать? Такое лечение невриномы рекомендовано при небольших размерах очага и расположении, не угрожающем ближним нервным структурам. Если габариты сравнительно велики, но явление не проявляет себя симптомами, могут также порекомендовать ожидание. Наблюдение показано, если запрещена операция. Такое возможно из-за преклонного возраста или слабого здоровья. Наблюдение включает ежегодное МРТ и регулярные консультации. Оперирование Такой подход к лечению предполагает изъятие слухового нерва. Мероприятие считается исключительно сложным и проблематичным. Это тонкая операция, требующая умения и опыта, качественного оборудования. Молодым пациентам операция показана, если опухолевый очаг увеличивается в размерах, хирургическое вмешательство радиоволновым методом не показывает надежного итога.
Оперирование помогает сохранить возможности видеть и слышать, а также уберегает лицевой нерв. Есть несколько методов проведения вмешательства. Возможен транслабиринтный, ретросигмоидный доступ или через среднюю ямку. Оперирование требует проведения полного обезболивания, черепную трепанацию. Длительность реабилитации — 6-12 месяцев. Облучение Классический эффективный подход — гамма-нож. Это неинвазивный способ, результативный практически в той же степени, как открытая операция, но сопровождающийся меньшими рисками осложнений. В настоящий момент более 28 тысяч пациентов уже получили лечение невриномы гамма-ножом и успешно реабилитировались. В процессе обработки пострадавшего от патологии участка разрушается ДНК переродившихся клеток, формируются тромбы сосудистых элементов, за счет которых питается больная область. Гамма-нож рекомендован пациентам с габаритами опухоли до трех сантиметров.
Этот метод применяют при рецидиве и остаточном опухолевом процессе на фоне перенесенной микрохирургической операции. До начала курса показано детальное обследование состояния для определения локализации патологических клеток с максимально доступной ученым точностью.