The average for 2020 based on 53 countries was 35.03 index points. The highest value was in Colombia: 53.5 index points and the lowest value was in Slovenia: 24 index points. The indicator is available from 1963 to 2022. Below is a chart for all countries where data are available. По итогам 2023 года коэффициент Джини в России вырос до 0,403, что говорит об увеличении концентрации доходов в стране по сравнению с предыдущим годом. Latest numbers for economic inequality, which is the difference in how assets, wealth, or income are distributed among individuals and/or populations. It is also described as the gap between rich and poor, income inequality, wealth disparity, wealth and income differences, or the wealth gap.
В Турции рекордно увеличился разрыв между богатыми и бедными
Рейтинг был составлен согласно коэффициенту Джини (статистическому показателю степени расслоения общества страны или региона по определенному признаку). Децильный коэффициент (соотношение мин доходов 10% наиболее обеспеченного населения и макс доходов 10% наименее обеспеченного населения). расскажем в подробностях про Коэффициент Джини — статистический показатель степени расслоения общества данной страны или. Ниже приведены коэффициенты Джини дохода для каждой страны, по которой в CIA World Factbook представлены данные. GINI INDEX The Gini index is also known as Gini coefficient. It is used to measure the inequality between the inhabitants of a region, by comparing their incomes. Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий.
39 стран с высшей степенью неравенства
Пятое место в рейтинге досталось маленькому островному государству с названием Сан-Томе и Принсипи. Здесь индекс Джини достиг 56? Самый низкий индекс Джини в мире Рейтинг лидеров возглавляют европейские государства: Золотая медаль достается Словении, где индекс Джини в 2017 году составил всего 24. На второй строчке расположилась Чешская Республика. Этот же показатель достался и Словакии. Пятерка лидеров замыкается Молдавией — здесь показатель находится на уровне 25. Европа является регионом, где наблюдается очень низкий уровень неравенства в принципе.
Читайте также:.
А значит, появляется задача улучшения модели рейтингования заемщиков. В качестве примера возьмем датасет с наблюдениями по количественным и качественным характеристикам заемщиков на протяжении экономического цикла и более, для которых проставлен признак дефолта. В таблице ниже представлен пример маркированных данных.
Необходимо преобразовать качественные показатели. Многие модели машинного обучения работают только с числовыми факторами и не чувствительны к иным. Однако, в бизнесе не всегда важные показатели являются числовыми. Поэтому используют различные способы кодирования переменных.
В данной задаче применили WOE-преобразование. Такой подход позволяет придать значимость признаку в формате числа WOE-вес и включить его в набор факторов для обучения модели прогнозирования. Важно, чтобы значения показателей были ранжированы, где А — лучшее значение, B — хорошее значение, С — удовлетворительное значение и т. WOE-веса рассчитываются как натуральный логарифм от отношения доли хороших наблюдений к доле плохих отношений.
Для прогнозирования использую логистическую модель.
У бедных нет денег, и большинство из них тонет в трясине кредитов, что делает их еще беднее. Для этого, конечно, нужен пример. Предположим, что есть пять человек: Вася Пупкин капитал 20 рублей. Иван Иванов капитал 2 тысячи рублей.
Средняков капитал 20 000 рублей. Игорь Альфаинвестор капитал 2 000 000 рублей. Вагит Алекперов капитал 200 000 000 рублей. Прошел год. Вася и Иван, не имея средств к существованию, обеспечивали себя мелкой подработкой, мелким воровством и потребительскими кредитами.
В результате Вася оказался должен банку 100 000 рублей, а Иван — 20 000 рублей. Средняков работал и продолжает работать. Его зарплата была увеличена на величину инфляции, и в конце месяца его капитал составляет 22 000 рублей. С учетом инфляции он сохранил прежний уровень благосостояния, в отличие от Васи и Вани, которые взяли кредиты. Игорь и Вагит инвестировали свой капитал в акции и ETF.
Оба получили хороший доход. Игорь получил больше в процентах от капитала. Этот пример показывает, как трудно бедным не становиться беднее и как легко богатым становиться богаче. Даже ничего не делая, получая мизерные проценты на многомиллиардный капитал, вы все равно станете богаче за определенный период времени, чем человек с миллионом, создавший сверхприбыльную компанию и работающий как белка в колесе. В этом примере есть еще одна показательная фигура — Средняков.
Это человек, живущий от зарплаты до зарплаты. Он не становится беднее, но и не становится богаче. Хотя он находится в ситуации, когда ему гораздо легче, чем Васе или Ивану, начать инвестировать, стремиться к жизни, в которой «деньги делают деньги, которые делают деньги, которые делают деньги, которые делают деньги, которые делают деньги, которые делают деньги, которые делают деньги…. С другой стороны, ему легче, чем Игорю или, тем более, Вагиту, оказаться в той ситуации, в которой оказались Вася и Иван. Что бы человек ни делал, он все равно «увязает» в своем финансовом положении.
А для среднего класса, живущего от зарплаты до зарплаты, их намерения играют ключевую роль. Почему и как бороться с неравенством Широко распространено мнение, что высокий уровень неравенства препятствует «подъему общества», тормозит экономическое развитие и угрожает социальной стабильности хотя это не доказано. Однако неоспоримым является тот факт, что экономическое неравенство порождает недовольство среди беднейших слоев общества. Очевидно, что правительства должны обратиться к этим группам и принять меры по борьбе с неравенством. Наиболее эффективными мерами являются: бесплатное медицинское обслуживание и образование; пособия для малообеспеченных групп населения; развитие инфраструктуры в селах дороги, электрификация, газификация и т.
Нужно ли нам бороться с неравенством? Существует также мнение, что с неравенством не нужно бороться, потому что люди реагируют на неравенство не так сильно, как на несправедливость. Стоит понимать, что неравенство и несправедливость — это разные понятия. И они часто путаются. Существует множество различных исследований на эту тему, которые показывают, что люди предпочитают справедливое неравенство несправедливому равенству.
Подумайте над такой формулировкой. Когда люди оказываются в обществе, где все равны, многие испытывают обиду и раздражение, потому что тот, кто работает больше других, не получает за это вознаграждения, а тот, кто самый ленивый, получает незаслуженную награду. Вы согласны, что это несправедливо?
Коэффициент Джини изменяется от 0 до 1. Чем больше его значение отклоняется от нуля и приближается к единице, тем в большей степени доходы сконцентрированы в руках отдельных групп населения. Наиболее часто в современных экономических расчётах в качестве изучаемого признака берётся уровень годового дохода.
Global Inequality Quantified - The Gini Coefficient
- Маленький статистический ликбез - коэффициент неравенства доходов Джини | Пикабу
- Global Inequality Quantified - The Gini Coefficient
- Список стран по равенству доходов - List of countries by income equality - Википедия
- Социальное неравенство. Индекс Джини
Машинное обучение
- Неравенство и экономический рост в регионах России
- В Турции рекордно увеличился разрыв между богатыми и бедными
- Список стран по показателям неравенства доходов — Википедия с видео // WIKI 2
- Индекс Джини по Странам Мира 2024 Таблица • 7-е место исландия
Судьбы глобального неравенства
- Коэффициент Джини (индекс концентрации доходов)
- Список ООН, Всемирного банка и ЦРУ - коэффициенты доходов и индексы Джини
- Рейтинги мест - Data Commons
- Глобально управляемая «мягкая посадка» мiровой экономики. Ч. 2: new_rabochy — LiveJournal
- Коэффициент Джини (распределение дохода)
Коэффициент Джини (распределение дохода)
Ее представители сообщили, что в январе 2024 года все регионы получили почти 200 тыс. В Волгограде произошел пожар на складе пиломатериалов. Площадь возгорания составила тысячу квадратных метров. Погибших и пострадавших нет. Минюст предложил штрафовать коллекторов на 2 млн рублей за навязчивые звонки или письма. Ученые выяснили, почему начал таять ледник Туэйтса «ледник Судного дня». Этот процесс связали с феноменом Эль-Ниньо: повышение температуры поверхностного слоя воды на востоке Тихого океана. Когда ледник полностью растает, уровень моря поднимется на 0,6 метра, а в перспективе и на 3 метра. Это может дестабилизировать всю западную часть Антарктического ледяного щита.
На основе данных Всемирного банка за период с 1992 по 2018 год. Это список стран или зависимостей по показателям неравенства доходов , включая коэффициенты Джини.
Коэффициент Джини - это число от 0 до 1, где 0 соответствует полному равенству где у всех одинаковый доход , а 1 соответствует полному неравенству когда один человек имеет весь доход, а все остальные не имеют дохода.
Это происходит при условии, что автократ выполняет свои обещания. Более подробный обзор литературы по проблемам неравенства можно найти в работе [13] Sukharev, 2020. Некоторые сложности с обработкой данных возникают из-за того, что административное деление РФ за эти годы изменялось: происходили переименования, объединения и присоединения. В частности, данные по индексам ВРП имеются с 1997 по 2016 г. Данные по ВРП 2017—2018 гг. Для оценки темпов экономического роста по субъектам регионам удобнее использовать индексы ВРП, которые имеются в виде процентов прироста падения по сравнению с предыдущим годом, а не данные по физическому объему, которые нужно было бы нормировать к начальному уровню.
В рамках модели Кузнеца-Пикетти предполагалось обнаружить зависимость между темпами роста и неравенства типа перевернутой U или S кривой, поскольку мы имеем набор данных за 21 год по более чем 80 регионам, значительно различающимся по своему экономическому развитию. Для анализа использовался Microsoft Excel 2013, строились точечные диаграммы диаграммы рассеяния с линиями полиномиальных трендов. Кроме того, вычислялся коэффициент корреляции по каждому году. При этом были получены результаты с очень большим разбросом по годам, что затрудняет поиск каких-либо зависимостей. Однако можно заметить, что в последние годы 2015—2018 корреляция между коэффициентом Джини и индексом ВРП стала больше и более устойчивой по своей величине. Были исключены регионы, по которым в эти годы отсутствовали данные. Также для повышения информативности диаграмм исключен город Москва, в котором неравенство постоянно значительно почти вдвое больше среднего по России точка статистического «выброса».
Диаграммы также становятся плохо читаемыми, если снабдить все точки названиями регионов, поэтому поименованы только некоторые рис. Рисунок 1. Рисунок 2. Рисунок 3. Рисунок 5. Коэффициент корреляции -0,224. Коэффициент корреляции 0,273.
По этим диаграммам можно видеть, что индекс ВРП регионов России в период 1997—2018 годов испытывал огромные колебания, годовой рост и падение могли составлять 10, 20 и более процентов. Причины для этого были различными для разных регионов, например, колебания мировых цен для нефтедобывающих и газодобывающих регионов, изменения в экспортном законодательстве для лесозаготовителей. Для небольших регионов причиной роста или спада могло быть строительство крупных объектов, закрытие крупных старых предприятий или федеральные дотации. Индекс Джини при этом изменялся незначительно, оставаясь для большинства регионов в пределах 0,27—0,45 с центром 0,33—0,35. Коэффициенты корреляции невелики и то положительны, то отрицательны. Костромская, Тверская, Кировская, Оренбургская области, республики Калмыкия, Карелия, Дагестан, Карачаево-Черкесская и ряд других постоянно сохраняют низкий уровень неравенства в пределах 0,35 , хотя некоторые из них при этом имеют высокие темпы роста Дагестан, Тверская область, Владимирская область. Проверялось также предположение о том, что корреляция коэффициента Джини и индексов ВРП изменяется в периоды экономического роста и падения.
Рисунок 7. На этом графике, который нивелирует скачки региональной экономики, можно видеть более заметную положительную связь коэффициента Джини и индекса ВВП, особенно после 2002 года. Это подтверждает и коэффициент корреляции 0,224, хотя и небольшой, но уже превышающий уровень случайных колебаний. Можно также заметить, что уровень неравенства следует за падением ВВП в 1999, 2008 и 2011 годах, но изменяется намного меньше. Рисунок 8. Этот график показывает более устойчивую связь между коэффициентом Джини и индексами ВРП, с отрицательным коэффициентом корреляции, хотя и небольшим, но достаточно явным особенно если учесть большой массив данных. Поспелова Е.
Но на первой мы видим процесс во времени, а на второй усредненные по времени данные по регионам, разделенным в пространстве.
The PIP Methodology Handbook provides a good summary of the comparability and data quality issues affecting this data and how it tries to address them. The surveys underlying the data within a given spell for a particular country are considered by World Bank researchers to be more comparable.
The breaks between these comparable spells are shown in the chart below for the share of population living in extreme poverty. You can select to see these breaks for any indicator in our Data Explorer of the World Bank data. These spells are also indicated in our data download of the World Bank poverty and inequality data.
Коэффициент Джини, значение по странам мира и в России
Распределенный за весь период существования России, как самостоятельного государства, коэффициент Джини выглядит следующим образом. Самая высокая степень социального неравенства по коэффициенту Джини отмечена в странах Африки, Латинской Америки, Азии. Эти данные включают коэффициент Джини, индексы экономического роста и ВРП на душу населения (более 80 субъектов за период с 1997 по 2018 годы). Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели. Индекс Джини (GTI) или Коэффициент Джини – это статистический показатель неравенства распределения доходов среди различных групп населения. Коэффициент Джини снизился до 0,391 в 2014 году, и его текущее значение означает худший показатель с 2009 года, уточняет Turkish Minute.
Доверять Джини или нет: вот в чем вопрос
Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов. На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини. Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент. При абсолютном равенстве он достигает нуля. Приведем пример расчета коэффициента Джини на основе данных о распределении общего объема денежных доходов населения России в 2021 году по квинтильным группам. Напомним, что квинтильные группы — это группы населения домашних хозяйств , образованные путем деления всего населения домашних хозяйств на 5 численно равных частей.
Десятка богатых к десятке бедных Для определения неравенства используется еще так называемый децильный коэффициент. Этот показатель в России менялся за последнее десятилетие примерно в общей парадигме коэффициента Джини и тоже наглядно показывал разницу в доходах бедных и богатых. По данным Росстата, за последние десять лет наиболее низким децильный коэффициент оказался в 2017 году 15,3 , а самым высоким — в 2008-2010 годах 16,6. По другим оценкам, в истории современной России он в реальности мог достигать и 17. Нормально это или нет? В предвоенной царской России начала XX века, например, по расчетам профессора факультета социологии Санкт-Петербургского государственного университета Бориса Миронова, децильный коэффициент равнялся всего лишь 6,5. В других странах коэффициент сильно разнится, причем далеко не всегда это коррелирует с благополучием страны. Так, в 2015 году в Южной Корее он составлял 7,8, что считается очень хорошим показателем. Сообразно общей картине различается и коэффициент Джини по странам. В США в 2000-х и 2010-х годах показатель доходил до 0,450, а вот в Великобритании был на уровне 0,360, в Германии — 0,280. Разница очень наглядная. Еще раз доказывающая, что в России действует американская, а не европейская и тем более не восточноазиатская модель экономики. Это тоже официальные данные Росстата, который порой склонен сглаживать реальность в угоду, например, «беспрецедентному росту зарплат». Причина роста дохода богатых и хорошо обеспеченных людей кроется отчасти в уходе экономики «в тень». Иными словами, в стране растет сектор серых зарплат, тогда как малообеспеченные граждане не получают прибавок к социальным выплатам в таком же объеме. Кроме того, богатые люди по факту оказываются куда обеспеченнее, чем могут показать коэффициенты Росстата или даже ООН. Многие из них вкладывают средства в активы за рубежом, кладут на депозиты, приобретают высокодоходные ценные бумаги.
Джини внутри стран Ниже приведены коэффициенты Джини дохода для каждой страны, по которой в CIA World Factbook представлены данные: Некоторые из беднейших стран мира Центральноафриканская Республика имеют одни из самых высоких в мире коэффициентов Джини 61,3 , тогда как многие из самых богатых стран Дания имеют одни из самых низких 28,8. Однако взаимосвязь между неравенством доходов и показывают, что с 1820 по 1929 год неравенство несколько увеличивалось, а затем постепенно уменьшалось по мере увеличения ВВП на душу населения. С 1950 по 1970 год неравенство, как правило, уменьшалось, поскольку ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снизилось с ростом ВВП на душу населения, а затем резко увеличилось. Корреляция между коэффициентами Джини и ВВП на душу населения за три периода времени. Источник: Моатсос и Батен. Недостатки Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от достоверных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, составляет большую часть истинного экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран. В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов. Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини.
По ее словам, бесплатность образования и здравоохранения декларируется, но это вовсе не отменяет существенной доли платных услуг в обеих сферах. Исполнительный директор департамента «ИВА Партнерс» Артем Тузов при этом обратил внимание на относительно низкую оплату труда большинства врачей и учителей, что может негативно сказываться на качестве их услуг. Между тем во время пандемии на неравенстве в стране стали сказываться относительно новые факторы. Тут стоит напомнить, что в доковидном 2019 году коэффициент Джини составлял в РФ 0,412. А коэффициент фондов достигал 15,6 раза. Другими словами, за время пандемии показатели даже улучшились. Такая динамика объясняется тем, что в период пандемии коронавируса доходы малоимущих слоев населения власти подтягивали за счет социальных пособий и доплат, пояснила Киселева. И, судя по оценкам эксперта, на фоне событий 2022 года, влекущих за собой определенные социальные и экономические последствия, эти парадоксальные тенденции могут усилиться. Снижение неравенства — теоретически — может происходить за счет обеднения средне- и высокодоходных групп одновременно с эмиграцией некоторой части состоятельных людей, а не за счет роста благосостояния всего населения и совершенствования политики перераспределения доходов, считает эксперт.
Gini inequality index - Country rankings
Расчёт коэффициента Джини базируется на кривой Лоренца — для её построения требуется частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака. Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют 5 групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими. В России используется метод деления на 20-процентные группы [2].
Малая часть населения получает львиную долю благ, тогда как большинство делит остатки.
Чтобы оценить экономическое неравенство, используют коэффициент Джини. Это статистический показатель, который говорит о степени расслоения общества по какому-то признаку, чаще всего речь идет о доходах и богатстве людей. Рассмотрим этот показатель, а также кривую Лоренца, и узнаем, что они говорят об экономике страны.
Рассылка Т—Ж о мире инвестиций Лайфхаки о том, как делать деньги из денег, — в вашей почте раз в неделю. Бесплатно Подписаться Подписываясь, вы принимаете условия передачи данных и политику конфиденциальности Чем опасен разрыв между бедными и богатыми и насколько он большой Уровень неравенства доходов — важный макроэкономический фактор.
Согласно данным мировой статистики, первое место по неравенству благосостояния населения на 2021 год занимает Россия. По коэффициенту Джини статистический показатель степени экономического неравенства в обществе Россия уступает лишь Бразилии.
Но рекордный рост благосостояния в первую очередь в Северной Америке и Китае замедлился в 2022-м из-за сложной рыночной конъюнктуры и геополитических событий.
Индекс Джини — процентное представление этого коэффициента. Расчёт коэффициента Джини базируется на кривой Лоренца — для её построения требуется частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака. Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют 5 групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими.
Некоторые равнее: что такое коэффициент Джини и зачем он нужен
В данной задаче применили WOE-преобразование. Такой подход позволяет придать значимость признаку в формате числа WOE-вес и включить его в набор факторов для обучения модели прогнозирования. Важно, чтобы значения показателей были ранжированы, где А — лучшее значение, B — хорошее значение, С — удовлетворительное значение и т. WOE-веса рассчитываются как натуральный логарифм от отношения доли хороших наблюдений к доле плохих отношений.
Для прогнозирования использую логистическую модель. Запишу факторы в отдельный лист для удобства. Однако, в ходе анализа модели было предложено рассмотреть возможность добавления нового фактора — F18.
Данный показатель является качественным, поэтому требует преобразования с помощью woe функции. Переобучили модель с учетом нового набора предикторов и посчитали Джини. По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него.
Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку.
Почему так происходит? Раньше причиной диспропорции называли высокую инфляцию в России, но по официальным данным она снижается. Достигнут ли в ближайшем будущем наши показатели западных, читайте в статье.
Можно ли обменять квартиру в ипотеке В процессе погашения ипотечного кредита обстоятельства у заёмщика могут измениться. Если состав семьи увеличился или не хватает денег на ежемесячные платежи, купленную на кредитные деньги квартиру обменивают на большую либо меньшую по площади. Для этого обязательно нужно получить разрешение банка.
В таблице ниже представлен пример маркированных данных. Необходимо преобразовать качественные показатели. Многие модели машинного обучения работают только с числовыми факторами и не чувствительны к иным. Однако, в бизнесе не всегда важные показатели являются числовыми.
Поэтому используют различные способы кодирования переменных. В данной задаче применили WOE-преобразование. Такой подход позволяет придать значимость признаку в формате числа WOE-вес и включить его в набор факторов для обучения модели прогнозирования. Важно, чтобы значения показателей были ранжированы, где А — лучшее значение, B — хорошее значение, С — удовлетворительное значение и т. WOE-веса рассчитываются как натуральный логарифм от отношения доли хороших наблюдений к доле плохих отношений. Для прогнозирования использую логистическую модель. Запишу факторы в отдельный лист для удобства.
Однако, в ходе анализа модели было предложено рассмотреть возможность добавления нового фактора — F18.
Распределение дохода может сильно отличаться от распределения богатства в стране см. Список стран по распределению богатства. Доходы от черного рынка экономической деятельности не включены и являются предметом текущих экономических исследований.
Коэффициент Джини (индекс концентрации доходов)
Коэффициент Джини – статистический показатель, который используется для характеристики уровня экономического неравенства в стране. Высокий коэффициент Джини в Москве объясняется вполне понятными факторами, которые уже указывались ранее. Социологи и экономисты оценивают реальные доходы людей в стране, а потом сравнивают их с «идеальным» миром, в котором коэффициент Джини равен нулю. Коэффициент Джини снизился до 0,391 в 2014 году, и его текущее значение означает худший показатель с 2009 года, уточняет Turkish Minute. Ниже приведены коэффициенты Джини дохода для каждой страны, данные по которой представлены Всемирным Банком. Высокий коэффициент Джини в Москве объясняется вполне понятными факторами, которые уже указывались ранее.