В природе фрактальные особенности проявляются в таких вещах, как снежинки, молнии или дельты рек. Фракталы кажутся нам слишком совершенными, чтобы существовать в реальности, но они не так уж редко встречаются в природе, в частности реализуя себя в виде растений. В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Приводим примеры фракталов в природе, жизни, математике, алгебре, геометрии и не только.
Что такое фрактал? Фракталы в природе
Термин «фрактал» введён Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Деревья, как и многие другие объекты в природе, имеют фрактальное строение. неупо-рядоченные системы, для которых самоподобие выполняется только в среднем.
Что такое фрактал? Фракталы в природе
Например, многие люди пытались подделать фракталы Поллока и потерпели неудачу. Действительно, наш фрактальный анализ помог выявить фальшивых Поллоков в громких случаях. Как художники создают свои фракталы, питает дискуссию «природа против воспитания» в искусстве: в какой степени эстетика определяется автоматическими бессознательными механизмами, присущими биологии художника, в отличие от их интеллектуальных и культурных интересов? В случае с Поллоком его фрактальная эстетика была результатом интригующей смеси обоих.
Его фрактальные паттерны возникли из движений его тела в частности, автоматического процесса, связанного с балансом, известного как фрактал. Но он потратил 10 лет, сознательно совершенствуя свою технику заливки, чтобы увеличить визуальную сложность этих фрактальных паттернов. Тест Роршаха на чернильных пятнах основан на том, что вы прочитали на изображении.
Герман Роршах Фрактальная сложность Мотивация Поллока к постоянному увеличению сложности его фрактальных структур стала очевидной недавно, когда я изучил фрактальные свойства чернильных пятен Роршаха. Эти абстрактные пятна известны, потому что люди видят в них воображаемые формы фигуры и животных. Я объяснил этот процесс с точки зрения эффекта фрактальной беглости, который улучшает процессы распознавания образов людей.
Фрактальные чернильные шарики низкой сложности сделали этот процесс счастливым, заставляя наблюдателей видеть изображения, которых там нет. Поллоку не понравилась идея, что зрители его картин были отвлечены такими воображаемыми фигурами, которые он назвал «дополнительным грузом». Он интуитивно увеличил сложность своих работ, чтобы предотвратить это явление.
Коллега по абстрактному экспрессионизму Поллока Виллем де Кунинг также рисовала фракталы. Когда ему поставили диагноз слабоумие, некоторые искусствоведы призывали уйти в отставку на фоне опасений, что это уменьшит воспитательную составляющую его работы. Все же, хотя они предсказывали ухудшение его картин, его более поздние работы передали спокойствие, отсутствующее в его более ранних частях.
Недавно было показано, что сложность фрактала его картин неуклонно снижается, когда он впадает в слабоумие.
Федер - осаждение кристаллов, например, коллоидного золота. Суть процесса в том, что в стакане осаждаются частички коллоидного золота, причем они могут "приклеиваться" как ко дну, так и к уже осадившимся частичкам. Первые частички на дно стакана падают практически произвольно - любая пылинка или неровность стакана может стать точкой, где начнется осаждение.
Однако как только первая частичка подклеилась в какое-то место, площадь поверхности в этой области сразу увеличивается - а значит, шанс, что следующая частичка приклеиться к этой поверхности, значительно выше. Когда следующая частица садиться здесь, площадь поверхности увеличивается еще сильнее - еще больше увеличивая вероятность осаждения частиц именно в этой области. В результате процесса получается древовидная структура, обладающая фрактальными свойствами.
Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. В двухмерном случае их получают с помощью некоторой ломаной или поверхности в трехмерном случае , называемой генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную - генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Примерами геометрических фракталов могут служить: 1 Кривая Коха — фрактальная кривая , описанная в 1904 году шведским математиком Хельге фон Кохом.
Три копии кривой Коха, построенные остриями наружу на сторонах правильного треугольника , образуют замкнутую кривую бесконечной длины, называемую снежинкой Коха приложение 7. Предложен французским математиком П. Инициатором является отрезок , а генератором является ломаная из восьми звеньев два равных звена продолжают друг друга приложение 9. Пифагор , доказывая свою знаменитую теорему , построил фигуру , где на сторонах прямоугольного треугольника расположены квадраты. Впервые дерево Пифагора построил А. Босман 1891 — 1961 во время Второй мировой войны , используя обычную чертёжную линейку приложение 11. Также известен как «решётка» или «салфетка» Серпинского приложение 12. Алгебраические фракталы Это самая крупная группа фракталов. Они оправдывают своё название, так как строятся на основе алгебраических формул, иногда довольно простых.
К ним можно отнести фрактал Мандельброта приложение 13 , фрактал Ньютона приложение 14 , множество Жюлиа приложение 15 и многие другие. Стохастические фракталы Третьей крупной разновидностью фракталов являются стохастические фракталы, которые образуются путем многократных повторений случайных изменений каких-либо параметров. В результате итерационного процесса получаются объекты очень похожие на природные фракталы — несимметричные деревья, изрезанные лагунами береговые линии островов и многое другое. Двумерные стохастические фракталы используются преимущественно при моделировании рельефа местности и поверхности моря приложение 16. Применение фракталов Фрактальная живопись. Фрактальная живопись — одно из направлений современного арта, популярное среди цифровых художников. Фрактальные картины необычно и завораживающе действуют на зрителя, рождая яркие пылающие образы. Сказочные абстракции создаются посредством скучных математическим формул, но воображение воспринимает их живыми. Фракталы в литературе.
Павлины - всем известны своим красочным оперением, в котором спрятаны сплошные фракталы. Ананас - необычный плод это есть, фактически, фрактал. Хоть он часто связывается с Гавайями, плод - уроженец южной Бразилии. Облака - Посмотрите в окно. Практически в любой момент вы можете увидеть фракталы на небе. Кристаллы - Лед, морозные узоры на окнах это тоже фракталы. Горы - Горные расселины, береговые линии хоть и произвольны по линиям, но так же фрактальны. Деревья и листья - От увеличенного изображения листочка, до ветвей дерева - во всём можно обнаружить фракталы.
Фракталы в природе (102 фото)
9 Удивительных фракталов, найденных в природе | По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. |
Что такое фрактал, как он проявляется в природе и что еще о нем нужно знать | Посмотрите больше идей на темы «фракталы, природа, эрнст геккель». |
ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ | Приводим примеры фракталов в природе, жизни, математике, алгебре, геометрии и не только. |
Природный фрактал | Пикабу | Фракталы — это математические модели, которые появляются снова и снова, повторяясь в разных размерах. |
Прекрасные фракталы в природе
14 Удивительные фракталы, обнаруженные в природе | Посмотрите больше идей на темы «фракталы, природа, эрнст геккель». |
Созерцание великого фрактального подобия | чудо природы, с которым я предлагаю вам познакомиться. |
Открытие первой фрактальной молекулы в природе — математическое чудо
Когда группа ученых создала генетически модифицированные бактерии, у которых цитратсинтаза не собирается во фрактальные треугольники, клетки росли так же хорошо, как и в обычных условиях. Модели предсказывают, что фрактальная структура могла возникнуть совершенно внезапно в результате очень небольшого количества мутаций, и также легко могла быть потеряна. Порядок вывода комментариев:.
Примеров фракталов можно привести массу, потому что, они окружают нас повсюду.
Самыми интересными, простыми и популярными фрактальными свойствами в природе обладают — кроны деревьев, цветная капуста, облака, кровеносная система человека и животных, кристаллы, снежинки, горные хребты, берега рек, морозные узоры на стекле, многие растения и морские раковины… Галактика и Вселенные тоже фракталы и обладают свойством самоподобия. Вселенная складывается, как матрёшка, и все её составные части выглядят примерно так же. Человек — это фрактал Вселенной — микрокосмос, разумная клетка Вселенной, которая способна включиться в активную работу, используя свои уникальные данные, записанные во фрактальной структуре человеческой ДНК. Всё, что окружает нас, ближний и дальний Космос, являются фракталом.
Мы с вами тоже. Бесконечное самоподобие.
На рисунке эти формы застыли. На самом деле они изменяются — облака движутся, пламя мерцает, лист увядает. Your browser does not support the video tag.
Однако на молекулярном уровне подобная организация считалась маловероятной. Традиционные модели самосборки белков предполагают высокую степень симметрии, что приводит к образованию регулярных решёток или фибрилл, но не фрактальных узоров. Цитратсинтаза цианобактерии бросает вызов этой парадигме. Структурный анализ с использованием электронной микроскопии показал, что различные субъединицы белка вступают в уникальные взаимодействия, создавая асимметрию, необходимую для формирования фрактальной геометрии. Emergence of fractal geometries in the evolution of a metabolic enzyme. Nature 2024.
Фракталы в природе.
Они утверждали, что фрактал - это всего лишь красивая картинка, не имеющая никакой ценности, являющаяся побочным результатом работы электронных машин. Карпентер решил опробовать этот метод на практике. Внимательно изучив книгу, будущий аниматор стал искать способ реализации фрактальной геометрии в компьютерной графике. Ему понадобилось всего три дня, чтобы визуализировать вполне реалистичное изображение горного ландшафта на своем компьютере. И сегодня этот принцип широко используется. Как оказалось, создание фракталов не занимает много времени и сил. Решение Карпентера Принцип, использованный Лореном, оказался прост. Он состоит в том, чтобы разделить более крупные геометрические фигуры на мелкие элементы, а те - на аналогичные меньшего размера, и так далее. Карпентер, используя крупные треугольники, дробил их на 4 мелких, и так далее, до тех пор, пока у него не получился реалистичный горный пейзаж. Таким образом, он стал первым художником, который применил фрактальный алгоритм в компьютерной графике для построения требуемого изображения. Сегодня этот принцип используется для имитации различных реалистичных природных форм.
Первая 3D-визуализация на фрактальном алгоритме Уже через несколько лет Лорен применил свои наработки в масштабном проекте — анимационном ролике Vol Libre, показанном на Siggraph в 1980 году. Это видео потрясло многих, и его создатель был приглашен работать в Lucasfilm. Здесь аниматор смог реализоваться в полной мере, он создал трехмерные ландшафты целую планету для полнометражного фильма "Star Trek". Любая современная программа «Фракталы» или приложение для создания трехмерной графики Terragen, Vue, Bryce использует все тот же алгоритм для моделирования текстур и поверхностей. Том Беддард В прошлом лазерный физик, а ныне цифровых дел мастер и художник , Беддард создал ряд весьма интригующих геометрических фигур, которые назвал фракталы Фаберже. Внешне они напоминают декоративные яйца русского ювелира, на них такой же блестящий замысловатый узор. Беддард использовал шаблонный метод для создания своих цифровых визуализаций моделей. Полученные изделия поражают своей красотой. Хоть многие отказываются сравнивать продукт ручной работы с компьютерной программой, однако следует признать, что полученные формы необычайно красивы. Изюминка заключается в том, что построить такой фрактал сможет любой желающий, воспользовавшись программной библиотекой WebGL.
Она позволяет исследовать в реальном времени различные фрактальные структуры. Фракталы в природе Мало кто обращает внимание, но эти удивительные фигуры присутствуют повсюду. Природа создана из самоподобных фигур, просто мы этого не замечаем. Достаточно посмотреть через увеличительное стекло на нашу кожу или листок дерева, и мы увидим фракталы. Или взять, к примеру, ананас или даже хвост павлина — они состоят из подобных фигур. А сорт капусты брокколи Романеску вообще поражает своим видом, ведь это поистине можно назвать чудом природы. Музыкальная пауза Оказывается, фракталы - это не только геометрические фигуры, они могут быть и звуками. Так, музыкант Джонатан Колтон пишет музыку с помощью фрактальных алгоритмов. Он утверждает, что такая мелодия соответствует природной гармонии. Композитор все свои произведения публикует под лицензией CreativeCommons Attribution-Noncommercial, которая предусматривает свободное распространение, копирование, передачу произведений другими лицами.
Например, броуновская кривая — это фрактальное множество, а физическое броуновское движение — это природный фрактал. К ним можно отнести следующие: множество Кантора — нигде не плотное несчётное совершённое множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины; треугольник Серпинского «скатерть» и ковёр Серпинского — аналоги множества Кантора на плоскости; губка Менгера — аналог ковра Серпинского в трёхмерном пространстве; Ковёр Аполлония — множество всевозможных последовательностей окружностей, каждая из которых касается трёх уже построенных; примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции ; кривая Коха — несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке; кривая Пеано — непрерывная кривая, проходящая через все точки квадрата; траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум [3]. Построение кривой Коха Существует простая рекурсивная процедура получения фрактальных кривых на плоскости.
Ответ на это даст только математика. Фрактал — это некая фигура со свойством самоподобия, то есть, сколько бы мы не приближались к такому предмету, мы будем видеть ту же картину, что была изначально. Классические примеры фракталов — это папоротник, капуста брокколи, капуста романеско, горные пейзажи. В природе таких явлений достаточно много. Пока математики всерьез не взялись за такие объекты, не было ясно, как можно с ними взаимодействовать. Например, стоит задача: нарисовать кровеносные сосуды в легких. Это практически невозможно сделать без применения фрактальной геометрии. Мы попросили Давида Каца, аспиранта Института математики и механики К П ФУ, выступить для нас проводником в этот странный мир бесконечного повторения. Брокколи — конечно, полезный, замечательный продукт, но математики обычно с капустой дело не имеют. Самый классический объект: «Множество Кантора» или «Канторова пыль». Мы берем отрезок, делим его на три части и среднюю часть выкидываем. Потом повторяем и повторяем эту процедуру с каждым из оставшихся отрезков. В чем странность этого объекта? Несмотря на то, что мы постоянно что-то выкидываем, у нас остается множество точек, весьма сложно устроенных. Есть еще один более замысловатый пример: «Салфетка Серпинского». Берем равносторонний треугольник, в серединах его сторон отмечаем точки, соединяем. Получаем равносторонний треугольник, который вырезаем. У нас остается три равносторонних треугольника. Дальше, как можно уже понять, мы то же самое делаем с каждым из треугольников до бесконечности.
В результате процесса получается древовидная структура, обладающая фрактальными свойствами. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен как описанный выше зачастую приводит к фрактальным структурам. Если же мы говорим не просто о природе, а о живой природе - то здесь также начинают участвовать эволюционные механизмы. Дело в том, что фрактальные структуры во многих случаях показывают высокую эффективность - очень эффективно организовать кровеносные сосуды в виде фрактальной сетки, например. Ну и добавлю еще одно соображение. Для сравнительно простых форм жизни, например, грибов или растений, фрактальная структура удобна еще одним своим свойством - самоподобием.
Фрактал. 5 вопросов
Фракталы — еще одна интересная математическая форма, которую каждый видели в природе. На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Международная группа ученых обнаружила впервые нашла в природе молекулу, обладающую свойствами регулярного фрактала. Смотрите 51 фото онлайн по теме фракталы в природе фото.
Что такое фрактал? Фракталы в природе
Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. Приводим примеры фракталов в природе, жизни, математике, алгебре, геометрии и не только. Это значит, что плоский фрактал в некотором смысле «проще» настоящей плоскости, но «сложнее» прямой. Фракталы также встречаются в природе. Фракталы кажутся нам слишком совершенными, чтобы существовать в реальности, но они не так уж редко встречаются в природе, в частности реализуя себя в виде растений.
Откройте свой Мир!
Немного о фракталах и множестве Мандельброта Антон Ступин Что породило само понятие фрактал? Природа создаёт удивительные и прекрасные фракталы, с безупречной геометрией и идеальной гармонией. Деревья, как и многие другие объекты в природе, имеют фрактальное строение.
Физики нашли фракталы в лазерах
Рассмотрим 2 подхода — активный и пассивный. Пассивный подход в торговле по фракталам Для начала, определите, в каком направлении перемещается объём. Это можно сделать воспользовавшись индикатором Market Profile. Если РОС максимальный объём за день переместился вверх по отношению к РОС предыдущего дня, и цена находится выше РОС предыдущего дня — то, вероятнее всего, на рынке присутствует восходящий тренд. Исходя из этого простого наблюдения, можно выставлять отложенные ордера на пробой фракталов в соответствии с перемещением объема. Далее контролируйте риски. В конце американской сессии можно закрывать все сделки, независимо от результата. Этот подход более спокойный, так как на анализ и выставление ордеров вы можете потратить не более 10 минут в день. Активный поход в торговле по фракталам Определите тренд в каком направлении перемещается объём и торгуйте в течение дня только в направлении тренда. Этот индикатор может быть хорошим фильтром для ваших сделок. Если на рынке присутствует восходящий тренд, и внутри дня цена пробила нижний фрактал, выйдя из области Value area, а потом в неё вернулась — то, скорее всего, это был ложный пробой, и движение вверх вероятно продолжится.
В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Рассмотрим один из таких фрактальных объектов — триадную кривую Коха. Построение кривой начинается с отрезка единичной длины рис. В результате такой замены получается следующее поколение кривой Коха. Для получения 3-го поколения проделываются те же действия — каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. На рис. При n стремящемся к бесконечности кривая Коха становится фрактальным объектом.
Построение триадной кривой Коха Для получения другого фрактального объекта рис. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. Предельная фрактальная кривая при n стремящемся к бесконечности называется драконом Хартера-Хейтуэя. Построение "дракона" Хартера-Хейтуэя Для построения треугольника Серпинского начальный элемент — треугольник со всеми внутренними точками. Образующий элемент исключает из него центральный треугольник.
Фрактальное множество получается в пределе при бесконечно большом числе. Построение треугольника Серпинского Представленные примеры геометрических фракталов не являются единственными, существует огромное количество других, еще более сложных и интересных фракталов. Геометрические фракталы имеют огромное практическое значение. Применяя их в компьютерной графике, ученые научились получать сложные объекты, похожие на природные: изображения снежинок, горных вершин, искусственных облаков, деревьев, кустов, веток, береговой линии и так далее. Двухмерные геометрические фракталы используются для создания объемных текстур. Алгебраические фракталы Эти фракталы могут быть описаны с помощью алгебраических уравнений или рекурсивных формул. Эти уравнения и формулы определяют правила, по которым точки или фигуры повторяются и изменяются на каждой итерации. Алгебраические фракталы могут иметь сложную и красивую геометрию, которая может быть воспроизведена и визуализирована с помощью компьютерной графики.
Они могут быть двухмерными или трехмерными, и их формы могут быть симметричными или случайными.
Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов система кровеносных сосудов. Литература[ ] Среди литературных произведений находят такие, которые обладают текстуальной, структурной или семантической фрактальной природой. В текстуальных фракталах потенциально бесконечно повторяются элементы текста: неразветвляющееся бесконечное дерево, тождественное само себе с любой итерации «У попа была собака…», «Притча о философе, которому снится, что он бабочка, которой снится, что она философ, которому снится…», «Ложно утверждение, что истинно утверждение, что ложно утверждение…» неразветвляющиеся бесконечные тексты с вариациями «У Пегги был весёлый гусь…» и тексты с наращениями «Дом, который построил Джек».
Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую. Многие объекты в природе обладают свойствами фрактала, например: побережья, облака, кроны деревьев, снежинки, система кровообращения, альвеолы. Слайд 4 Описание слайда: Природные объекты, обладающие фрактальными свойствами Природные объекты отличаются от идеальных абстрактных фракталов неполнотой и неточностью повторений структуры. Большинство встречающихся в природе фракталоподобных структур границы облаков, линия берега, деревья, листья растений, кораллы, … являются квазифракталами, поскольку на некотором малом масштабе фрактальная структура исчезает. Природные структуры не могут быть идеальными фракталами из-за ограничений, накладываемых размерами живой клетки и, в конечном итоге, размерами молекул.
Откройте свой Мир!
Фрактальная геометрия природы. Если изучить фрактальную геометрию природы, то наблюдая природные явления человек перестанет видеть хаос. Он увидит, насколько просты принципы развития и распределения в природе. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств. Фракталы в природе Подготовила Андреева Алина Р-12/9. дробленый) - термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. Природа зачастую.