В 2024 году 62,3% россиян стали чаще использовать технологии искусственного интеллекта (ИИ), прежде всего в смартфонах. Как технологии искусственного интеллекта влияют на экономику и бизнес. Искусственный интеллект Microsoft Copilot следующего поколения будет требовать использования нейронных процессоров с вычислительной мощностью не менее 40 триллионов операций в секунду (TOPS). Прогресс искусственного интеллекта оказывает существенное воздействие на сферу электронной коммерции. последние новости сегодня. Искусственный интеллект - все самые свежие новости дня по теме. ТАСС – ведущее государственное информационное агентство России.
Обзор развития ИИ-технологий: как изменится экономика, образование и общество?
Как искусственный интеллект помогает в диагностике заболеваний? «Эпоха искусственного интеллекта началась»: Билл Гейтс опубликовал эссе о том, как нейросети изменят нашу жизнь. последние новости сегодня. Искусственный интеллект - все самые свежие новости дня по теме. ТАСС – ведущее государственное информационное агентство России. В торгово-финансовом секторе искусственный интеллект так же хорошо себя показывает в работе. «Механизмы искусственного интеллекта обеспечивают в режиме реального времени быстрое принятие оптимальных решений на основе анализа гигантских объёмов информации, так называемых больших данных, что даёт колоссальные преимущества в качестве и.
Искусственный интеллект, большие данные могут помочь здоровью планеты, говорит эксперт
Среди тех, кто интересуется технологиями искусственного интеллекта и готов платить за них, 44,4% регулярно используют нейросети для решения задач. Актуальность проекта заключается в важности развития технологий искусственного интеллекта для таких прогрессивных отраслей науки, как кибернетика, робототехника, для более быстрого, удобного доступа к мировым информационным. Разбираемся, что такое искусственный интеллект, каковы принципы его работы и насколько мы близки к появлению полностью сознательных машин.
Проект по применению искусственного интеллекта
Помимо сложного процесса внедрения, эксперты выделили множество проблем, препятствующих усилиям по защите окружающей среды на основе ИИ. В настоящее время сложно идти в ногу с инновациями в программном обеспечении для ИИ, что может замедлить усилия по внедрению. Еще один недостаток попыток перейти на ИИ заключается в потенциальной предвзятости алгоритмов, которая может испортить весь процесс. Один из способов обойти это фиаско - использовать всеобъемлющие наборы данных и строгие процедуры проверки. Звездный дебют в сфере общественного здравоохранения В то время как некоторые исследователи делают ставку на теоретические исследования, другие уже пожинают плоды практического использования.
Они смогут объяснить, почему программа пришла к определенному решению, как именно происходил процесс генерации или предсказания, почему был получен именно такой результат. Вот это точно будет востребовано.
Существующие профессии, такие как сценарист и режиссер, трансформируются, они будут работать, например, над тем, как сделать ИИ более человекоподобным, чтобы он правильно реагировал и имитировал эмоции. Искусственный интеллект в сочетании с робототехникой в первую очередь заменит профессии, которые связаны с риском для жизни, тяжелыми и опасными условиями труда: шахтеров, водителей самосвалов и другие. Кроме того, исчезнут или сильно изменятся профессии, где много рутины. Например, секретарей и даже программистов. ИИ не заменит ученых. У них появятся новые инструменты со встроенным искусственным интеллектом, которые ускорят процессы и этапы исследования, например сбор и обработку данных, проверку гипотез и даже их генерацию с помощью нейросетей.
А самой профессии ученых ничего не грозит, потому что они создают нечто принципиально новое, чего раньше вообще не существовало. Такую работу искусственный интеллект заменить не сможет. Небольшим изменениям подвергнутся и руководители высшего звена в компаниях, которые занимаются вопросами стратегического целеполагания. Я надеюсь, что искусственный интеллект не заменит профессию учителя. Я считаю, что людей должны учить и воспитывать люди. Но хотя, безусловно, ИИ будет большим помощником.
Нужно будет уметь перестраиваться и учиться всю жизнь. Как раньше — освоить в университете одну специальность, всю жизнь по ней работать и уйти на пенсию — больше не получится. Исполнительские функции будут заменены искусственным интеллектом, а человек должен понимать и уметь объяснить, как что устроено и функционирует изнутри. В последние годы в образовании преобладает тенденция обучения прикладным навыкам, поэтому многие даже не могут обосновать, почему что-то нужно делать так, а не иначе. В будущем, я надеюсь, в высших учебных заведениях будут учить думать глубоко. Курс «Профессия Аналитик данных» — обучение аналитике данных с нуля Машинное творчество и проблема авторских прав — Какие области искусства и культуры наиболее сильно трансформируются под влиянием генеративных нейросетей?
Как это повлияет на творческие процессы? Появятся новые традиции и даже новые виды искусства, появился же киберспорт. Оборотная сторона медали тут тоже возможна: начиная от авторских прав и заканчивая потерей неповторимой индивидуальности, присущей большим художникам, — можно сделать сколько угодно копий их произведений, отредактировать их, попросить нейросеть сгенерировать, например, изображение в стиле художника и т. Если считать нейросеть инструментом, то права и ответственность за результат, который она создала, лежит на человеке, который написал промпт, или запрос.
Маркетинговая сфера. Системы искусственного интеллекта на основе изучения предыдущих продаж и глубокого изучения рынков осуществляют прогнозирование сценариев развития событий. Алгоритмами изучаются контактные данные клиентов, суммы сделок и приобретенные ими товары или услуги [20] Shkor, Sevzyuk, 2020. Кроме того, ИИ анализирует поведение конкурентов в целях сопоставления эффективных и неудачных решений и действий. Это позволяет компании разрабатывать и реализовывать грамотную маркетинговую стратегию, которая с высокой степенью вероятности завершится финансовым успехом. Скорость обработки данных. Big Data большие данные — это основной инструмент работы искусственного интеллекта. ИИ позволяет быстро и эффективно анализировать большие объемы информации, разрабатывать пути реакции, а также осуществлять построение стратегического планирования. В качестве примера можно привести применение систем искусственного интеллекта при реализации биржевых операций. Следует отметить, что традиционные программные алгоритмы не в состоянии самостоятельно адаптироваться к быстро меняющимся условиям и данным без предварительного обучения. Алгоритмы искусственного интеллекта предоставляют такую возможность и повышают продуктивность работы на бирже [4] Babich, Kirillova, 2019. Процессы автоматизации. Существует большое количество факторов, вызывающих возможные ошибки в работе персонала. Искусственный интеллект, у которого отсутствуют эмоции и чувства, характерные для человека человеческий фактор , используя данные, функции и технологии, позволяет осуществлять безошибочную и точную работу [12] Lapaev, Morozova, 2020. Однако следует отметить, что уже сегодня ведется ряд исследований, которые позволяют ИИ выявлять сарказм и двойной смысл человеческих сообщений. В частности, американскими учеными из Университета Центральной Флориды на основе тренировок и обучения нейронных сетей создан искусственный эмоциональный интеллект Emotional AI. Это перспективная подсистема ИИ, которая способна распознавать и интерпретировать проявления человеческих эмоций. Благодаря этому достигается более естественное и непринужденное взаимодействие человека и ИИ [6]. Виртуальные помощники. К примеру, чат-бот Олег, применяемый в приложении интернет-банка Тинькофф, с помощью распознавания речи общается с клиентами банка посредством цифровых устройств и выполняет стандартные банковские операции, например, осуществляет денежные переводы. Эти же функции осуществляются первым в мире семейством виртуальных ассистентов «Салют» экосистемы «Сбер» [7]. Использование виртуальных помощников — это один из ИИ-инструментов, который со временем будет более широко внедряться в бизнес-процессы и повседневную жизнь современного человека. По статистике Facebook, более 10 тысяч компаний занимаются разработкой чат-ботов [8]. К примеру, Juniper Research отмечается высокая популярность применения виртуальных помощников. Использование чат-ботов в финансовом секторе и медицине способно сэкономить до 20 млн долл. США в год, к 2022 г. К текущему моменту времени на мощностях французской энергетической компании Engie успешно применяются дроны с программами распознавания изображений на основе машинного обучения, которые следят за оборудованием и изучают инфраструктуру в целях предотвращения технологических и иных нарушений. ИИ-системы контроля и мониторинга широко используются и в городской среде. Наиболее простой пример — система распознавания автомобильных номеров с помощью камер видеослежения, применяемая муниципальными организациями. Кроме того, подобные алгоритмы применяются для систем распознавания лиц [17] Porokhovskiy, 2020.
Facebook AI Research FAIR FAIR — это отдел ИИ Facebook, разрабатывающий инновационные методы машинного обучения и искусственного интеллекта, которые применяются во всей экосистеме продуктов Facebook, также активно участвуют в научном сообществе, публикуя свои исследования. PaddlePaddle активно используется в большом числе областей, от рекомендательных систем до систем самоуправляемых автомобилей. Einstein способен автоматически анализировать данные и предлагать оптимальные стратегии общения с клиентами. Искусственный интеллект продолжает эволюционировать с каждым годом, предлагая всё новые и новые возможности для улучшения нашей жизни. Список топ-10 ИИ 2023 года демонстрирует удивительный размах отрасли, начиная от ИИ, способных генерировать естественный текст и автоматизировать кодирование, до ИИ, помогающих нам в общении и анализе данных. Исходя из текущих тенденций, можно ожидать, что в следующие годы ИИ станет ещё более мощным, доступным и влиятельным инструментом во многих областях жизни. Единственное условие покупки нужной криптовалюты на биржи Бинанс — это денежные средства на Вашем кошельке ADV. Совсем недавно платежная система AdvCash стала еще более доступна для резидентов России и предлагает возможность получения банковских карт, что будет существенным подспорьем для держателей таких карт. За последние несколько лет наблюдается увеличение количества жалоб от активных любителей азартных развлечений на недобросовестное поведение операторов, например, задержки выплат или блокировки профилей.
Его превосходительство ИИ: в каких направлениях искусственного интеллекта РФ опережает Запад
Будущее искусственного интеллекта Искусственный интеллект перестал быть научной фантастикой и уже сейчас основательно входит в нашу жизнь. Основные рассматриваемые темы: искусственный интеллект, нейронные сети (нейросети), машинное обучение, большие данные (big data), квантовые компьютеры, практическая реализация ИИ, новости науки за 2019 год. Актуальность проекта заключается в важности развития технологий искусственного интеллекта для таких прогрессивных отраслей науки, как кибернетика, робототехника, для более быстрого, удобного доступа к мировым информационным. Минцифры считает, что данные искусственного интеллекта помогут властям понять, где нужно нарастить инфраструктуру, построить социальные объекты и дороги. Город вдохновения: краснодарцы доверяют рекомендациям искусственного интеллекта и создают с ним музыку. Искусственный интеллект (ИИ) — это общее понятие, которое описывает машинные алгоритмы и технологии, направленные на создание интеллектуальных систем.
Обзор развития ИИ-технологий: как изменится экономика, образование и общество?
В Институте общей физики имени А. Прохорова РАН ИОФ считают, что быстрое развитие ИИ может привести к массовой потере рабочих мест, поскольку машины берут на себя задачи, которые раньше выполнялись людьми. Но главные опасения в специализированной прессе по поводу этических последствий создания интеллектуальных машин, особенно в связи с тем, что они становятся способными принимать решения и действовать самостоятельно [5]. Одним из самых интересных достижений в области ИИ является использование нейронных сетей. Нейронные сети — это набор алгоритмов, предназначенных для распознавания шаблонов и обучения на входных данных. Они вдохновлены структурой и функциями человеческого мозга, состоящего из миллионов взаимосвязанных нейронов, которые взаимодействуют друг с другом для передачи информации в мозг человека. Нейронные сети состоят из слоев взаимосвязанных узлов или нейронов, каждый из которых обрабатывает информацию и отправляет ее на следующий слой. Первый слой нейронов получает входные данные, а последний слой производит выходные данные. Слои между входным и выходным слоями называются скрытыми слоями и отвечают за обработку и анализ входных данных [1]. Процесс обучения нейронной сети включает в себя ввод в нее входных данных и корректировку весов и смещений нейронов для повышения точности выходных данных.
Чем больше данных обучает сеть, тем лучше она распознает закономерности и делает точные прогнозы машинное обучение. Нейронные сети имеют несколько приложений в различных областях, включая распознавание изображений и речи, обработку естественного языка и прогнозное моделирование. Цель нейронной сети — находить закономерности в данных и делать прогнозы на основе выявленных корреляций. Во время обучения в сеть подается большое количество размеченных данных, а веса связей между нейронами корректируются до тех пор, пока сеть не сможет точно предсказать правильный результат для заданного ввода. Нейронные сети оказались невероятно эффективными в широком спектре приложений. Специалисты в области экономики считают, что, в финансах их можно использовать для прогнозирования цен на акции или обнаружения мошенничества. Разработчики программ в сфере медицины также замечают, что в здравоохранении их можно использовать для анализа медицинских изображений и выявления заболеваний. Рабочие процессы медицинских учреждений неразрывно связаны со сбором, обработкой и анализом различных медицинских изображений к которым относятся рентген, КТ, цифровые гистологические исследования и так далее. А также, искусственный интеллект в медицине использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе большого объема сложных медицинских данных.
Открытие для компаний API российских генеративных нейросетей будет стимулировать бизнес внедрять технологию в пользовательские продукты и внутренние процессы. Сегодня каждая вторая опрошенная компания в России находится на этапе экспериментирования и эксплуатации решений на базе искусственного интеллекта. С появлением новых инструментов, расширением сфер применения и упрощением доступа к ИИ мы ожидаем, что эффект станет гораздо больше и в несколько раз превысит текущие показатели. Особенно это актуально в условиях исчерпания потенциала традиционных источников роста. Александр Громов партнер «Яков и Партнёры» По итогам опроса эксперты пришли к выводу, что экономический потенциал искусственного интеллекта в России к 2028 г.
Доктор Халид призвал исследователей увеличить размер своих ставок на детекторы загрязнения на основе искусственного интеллекта и системы предотвращения пандемий для защиты флоры и фауны на Земле. Чтобы уравнять шансы, эксперт по климату жаждет интеграции Больших данных с ИИ. Помимо сложного процесса внедрения, эксперты выделили множество проблем, препятствующих усилиям по защите окружающей среды на основе ИИ. В настоящее время сложно идти в ногу с инновациями в программном обеспечении для ИИ, что может замедлить усилия по внедрению. Еще один недостаток попыток перейти на ИИ заключается в потенциальной предвзятости алгоритмов, которая может испортить весь процесс.
Также идут попытки улучшить создание простых приложений с ИИ с Low-code решениями. Например, FlutterFlow, программа для создания мобильных приложений, и Vercel V0, утилита для создания Web страниц, позволяют генерировать UI по описанию требований в чате. Программистам также представлены такие утилиты как Github Copilot и Tabnine, позволяющие дописывать код функций во время написания кода. Все крупные провайдеры ввязались в гонку создания больших генеративных моделей. Такой интеллект должен быть лучше человека в способности обучения и выдачи большинства ответов. Многих такая бурная перспектива развития ИИ пугает, и возможно это стало причиной по которой Илья Суцкевер, один из основателей OpenAI, был одним из идеологов увольнения Сэма Альтмана. Альтман, вместе с Microsoft, придерживается идеи быстрого развития и прихода к AGI с получением прибыли от захвата рынка, а Илья в недавнем выступлении TED предостерегает от таких действий. Рынок труда испытывает недостаток в ML специалистах, как на медународном уровне, так и на российском. Основные области работы ML инженера это или создания собственных моделей искусственного интеллекта, например в Яндексе и Сбербанке, или до-настройка существующих моделей под требования бизнеса. В обеих сферах сейчас большой недостаток специалистов. Иван Крутько Экс-директор по цифровому развитию, «Комус», действующий топ-менеджер федеральной компании, а также бизнес-практик в B2B продажах и цифровой трансформации 2023 год был охвачен нейросетями. Кажется, не произошло ничего более значимого за целый год в мире IT. Но сохранится ли этот спрос в 2024 году? Какое будущее у нейросетей? За последние 20-30 лет мы несколько раз пережили смену технологической парадигмы: персональные компьютеры и интернет, смартфоны и приложения, данные и искусственный интеллект, ML модели и нейросети. Сейчас мы находимся в цикле доминирования нейросетей, ML моделей и АI. В трендах технологического развития 2023 год многое поменял. Нейросети открыли новые возможности перед человеком и бизнесом в области практических решений и монетизации. Объем данных достиг достаточного уровня, чтобы появился масштаб, возросла бизнес-ценность практических кейсов, и это выстрелило. Спрос [на ML-инженеров] вырос, а уровень квалификации снизился, так как российские специалисты с высокими компетенциями ушли на международный рынок. Рост спроса на ML-инженеров в России приводит к тому, что компании готовят специалистов со студенческой скамьи, квотируя ресурсы на стадии поступления будущих специалистов в ВУЗы. Их доход начинается на уровне 300 тыс. Ниже доход у тех, кто является бывшим аналитиком или только недавно переучился. Спрос, однозначно, растет. Есть 2 источника пополнения ML-инженеров: бывшие аналитики данных и студенты. В B2B прогресс заметен в отрасли агрокультуре. В других бизнесах много специфики и отсутствует универсальная экспертиза B2B, поэтому здесь точно сложился дефицит специалистов, и нет готовых решений у интеграторов и цифровых экосистем. Евгения Дёмина Аккаунт-директор IT Test Отбор кандидатов с помощью нейросетей — именно так выглядит рынок аутстафа сегодня. Цифровизация и тренд на нейронные сети вносят свои изменения в сложившийся алгоритм работы в аутстаффинге. Если раньше данные обрабатывались вручную, то сейчас уже никого не удивишь тем, что прогоняешь резюме через нейросети, чтобы те сравнили информацию о кандидате с текстом вакансии. Наивно полагать, что, если напишешь «я опытный senior», то все навыки считаются по умолчанию: бездушная машина моментально откинет вашу кандидатуру. Конечно, рекрутеры не полностью отказываются от просмотра резюме и портфолио, но тем не менее нужно держать в голове, что информация о вас может до HR-специалистов и не дойти. Позиции лидов и руководителей подразделений особенно сложно закрывать. И особенно в сфере разработки и тестирования. Любопытно, что вместе с тем заказчики предоставляют аутстаферам больше свободы. В IT Test нередки случаи, когда аутстаф-сотрудники приходят в команду заказчика на временное усиление, и, опираясь на свою экспертизу, предлагают нестандартные решения. Важно не стесняться проговаривать то, что можно улучшить, не бояться индивидуальных решений. Увеличение размера моделей и числа параметров привело к совершенно фантастическому результату — нейросеть оказалась способна решать задачи, которые ранее были под силу исключительно человеку. Ответы на вопросы, написание текстов, программирование и даже создание музыки — все оказалось в сфере компетенций нейросетей. Благодаря этому внезапно оказалось, что можно почти мгновенно и без квалификации достаточно лишь правильно написать подсказки для нейросети создавать то, для чего раньше требовались время, ресурсы и деньги. Однозначно, сохранится. Кривая Гартнера для новых технологий гласит, что технология будет расти до предела популярности, чтобы далее испытать резкое снижение интереса и выход на плато эффективного использования.
Вы находитесь здесь: итоги 2023 года в сфере ИИ
Samsung заключила контракт с AMD на поставку HBM3E на сумму $3 млрд | Традиционные проблемы, связанные с ИИ, такие как усиление существующих предубеждений в данных для обучения или отсутствие прозрачности решений, вновь обрели актуальность. |
Ученые рассказали о пользе, опасности и перспективах искусственного интеллекта | Энтузиасты искусственного интеллекта говорят о большом потенциале новых технологий, в то время как скептики напоминают о рисках и советуют не слишком спешить навстречу прогрессу. |
Сферы применения систем искусственного интеллекта
Значимость искусственного интеллекта и нейронных сетей в современном мире | Человечество потеряло монополию на интеллект — мысль, в которой многие могут усомниться. |
Инструмент или замена человеку: чем опасно развитие искусственного интеллекта | Искусственный интеллект (ИИ) — это область науки и технологии, посвященная разработке компьютерных систем, способных анализировать данные, извлекать закономерности, обучаться на основе опыта и принимать решения, которые ранее требовали человеческого интеллекта. |
Сообщество
- Каким будет будущее нейросетей в 2024 году
- Что такое искусственный интеллект и зачем он нужен
- Как сегодня поживает искусственный интеллект
- Будущее искусственного интеллекта: перспективы и выгоды
Предварительный просмотр:
- Как искусственный интеллект повлияет на нашу жизнь в будущем
- Яков и Партнёры - Искусственный интеллект в России – 2023: тренды и перспективы
- Статьи и новости
- Массовая безработица и безграничные возможности? Как сегодня поживает искусственный интеллект