Новости космос Луна оказалась горячее, чем считалось ра.
Температура Земли приблизилась к рекордным показателям за 50 млн лет
Новости космос Луна оказалась горячее, чем считалось ра. Здесь опубликована динамика изменения зимних (2012-13г.г.) температур земли на глубине 130 сантиметров под домом (под внутренним краем фундамента), а. Отчет, подготовленный в Институте физики Земли, гласил: за миллиарды лет своего существования Кольский щит остыл, температура на глубине 15 км не превышает 150°С. А геофизики подготовили примерный разрез недр Кольского полуострова.
Тепловое поле Земли
Ученые из Австралийского национального университета обнаружили, что температура Земли на глубине трех тысяч километров на самом деле неоднородна, как думали ранее. Главная» Новости» Глобальное замерзание земли 2024. Известно, что ядро Земли имеет чрезвычайно высокую температуру, для этого есть свои причины. Аппарат измеряет температуру верхнего слоя лунной почвы. Он оснащен датчиком с механизмом, который может измерять температуру почвы на глубине до 10 см, говорится в сообщении ISRO в соцсети X. В публикации приводится график температур. На глубинах более 5000 метров температура в недрах Земли уже превышает 150 градусов Цельсия. «К 2300 году средняя глобальная температура может подняться до уровней, каких Земля не видела за 50 миллионов лет», – заявляют ученые.
С 1960-х нагрев вырос в 20 раз
- Какая температура в центре Земли?
- Индийский аппарат передал первые данные с Луны, почва которой оказалась горячей
- Таблица температур грунта на различных глубинах в крупных городах РФ и СНГ
- С 1960-х нагрев вырос в 20 раз
- Какая температура в центре Земли? |
- Наши проекты
Проверим температуру под землей на глубине 50 сантиметров?
В среднем для глубин коры, доступных непосредственным температурным измерениям, величина Г. Закономерный рост температуры с увеличением глубины указывает на существование теплового потока из недр Земли к поверхности. Величина этого потока равна произведению Г. Это так называемая геотермическая ступень. Величина геотермической ступени в разных местах и на разных глубинах неодинакова и колеблется от 5 до 150 м. В вулканических районах с глубиной температура повышается очень быстро.
Представить состав ядра можно методами изучения близких по составу материалов, например железных метеоритов, представляющих собой фрагменты ядер астероидов. Внутренне ядро — самый центр Земли диаметром 1,3 тыс. В 2015 г.
Исследователи полагают, что состав третьего ядра не железно-никелевый, а какой-то другой. А его кристаллы повернуты не с севера на юг, вдоль магнитного поля Земли, а с запада на восток. Что касается внешнего ядра, оно располагается на глубине 2,3 тыс. Внешнее ядро состоит из железа и никеля, как и внутреннее, но в жидком состоянии — давления гравитации недостаточно для затвердевания раскаленного металла. Жидкость находится в постоянном движении и образует магнитное поле, которое защищает планету от космического излучения. Магнитное поле Земли Течение жидкого металла во внешнем ядре порождает хаотические электрические токи, образующие магнитное поле. Оно появилось одновременно с зарождением нашей планеты и наравне с атмосферой помогло защитить первобытных одноклеточных существ от губительного космического излучения, заряженных частиц открытого космоса и солнечного ветра.
Парадокс известен в мире, как «Эффект Мпембы». Далее 25. Это название знаменитой книги Рэя Брэдбери. Действительно ли при этой температуре начинают гореть книги? Далее 13. Всему виной - страшилки в Интернете. Далее Основные разделы.
Credit: studfiles. Однако это изменение находится в пределах десятых долей градуса. На земле существует пояс, на протяжении которого температура остается неизменной в течение всего года. Он проходит в земной коре. Глубина его расположения зависит от широты и составляет: 5 м в тропиках; 30 м возле полюсов. Исторические наблюдения На отдельных участках земной поверхности фиксируются значения, далекие от среднего показателя.
Температура грунта на разных
Наблюдения продолжаются».
В очагах землетрясений и мощных взрывов возникают сейсмические волны — упругие колебания. Эти волны разделяются на объёмные — распространяющиеся в недрах планеты и «просвечивающие» их подобно рентгеновским лучам, и поверхностные — распространяющиеся параллельно поверхности и «зондирующие» верхние слои планеты на глубину десятки — сотни километров.
Объемные волны, в свою очередь, разделяются на два вида — продольные и поперечные. Продольные волны, имеющие большую скорость распространения, первыми фиксируются сейсмоприёмниками, их называют первичными или Р-волнами от англ. Поперечные волны, как известно, обладают важной особенностью — они распространяются только в твёрдой среде.
На границах сред с разными свойствами происходит преломление волн, а на границах резких изменений свойств, помимо преломлённых, возникают отраженные и обменные волны. Поперечные волны могут иметь смещение, перпендикулярное плоскости падения SH-волны или смещение, лежащее в плоскости падения SV-волны. При переходе границы сред с разными свойствами волны SH испытывают обычное преломление, а волны SV, кроме преломлённой и отражённой SV-волн, возбуждают P-волны.
Так возникает сложная система сейсмических волн, «просвечивающих» недра планеты. Анализируя закономерности распространения волн можно выявить неоднородности в недрах планеты - если на некоторой глубине фиксируется скачкообразное изменение скоростей распространения сейсмических волн, их преломление и отражение, можно заключить, что на этой глубине проходит граница внутренних оболочек Земли, различающихся по своим физическим свойствам. Сейсмическая модель Земли Изучение путей и скорости распространения в недрах Земли сейсмических волн позволили разработать сейсмическую модель её внутреннего строения.
Сейсмические волны, распространяясь от очага землетрясения в глубь Земли, испытывают наиболее значительные скачкообразные изменения скорости, преломляются и отражаются на сейсмических разделах, расположенных на глубинах 33 км и 2900 км от поверхности см. Эти резкие сейсмические границы позволяют разделить недра планеты на 3 главные внутренние геосферы — земную кору, мантию и ядро. Земная кора от мантии отделяется резкой сейсмической границей, на которой скачкообразно возрастает скорость и продольных, и поперечных волн.
Эта граница была открыта в 1909 г. Средняя глубина границы составляет 33 км нужно заметить, что это весьма приблизительное значение в силу разной мощности в разных геологических структурах ; при этом под континентами глубина раздела Мохоровичича может достигать 75-80 км что фиксируется под молодыми горными сооружениями — Андами, Памиром , под океанами она понижается, достигая минимальной мощности 3-4 км. Ещё более резкая сейсмическая граница, разделяющая мантию и ядро, фиксируется на глубине 2900 км.
Исчезновение поперечных волн указывает, что внешняя часть ядра обладает свойствами жидкости. Сейсмическая граница, разделяющая ядро и мантию, была открыта в 1914 г. Резкие изменения скорости и характера прохождения волн фиксируются на глубинах 670 км и 5150 км.
Граница 670 км разделяет мантию на верхнюю мантию 33-670 км и нижнюю мантию 670-2900 км. Граница 5150 км разделяет ядро на внешнее жидкое 2900-5150 км и внутреннее твёрдое 5150-6371 км. Существенные изменения отмечаются и на сейсмическом разделе 410 км, делящим верхнюю мантию на два слоя.
Полученные данные о глобальных сейсмических границах дают основание для рассмотрения современной сейсмической модели глубинного строения Земли. Внешней оболочкой твёрдой Земли является земная кора, ограниченная границей Мохоровичича. Эта относительно маломощная оболочка, толщина которой составляет от 4-5 км под океанами до 75-80 км под континентальными горными сооружениями.
В составе знмной коры отчетливо выделяется верхний осадочный слой, состоящий из неметаморфизованных осадочных пород, среди которых могут присутствовать вулканиты, и постилающая его консолидированная, или кристаллическая, кора, образованная метаморфизованными и магматическими интрузивными породами. Существуют два главных типа земной коры — континентальная и океанская, принципиально различающиеся по строению, составу, происхождению и возрасту.
Благодаря этим наблюдениям у ученых появилась возможность лучше понять то, как наша Земля создает магнитное поле. Группа, проводившая новые исследования, измерила в лабораторных условиях показатели высшей точки кипения железа и, сопоставив полученные результаты с показателями внешнего и внутреннего ядра, пришла к выводу, что их температура составляет порядка 6000 градусов Цельсия.
То есть почти столько же, как и температура Солнца. Факт различия в температурных показателях очень важен для ученых. Ведь это помогает объяснить то, как Земля генерирует магнитное поле.
Такая теплица работает в самые трескучие морозы, позволяет производить овощи, выращивать цветы круглый год. Правильно оборудованная заглубленная теплица дает возможность выращивать, в том числе, теплолюбивые южные культуры. Ограничений практически нет. В теплице могут прекрасно чувствовать себя цитрусовые и даже ананасы. Но чтобы на практике все исправно функционировало, обязательно нужно соблюсти проверенные временем технологии, по которым строились подземные теплицы. Ведь эта идея не нова, еще при царе в России заглубленные теплицы давали урожаи ананасов, которые предприимчивые купцы вывозили на продажу в Европу. Почему-то строительство подобных теплиц не нашло в нашей стране большого распространения , по большому счету, она просто забыта, хотя конструкция идеально подходит как раз для нашего климата. Вероятно, роль здесь сыграла необходимость рытья глубокого котлована, заливка фундамента. Строительство заглубляемой теплицы достаточно затратное, это далеко не парник, накрытый полиэтиленом, но и отдача от теплицы гораздо больше. От заглубления в землю не теряется общая внутренняя освещенность, это может показаться странным, но в некоторых случаях светонасыщенность даже выше, чем у классических теплиц. Нельзя не упомянуть о прочности и надежности конструкции, она несравнимо крепче обычной, легче переносит ураганные порывы ветра, хорошо противостоит граду, не станут помехой и завалы снега. Котлован Создание теплицы начинается с рытья котлована. Чтобы использовать тепло земли для обогрева внутреннего объема, теплица должна быть достаточно углублена. Чем глубже, тем земля становится теплее. Температура почти не изменяется в течение года на расстоянии 2-2,5 метра от поверхности. На глубине 1 м температура грунта колеблется больше, но и зимой ее значение остается положительным, обычно в средней полосе температура составляет 4-10 С, в зависимости от времени года. Заглубленная теплица возводится за один сезон. То есть зимой она уже вполне сможет функционировать и приносить доход. Строительство не из дешевых, но, применив смекалку, компромиссные материалы, возможно сэкономить буквально на целый порядок, сделав своеобразный эконом-вариант теплицы, начиная с котлована. Например, обойтись без привлечения строительной техники. Хотя самую трудоемкую часть работы - рытье котлована -, конечно, лучше отдать экскаватору. Вручную вынуть такой объем земли тяжело и долго. Глубина ямы котлована должна быть не меньше двух метров. На такой глубине земля начнет делиться своим теплом и работать как своеобразный термос. Если глубина будет меньше, то принципиально идея будет работать, но заметно менее эффективно. Поэтому рекомендуется не жалеть сил и средств на углубление будущей теплицы. В длину подземные теплицы могут быть любыми, но ширину лучше выдержать в пределах 5 метров, если ширина больше, то ухудшаются качественные характеристики по обогреву и светоотражению. По сторонам горизонта подземные оранжереи ориентировать нужно, как обычные теплицы и парники, с востока на запад, то есть так, чтобы одна из боковых сторон была обращена на юг. В таком положении растения получат максимальное количество солнечной энергии. Стены и крыша По периметру котлована заливают фундамент или выкладывают блоки. Фундамент служит основанием для стен и каркаса сооружения. Стены лучше делать из материалов с хорошими теплоизоляционными характеристиками, прекрасный вариант - термоблоки. Каркас крыши чаще делают деревянным, из пропитанных антисептическими средствами брусков. Конструкция крыши обычно прямая двускатная. По центру конструкции закрепляют коньковый брус, для этого на полу устанавливают центральные опоры по всей длине теплицы. Коньковый брус и стены соединяются рядом стропил. Каркас можно сделать и без высоких опор. Их заменяют на небольшие, которые ставят на поперечные балки, соединяющие противоположные стороны теплицы, - такая конструкция делает внутреннее пространство свободнее. В качестве покрытия крыши лучше взять сотовый поликарбонат - популярный современный материал. Расстояние между стропилами при строительстве подгоняют под ширину поликарбонатных листов. Работать с материалом удобно. Покрытие получается с небольшим количеством стыков, так как листы выпускаются длиной 12 м. К каркасу они крепятся саморезами, их лучше выбирать со шляпкой в виде шайбы. Во избежание растрескивания листа, под каждый саморез нужно просверлить дрелью отверстие соответствующего диаметра. С помощью шуруповерта, или обычной дрели с крестовой битой, работа по остеклению движется очень быстро. Для того чтобы не оставалось щелей, хорошо заранее по верху проложить стропила уплотнителем из мягкой резины или другого подходящего материала и только потом прикручивать листы. Пик крыши вдоль конька нужно проложить мягким утеплителем и прижать каким-то уголком: пластиковым, из жести, из другого подходящего материала. Для хорошей теплоизоляции крышу иногда делают с двойным слоем поликарбоната. Нужно учесть, что снег на такой крыше не тает. Поэтому скат должен находиться под достаточным углом, не менее 30 градусов, чтобы снег на крыше не накапливался. Дополнительно для встряхивания устанавливают электрический вибратор, он убережет крышу в случае, если снег все-таки будет накапливаться. Двойное остекление делают двумя способами: Между двумя листами вставляют специальный профиль, листы крепятся к каркасу сверху; Сначала крепят нижний слой остекления к каркасу изнутри, к нижней стороне стропил. Вторым слоем крышу накрывают, как обычно, сверху. После завершения работы желательно проклеить все стыки скотчем. Готовая крыша выглядит весьма эффектно: без лишних стыков, гладкая, без выдающихся частей. Утепление и обогрев Утепление стен проводят следующим образом. Предварительно нужно тщательно промазать раствором все стыки и швы стены, здесь можно применить и монтажную пену. Внутреннюю сторону стен накрывают пленкой термоизоляции. В холодных частях страны хорошо использовать фольгированную толстую пленку, покрывая стену двойным слоем. Температура в глубине почвы теплицы выше нуля, но холоднее температуры воздуха, необходимой для роста растений. Верхний слой прогревается солнечными лучами и воздухом теплицы, но все-таки почва отбирает тепло, поэтому часто в подземных теплицах используют технологию «теплых полов»: нагревательный элемент - электрический кабель - защищают металлической решеткой или заливают бетоном. Во втором случае почву для грядок насыпают поверх бетона или выращивают зелень в горшках и вазонах. Применение теплого пола может быть достаточным для обогрева всей теплицы, если хватает мощности. Для хорошего роста им нужна температура воздуха 25-35 градусов при температуре земли примерно 25 С.
Температура ядра Земли на тысячу градусов выше, чем ранее предполагалось
Температура земли на глубине 20 м примерно 10°C, и растет каждые 30м на 1°C. На нее не оказывают влияние климатические условия, и поэтому можно рассчитывать на качественный отбор энергии и зимой и летом. Главная» Новости» Глобальное замерзание земли 2024. Геотермический градиент — физическая величина, описывающая прирост температуры горных пород в °С на определённом участке земной толщи. Судя по полученным под руководством Брюса Баффета (Bruce Buffett) данным, глобальное магнитное поле Земли на этой глубине примерно в 50 раз мощнее, чем у поверхности.
Температура грунта на разных
При этом в распоряжении исследователей имеется весь арсенал методов исследования строения и состава, что определяет высокую степенью детальности получаемых результатов. Вместе с тем, возможности этих методов при изучении глубин планеты весьма ограничены — самая глубокая в мире скважина имеет глубину лишь -12262 м Кольская сверхглубокая в России , ещё меньшие глубины достигнуты при бурении океанического дна около -1500 м, бурение с борта американского исследовательского судна «Гломар Челленджер». Сведения о глубинном строении базируются на анализе косвенных данных, полученных геофизическими методами, главным образом закономерностей изменения с глубиной различных физических параметров электропроводности, механической добротности и т. В основу разработки моделей внутреннего строения Земли положены в первую очередь результаты сейсмических исследований, опирающиеся на данные о закономерностях распространения сейсмических волн. В очагах землетрясений и мощных взрывов возникают сейсмические волны — упругие колебания. Эти волны разделяются на объёмные — распространяющиеся в недрах планеты и «просвечивающие» их подобно рентгеновским лучам, и поверхностные — распространяющиеся параллельно поверхности и «зондирующие» верхние слои планеты на глубину десятки — сотни километров. Объемные волны, в свою очередь, разделяются на два вида — продольные и поперечные. Продольные волны, имеющие большую скорость распространения, первыми фиксируются сейсмоприёмниками, их называют первичными или Р-волнами от англ. Поперечные волны, как известно, обладают важной особенностью — они распространяются только в твёрдой среде.
На границах сред с разными свойствами происходит преломление волн, а на границах резких изменений свойств, помимо преломлённых, возникают отраженные и обменные волны. Поперечные волны могут иметь смещение, перпендикулярное плоскости падения SH-волны или смещение, лежащее в плоскости падения SV-волны. При переходе границы сред с разными свойствами волны SH испытывают обычное преломление, а волны SV, кроме преломлённой и отражённой SV-волн, возбуждают P-волны. Так возникает сложная система сейсмических волн, «просвечивающих» недра планеты. Анализируя закономерности распространения волн можно выявить неоднородности в недрах планеты - если на некоторой глубине фиксируется скачкообразное изменение скоростей распространения сейсмических волн, их преломление и отражение, можно заключить, что на этой глубине проходит граница внутренних оболочек Земли, различающихся по своим физическим свойствам. Сейсмическая модель Земли Изучение путей и скорости распространения в недрах Земли сейсмических волн позволили разработать сейсмическую модель её внутреннего строения. Сейсмические волны, распространяясь от очага землетрясения в глубь Земли, испытывают наиболее значительные скачкообразные изменения скорости, преломляются и отражаются на сейсмических разделах, расположенных на глубинах 33 км и 2900 км от поверхности см. Эти резкие сейсмические границы позволяют разделить недра планеты на 3 главные внутренние геосферы — земную кору, мантию и ядро.
Земная кора от мантии отделяется резкой сейсмической границей, на которой скачкообразно возрастает скорость и продольных, и поперечных волн. Эта граница была открыта в 1909 г. Средняя глубина границы составляет 33 км нужно заметить, что это весьма приблизительное значение в силу разной мощности в разных геологических структурах ; при этом под континентами глубина раздела Мохоровичича может достигать 75-80 км что фиксируется под молодыми горными сооружениями — Андами, Памиром , под океанами она понижается, достигая минимальной мощности 3-4 км. Ещё более резкая сейсмическая граница, разделяющая мантию и ядро, фиксируется на глубине 2900 км. Исчезновение поперечных волн указывает, что внешняя часть ядра обладает свойствами жидкости. Сейсмическая граница, разделяющая ядро и мантию, была открыта в 1914 г. Резкие изменения скорости и характера прохождения волн фиксируются на глубинах 670 км и 5150 км. Граница 670 км разделяет мантию на верхнюю мантию 33-670 км и нижнюю мантию 670-2900 км.
Граница 5150 км разделяет ядро на внешнее жидкое 2900-5150 км и внутреннее твёрдое 5150-6371 км. Существенные изменения отмечаются и на сейсмическом разделе 410 км, делящим верхнюю мантию на два слоя. Полученные данные о глобальных сейсмических границах дают основание для рассмотрения современной сейсмической модели глубинного строения Земли.
И вот что получилось. Первый столбик — это то, что было в 1951 году, второй — то, что мы имеем сейчас на момент 2022 года , и третий —прогноз на 2051 год. Правда, между 2022 и 2051 годами не прослеживается никакой разницы: пишут, что сейчас дело идёт к "тепловому насыщению", то есть если раньше почва прогревалась почти на полградуса в год, то сейчас эта скорость составляет 0,14 градуса в год. Зато по сравнению с серединой XX века разница очевидна. Изменение температуры грунта под самым густонаселённым районом Чикаго на разных глубинах с 1951 года. Значит, делаются менее плотными. Так вот, исследователи по итогам заявили, что всё это может повлиять на устойчивость фундаментов, свай, вызвать всевозможные наклоны и прогибы стен, плит.
И они предлагают бороться с перегревом земли при помощи геотермальных технологий, то есть, собственно говоря, выкачивать это лишнее тепло и использовать его в энергоснабжении.
Помимо этого ISRO получила первый профиль южного полюса Луны, который фиксирует температурные изменения поверхности спутника Земли на разных глубинах. Старший научный сотрудник космического агентства Би Дарукеша в комментарии Press Trust of India выразил удивление по поводу высокой температуры, зафиксированной на поверхности Луны. Это на удивление выше, чем мы ожидали», — сказал он.
В бульварных газетах пишут, что это «глас из преисподней». Кольскую сверхглубокую скважину стали называть «дорогой в ад» — каждый новый пробуренный километр принес несчастья стране. Когда бурильщики вели проходку тринадцатой тысячи метров, распался СССР. Когда скважину пробурили до глубины 14,5 км, вдруг наткнулись на пустоты. Заинтригованные этим неожиданным открытием, буровики спустили туда микрофон, способный работать при чрезвычайно высоких температурах, и другие датчики. Но в действительности эта легенда является вымыслом, хотя бы потому, что акустические методы исследования скважин записывают не собственно звук и не на микрофон, а на сейсмоприемники волновую картину отраженных упругих колебаний, возбужденных прибором-излучателем с частотой 10 — 20 кГц и 20 кГц — 2 Мгц. Невежеством порождены и многие другие легенды вокруг Кольской сверхглубокой скважины. В то же время Давид Миронович Губерман, один из авторов проекта, под руководством и при непосредственном участии которого была пробурена Кольская скважина, говорил: «Когда меня расспрашивают об этой загадочной истории, я не знаю, что ответить. С другой стороны, как честный ученый, я не могу сказать, что знаю, что же именно у нас произошло. Действительно был зафиксирован очень странный шум, потом был взрыв… Спустя несколько дней ничего подобного на той же глубине не обнаружилось». Но в отличии от легенды совершенно неожиданно для всех подтвердились прогнозы Алексея Толстого из романа «Гиперболоид инженера Гарина». На глубине свыше 9,5 километров обнаружили настоящий кладезь всевозможных ископаемых, в частности золота. Настоящий оливиновый слой, гениально предсказанный писателем. Золота в нем 78 граммов на тонну. Кстати, промышленная добыча возможна при концентрации 34 грамма на тонну. Кто знает, может уже в недалеком будущем человечество сумеет воспользоваться этим богатством. Уважаемые драйвовчане! В противном случае при появлении флуда, мата и т.
Внутреннее строение Земли
Проверим температуру под землей на глубине 50 сантиметров? | 4000-5000 o С. По результатам бурения в районе Пулково на глубине 1000 метров температура кристаллических пород составила плюс 30 градусов, то есть в среднем она повышалась на 3 градуса каждые 100 метров. |
Зависимость температуры от глубины. Температура внутри Земли | Таблица температуры на разных глубинах Земли. |
Ученые встревожены резким нагреванием мирового океана | Но уже на 5 километрах окружающая температура перевалила за 700 градусов по Цельсию, на семи – за 1 200, а на глубине 12 тысяч метров – 2 200 градусов. |
Что происходит в ядре Земли? | Ученые обнаружили скрытую экосистему под самой сухой и жаркой пустыней Земли на глубине четыре метра. |
Таблица температур грунта на различных глубинах в крупных городах РФ и СНГ | Однако, уже на глубине в 12 км, температура превысила отметку в 200 градусов. |
С 1960-х нагрев вырос в 20 раз
- Расчет необходимой глубины скважин
- В недрах Земли заподозрили существование неизвестного вещества: Наука: Наука и техника:
- Пластовая температура
- Зависимость температуры от глубины. Температура внутри Земли
- Температура грунта на разных
- Ученые выявили сильные неоднородности температуры в центре Земли
Температура Земли приблизилась к рекордным показателям за 50 млн лет
Температурные показатели планеты Земля | Луноход оснащен датчиком температуры с механизмом, способным измерять температуру почвы Луны на глубине до 10 см. Это позволит понять температурный режим на лунной поверхности. |
Индийский аппарат передал первые данные с Луны, почва которой оказалась горячей | В скважины глубиной до 15 метров каждая опущены термометрические косы с датчиками для измерения температуры многолетней мерзлоты в реальном времени и естественных условиях, сообщается на сайте окружного правительства. |
Температурные показатели планеты Земля | «Прагьян» с помощью датчика измерил температуру почвы на глубине примерно 10 сантиметров. |
Таблица температур грунта на различных глубинах в крупных городах РФ и СНГ
Зависимость температуры от глубины. Температура внутри Земли | Известно, что ядро Земли имеет чрезвычайно высокую температуру, для этого есть свои причины. |
Индийский аппарат передал первые данные с Луны, почва которой оказалась горячей | Теоретики обещали, что температура Балтийского щита останется сравнительно низкой до глубины по крайней мере 15 километров. |
Температура Земли приблизилась к рекордным показателям за 50 млн лет - Российская газета | Если он положительный, то есть недра Земли излучают тепло, то температура должна повышаться с глубиной. |
Температура ядра Земли на тысячу градусов выше, чем ранее предполагалось | Индийский посадочный модуль «Викрам» передал на Землю первые данные о температуре лунной поверхности. |
Температура ядра Земли на тысячу градусов выше, чем ранее предполагалось - | Луноход оснащен датчиком температуры с механизмом, способным измерять температуру почвы Луны на глубине до 10 см. Это позволит понять температурный режим на лунной поверхности. |
Глобальное потепление перевесило глобальное охлаждение
Это постоянство температуры вызвало ученых предположить о возможном искусственном происхождении пещер, хотя окончательные выводы еще рано делать. Информация о температуре почвы Луны необходима исследователям для строительства баз в будущем, объяснил руководитель института космической политики, научный руководитель Московского космического клуба Иван Моисеев. Судя по полученным под руководством Брюса Баффета (Bruce Buffett) данным, глобальное магнитное поле Земли на этой глубине примерно в 50 раз мощнее, чем у поверхности. На некоторой глубине от поверхности Земли располагается пояс постоянной температуры, ниже его происходит увеличение температуры. Климатологи впервые составили непрерывный график температур на Земле за последние 66 миллионов лет. 2370°C — самая высокая температура в истории Земли, которую зафиксировали ученые.
Энергия тепла земных глубин
Результаты нового исследования опубликованы в журнале "Science". Чтобы создать историю климата за последние 66 миллионов лет, команда Томаса Вестерхольда из Центра наук о морской среде Marum при Бременском университете и Норберта Марвана из Потсдамского института исследований климатических изменений PIK исследовала океанические отложения. Особенно ученых интересовали хранящиеся в донных отложениях раковины так называемых фораминифер - крошечных организмов, обитающих на морском дне. Соотношение изотопов кислорода и углерода в раковинах этих простейших позволяет сделать выводы о том, какими были миллионы лет назад температура на глубине моря, глобальные объемы льда и концентрация углерода в атмосфере. Получившаяся эталонная кривая климата дает детальную информацию об этом за последние 66 миллионов лет.
И, кстати, ее начало совпадает с массовым вымиранием видов в конце мелового периода, жертвами которого, среди прочего, стали динозавры. Именно тогда началась кайнозойская эра, которая продолжается по сей день.
Ученые утверждают, даже поверхность Земли так не отличается от атмосферы, как жидкое ядро от твердой мантии, что осложняет процесс исследования. Неравномерность температуры и некоторые другие показатели влияют на появление сейсмических волн. В связи с этим ученые исследовали информацию с 4 тысяч сейсмометров, расположенных в разных точках планеты, после чего был создан математический алгоритм, который помог составить подробную карту нижних слоев мантии в форме полусферы, размер которой в поперечном разрезе составляет 400 километров.
Ранее исследователи думали, что скорость распространения сейсмических волн на таких расстояниях гораздо меньше.
Что происходит в глубине, доподлинно неизвестно. Температура окружающей среды, шумы и прочие параметры передаются наверх с минутным запаздыванием. Тем не менее, бурильщики рассказывают, что даже такой контакт с подземельем может не на шутку испугать. Звуки, доносящиеся снизу, и впрямь похожи на вопли и завывания. К этому можно добавить длинный список аварий, преследовавших Кольскую сверхглубокую, когда она достигла глубины 10 километров. Дважды бур доставали оплавленным, хотя температуры, от которых он может расплавиться, сравнимы с температурой поверхности Солнца.
Однажды трос как будто дернули снизу — и оборвали. Впоследствии, когда бурили в том же месте, остатков троса не обнаружилось. Чем были вызваны эти и многие другие аварии, до сих пор остается загадкой. Впрочем, вовсе не они стали причиной остановки бурения недр. Того, что выделялось в рамках научных программ ЮНЕСКО, хватало только на поддержание буровой станции в рабочем состоянии и изучение ранее извлеченных образцов пород. Бывший директор научно-производственного центра «Кольская сверхглубокая» Давид Губерман с сожалением вспоминал, сколько научных открытий состоялось на Кольской сверхглубокой. Буквально каждый метр был откровением.
Скважина показала, что почти все наши прежние знания о строении земной коры неверны. Выяснилось, что Земля вовсе не похожа на слоеный пирог. Теоретики обещали, что температура Балтийского щита останется сравнительно низкой до глубины по крайней мере 15 километров. Соответственно, скважину можно будет рыть чуть ли не до 20 километров, как раз до мантии. Но уже на 5 километрах окружающая температура перевалила за 700C, на семи — за 1200C, а на глубине 12 жарило сильнее 2200C — на 1000C выше предсказанного. Кольские бурильщики поставили под сомнение теорию послойного строения земной коры — по крайней мере, в интервале до 12 262 метра.
Паника, связанная с глобальным потеплением в данном вопросе бессмысленна. Человек не в силах остановить непрерывный и объективный процесс таяния многолетней мерзлоты. Это происходило всегда, и будет продолжаться. Поскольку процесс медленный, то можно к нему просто приспособиться. Если и происходит потепление климата, то оно может только приводить к большей глубине сезонного оттаивания мерзлоты в верхнем слое. Можно предположить, что здесь путают причину и следствие. Не потепление климата является причиной таяния, а наоборот естественный процесс таяния мерзлоты оказывает существенное влияние на потепление климата.
Тепловое состояние внутренних частей земного шара
Американские и советские ученые пытались пробурить скважину через земную кору и добраться до мантии или, во всяком случае, до границы Мохо. В этом первенстве победили Советы: к 90-м годам на Кольском полуострове появилась самая глубокая скважина в мире — выработка, которая уходила в земную кору на 12 262 м, Кольская сверхглубокая. Читайте «Хайтек» в Граница Мохо Человек знает о далеких галактиках куда больше, чем о планете под ногами. Зонду Voyager 1 потребовалось 26 лет, чтобы покинуть пределы Солнечной системы. Примерно столько же люди потратили на то, чтобы пробраться в земную кору на 12,5 тыс. В начале 1960-х годов геологи предполагали, что планета состоит из трех концентрических сфер, расположенных друг над другом: расплавленного железно-никелевого ядра, мягкой мантии и тонкой твердой коры на поверхности Фото: Shutterstock Представления о границах этих слоев были довольно расплывчатыми. Считалось, что ясность в этот вопрос внесет исследование границы Мохоровичича Мохо — нижней части земной коры и условной черты между слоями с разным химическим составом, в которой происходит скачкообразное увеличение плотности пород.
Первыми достичь границы Мохо и пробраться к мантии попытались американцы — в 1961 году США приступили к бурению скважины вблизи вулканического острова Гуадалупе в Тихом океане. Геологи считали, что на дне океана черта проходит ближе к поверхности, чем на континентальной части — на глубине примерно 5 км, и добраться до нее будет проще. Глубина океана в месте бурения составляла 3,5 км, что серьезно осложняло работы. За четыре года исследователи пробурили несколько скважин, самая глубокая из которых уходила в земную кору на 3 км. В 1966 году Конгресс отказался выделить средства на финансирование проекта, и «Мохол» закрыли. У СССР была не менее амбициозная цель — советские ученые планировали пробраться на глубину 15 тыс.
Буровая установка Кольской сверхглубокой. Исследовательскую группу сформировали в 1962-м, а спустя три года на Кольском полуострове рядом с городом Заполярным началось строительство 60-метровой башни для буровой установки.
Однако финны полны решимости построить станцию в Эспоо, в не самом удачном по геотермическому градиенту месте.
Дело в том, что геотермальная энергетика требует долгосрочных инвестиций. В этом смысле она ближе к крупной гидроэнергетике и атомной энергетике. ГеоТЭС гораздо сложнее возвести, чем солнечную или ветростанцию.
И нужно быть уверенными, что политики не начнут играть с ценами и правила не будут меняться на ходу. Поэтому финны и решаются на этот важный промышленный эксперимент. Если им удастся осуществить задуманное, и хотя бы для начала обогреть своих жителей теплом, которое никогда не кончится даже в масштабах вообще жизни на нашей планете — это позволит задуматься о будущем геотермальной энергетики и на обширных российских просторах.
Сейчас в России греются теплом Земли на Камчатке и в Дагестане, но, возможно, настанет и время Пулково. Константин Ранкс Температура грунта непрерывно изменяется по глубине и во времени. Она зависит от целого ряда факторов, из которых многие трудно поддаются учету.
К последним, например, относится: характер растительности, экспозиция склона по сторонам света, затененность, снеговой покров, характер самих грунтов, наличие надмерзлотных вод и др. Однако температура грунта, как по величине, так и по характеру распределения сохраняется из года в год достаточно устойчиво, и решающее влияние здесь остается за температурой воздуха. Температура грунта на разных глубинах и в различные периоды года может быть получена непосредственными измерениями в термоскважинах, которые закладываются в процессе изысканий.
Но такой способ требует длительных наблюдений и значительных расходов, что не всегда оправдано. Полученные по одной-двум скважинам данные распространяются на большие площади и протяжения, значительно искажая действительность так, что расчетные данные о температуре грунта во многих случаях оказываются более надежными. Рассчитав по одной из формул 3.
В самых верхних слоях грунта, примерно до 1 м от поверхности, характер температурных колебаний очень сложен. Таблица 3. Знак градиента показан в направлении к дневной поверхности.
Чтобы получить расчетную температуру грунта в метровом слое от поверхности, можно поступить следующим образом. Вычислить температуру на глубине 1 м и температуру дневной поверхности грунта, а затем путем интерполяции по этим двум значениям определить температуру на заданной глубине. Температуру на поверхности грунта t п в холодный период года можно принимать равной температуре воздуха.
Температура грунта при несливающейся криолитозоне рассчитывается иначе, чем при сливающейся. В слое сезонного промерзания h п температуру грунта можно вычислить так же, как для слоя сезонного оттаивания сливающейся криолитозоны, то есть в слое h п — 1 м по температурному градиенту табл. В верхнем метровом слое грунта температура определяется по интерполяции между температурой на глубине 1 м и температурой на поверхности.
Здесь опубликована динамика изменения зимних 2012-13г. Всё это - на стояке, идущем из скважины. График - внизу статьи.
Дача на границе Новой Москвы и Калужской области зимняя, периодического посещения 2-4 раза в месяц по паре дней. Отмостка и цоколь дома - не утеплены, еще с осени закрыты теплоизолирующими затычками 10см. Теплопотери веранды, куда выходит стояк в январе изменились.
Примечание 10. Датчик установлен в заваренной снизу 20мм трубке из ПНД возле стояка, с внешней стороны теплоизоляции стояка, но внутри 110мм трубы. По оси абсцисс - даты, по оси ординат - температуры.
Примечание 1: Температуру воды в скважине, а также - на уровне земли под домом, прямо на стояке без воды тоже буду отслеживать, но только по приезду. Примечание 3: Температура воды "в скважине" меряется тем же датчиком он же - в Примечании 2 , что и "на уровне земли" - он стоит прямо на стояке под теплоизоляцией, вплотную к стояку на уровне земли. Эти два измерения производятся в разные моменты времени.
Примечание 4: Температура воды в скважине может быть несколько занижена, так как я не могу искать эту долбаную асимптоту, бесконечно качая воду моя... Как умею - так играю.
Датчик температуры может погружаться на глубину до 10 см. Это первый подобный профиль для Южного полюса Луны. Наблюдения продолжаются», — говорится в заявлении ISRO.
Вероятно, это явление вызвано теплообменом между мантией и ядром и процессами радиоактивности. Ученые считают, что полученный результат поможет лучше понять процессы переноса тепла между поверхностью и глубокими слоями мантии Земли. Такие неоднородности температуры могут также иметь связь с процессами в ядре, ответственными за формирования магнитного поля Земли.