Новости квантовый компьютер новости

Цель состоит в том, чтобы создать машины третьего уровня и достичь так называемого «квантового превосходства», когда квантовые компьютеры станут более мощными и способными, чем самые быстрые аналоговые суперкомпьютеры. Новости из Китая. Китайские исследователи, факторизовав 48-битное число на доступном им 10-кубитном квантовом компьютере, подсчитали, что масштабировать их алгоритм для использования с 2048-битными числами можно при помощи квантового компьютера всего. Квантовый компьютер – новый вид вычислительного устройства, принцип действия которого основан на поведении микроскопических объектов и квантовых явлениях «суперпозиции» и «запутанности».

Microsoft открыл «новую эру» в области квантовых компьютеров

Разработка квантового компьютера на холодных ионах кальция – один из самых молодых проектов центра. «Пока в сфере создания квантовых компьютеров сложилась парадоксальная ситуация: сегодня предложено большое количество теоретических проектов, алгоритмов и принципов работы. Об этом 21 февраля «Известиям» заявил директор Института спектроскопии РАН Виктор Задков, комментируя новость о том, что российские ученые создали 20-кубитный квантовый компьютер. РИА Новости/Прайм. квантовый компьютер: В России создали первый 20-кубитный квантовый компьютер на ионной платформе, Российские учёные первыми в мире обнаружили необычные свойства «жидкого света», Прорыв кукварта. Специалисты Национальной квантовой лаборатории в 2021 году сообщили о создании прототипа квантового компьютера совместно с РКЦ и ФИАНом.

Российский квантовый центр, ФИАН и «Росатом» представили 16-кубитный квантовый компьютер на ионах

«Когда полнофункциональный квантовый компьютер на основе стабильных топологических кубитов станет доступным, те же самые алгоритмы будут обладать еще большей мощностью», – говорит Матиас Троер, главный исследователь Microsoft по квантовым вычислениям. Квантовый компьютер – новый вид вычислительного устройства, принцип действия которого основан на поведении микроскопических объектов и квантовых явлениях «суперпозиции» и «запутанности». На сегодняшний день в мире существуют квантовые компьютеры на ионах, вмещающие до 32 кубитов. Квантовый компьютер и на восемь, и на 80 кубитов далек от реальных практических применений, но, когда их количество перевалит некий предел, устройство получит реальное превосходство над электронными для многих специализированных вычислений, добавил. Квантовый компьютер и на восемь, и на 80 кубитов далек от реальных практических применений, но, когда их количество перевалит некий предел, устройство получит реальное превосходство над электронными для многих специализированных вычислений, добавил. Цель состоит в том, чтобы создать машины третьего уровня и достичь так называемого «квантового превосходства», когда квантовые компьютеры станут более мощными и способными, чем самые быстрые аналоговые суперкомпьютеры.

В России появился 16-кубитный квантовый компьютер на ионах

Новость, опубликованная Daily Telegraph, может означать поворотный момент в развитии этой новой технологии. Квантовые компьютеры открывают огромные перспективы для потенциально революционных секторов, таких как наука о климате и открытие лекарств. Квантовые компьютеры вряд ли станут персональными в привычном смысле этого слова, объяснил он Что такое квантовый объём я писал на N+1 на примере компьютера на холодных атомах от Honeywell.

Когда квантовые вычисления станут реальностью?

последние новости по теме на сайте АБН24. Физику Семерикову выдали премию за изобретение ионного компьютера. Квантовый компьютер – новый вид вычислительного устройства, принцип действия которого основан на поведении микроскопических объектов и квантовых явлениях «суперпозиции» и «запутанности». Компания Microsoft совместно с разработчиком квантовых компьютеров Quantinuum сообщила о разработке методологии, которая позволяет значительно снизить частоту появления ошибок при исполнении квантовых алгоритмов. По этой причине квантовые компьютеры, созданные по последнему слову техники, должны быть охлаждены криогенным способом с помощью дорогостоящих и сложных устройств.

В России появился 16-кубитный квантовый компьютер на ионах

Они заметили, что на его «долговечность» влияет магнитное поле окружающих материалов. Главный исследователь Кристиан Андерсен говорит: «Текущий андреевский спиновый кубит еще не идеален. Ему все еще предстоит продемонстрировать многокубитные операции, которые необходимы для универсальных квантовых компьютеров. Время когерентности также неоптимально. Его можно улучшить, используя другой материал.

Это связано и с настройками, и с созданием такой программы.

Именно достоверность лимитирует сложность алгоритма. Точнее сказать пока не могу: не проверяли. Модернизировав адресацию и считывание, мы повысили число кубитов, с которыми можно работать. Мы занимаемся и улучшением достоверности. На сегодня она лимитирована двумя факторами.

Это значит, что у нас есть только одна частота, и на ней вся мощность. Чем меньше шумов в лазере, тем выше достоверность. Задача нетривиальная, в мире не так много людей умеют это делать. Это одни из самых точных и чистых спектральных лазеров в мире. Он изготовлен, идет измерение характеристик и калибровка.

После того как мы поставим новый, немного изменим систему привязки к нему лазера. Хотим использовать схему injection locking. Смысл такой: берем свет, прошедший через резонатор, и заводим его в лазерный диод, и этот лазерный диод начинает генерировать точно такое же излучение, какое прошло через резонатор. Излучение, пройдя через резонатор, становится очень чистым. В итоге мы глубоко улучшаем лазерную систему, которая используется для взаимодействия с ионами.

Нам надо, чтобы они двигались всегда одинаково, а сейчас они двигаются в течение большого промежутка времени — дня например, немного по-разному. С высокой достоверностью — В целом удается повысить достоверность? Мы далеко продвинулись, но последние проценты всегда самые сложные. Мы также увеличиваем время когерентности нашей системы, модернизируя систему компенсации магнитного поля вблизи иона. Добиваемся, чтобы магнитное поле было одинаковым и стабильным.

Раньше мы для этого использовали катушки и прецизионные источники тока, сейчас переходим на постоянные магниты.

Другой проект и перспективы технологии в целом описывает профессор Центра фотоники и квантовых материалов «Сколтеха», заведующий лабораторией искусственных квантовых систем МФТИ Олег Астафьев: Олег Астафьев профессор Центра фотоники и квантовых материалов «Сколтеха», заведующий лабораторией искусственных квантовых систем МФТИ «Вот мы недавно сделали 12-кубитный процессор. Другое дело, что мы его не можем сейчас полноценно использовать. У нас просто не хватает электроники. Но 12 или 16 кубитов все равно недостаточно, чтоб получать квантовое ускорение. Нужно 100 работающих кубитов с определенным качеством, определенным фиделити так называемым.

Может быть, будет прорыв. Может быть, найдут способ применения, может быть, найдут задачи определенные, может быть, будет прорыв в качестве. Ну, в общем, что-то должно произойти, и тогда, мы не знаем, что будет через 100 лет. Но, может, пройдут годы, может, десять лет».

Однако, это становится захватывающим с квантовыми компьютерами.

Поскольку они используют квантовое туннелирование , они уменьшат энергопотребление в 100-1000 раз. Альтернативные реальности Согласно квантовой физике, мы имеем дело с тем, что называется Мультивселенной, где проблема может иметь много или бесконечное количество возможных решений. Например, вы можете читать эту статью на своем Macbook. В другом вы, возможно, читаете это по мобильному телефону во время путешествия. Квантовый компьютер может выполнять «n» задач в «n» параллельных вселенных и достигать конечного результата.

Если традиционный компьютер делает «N» вычисления в «N» секунд, квантовый компьютер может выполнить «N 2» вычисления в то же время. Компьютер сделал это, изучая 200 миллионов возможных ходов в секунду. Вдали от способностей человеческого мозга! Но если бы это была квантовая машина, она бы рассчитала 1 триллион ходов в секунду, 4 триллиона ходов за 2 секунды и 9 триллионов ходов за 3 секунды. Почему сложно построить квантовые компьютеры Проблема с квантовым компьютером - стабильность.

Оказывается интерференция, любой вид вибрации расстроит вибрацию атомов, создавая ерунду. Электроны в квантовой механике ведут себя как волны и описываются волновой функцией. Эти волны могут мешать, вызывая странное поведение квантовых частиц, и это называется декогеренцией. Низкая температура Температура, необходимая для поддержания стабильного состояния для лучшей производительности, должна быть действительно низкой. Чтобы квантовые компьютеры работали, атомы должны быть стабильными.

И единственный известный эффективный способ поддержания стабильности этих атомов - это снижение температуры до нуля Кельвина, где атомы становятся стабильными без выделения тепла. В настоящее время система D-Wave 2000Q является самым совершенным квантовым компьютером. Его сверхпроводящий процессор охлаждается до 0,015 Кельвина в 180 раз холоднее, чем межзвездное пространство.

Новый вид кубита стал самым идеальным вариантом для создания квантового компьютера

Как нам объединить тысячи квантовых битов, или кубитов, воедино? Как мы сможем управлять ими? Как мы сможем качественно произвести, соединить и контролировать намного большее число кубитов? Даже измерение сигналов кубитов потребует совершенно новый класс низкотемпературной электроники, которой сегодня не существует».

Лебедева РАН при координации госкорпорации Росатом. Проект был запущен в 2019 году. На сегодняшний день в мире существуют квантовые компьютеры на ионах, вмещающие до 32 кубитов.

Это пока не полноценный компьютер, нам нужно тестировать ловушки, смотреть, как захватываются ионы, делать новые модели. Фактически это еще одна система.

Вот уже четыре системы, которые нужно иметь, чтобы проводить полноценные исследования в области квантовых вычислений. Вопрос, хватит ли времени. Когда мы только начинали, я ожидал, что к этому времени у нас будет четыре-пять установок. Но мы ждем поставок. Часть уже в России, чего-то не хватает. Тем не менее, надеюсь, к середине следующего года мы запустим вторую установку, может, даже третью. А дальше жизнь покажет. Мировая практика — Что сейчас происходит в области разработок квантовых компьютеров? У систем с более объемным регистром точность кубитных операций недостаточно высокая.

Это частная компания, работающая на государственные деньги. Комбинация, когда в частную компанию загружаются государственные деньги, в мире показала себя очень хорошо, она делает самую крутую науку. И я надеюсь, что у нас такие схемы тоже со временем будут внедрены. Но важно, чтобы в ней появилась коммерческая составляющая. Запросы приходят, люди заинтересованы. Да и секретных вещей в XXI веке уже нет. Наработки той же Quantinum в открытом доступе. Некоторые частные компании немножко прикрывают информацию, но всегда понятно, что и как они делают, каков технологический статус. Похоже и у программистов устроено: если у тебя была технология и кто-то ее увел, то ты просто плохо работаешь и потерял преимущество.

Конечно, не надо делиться идеями, которые ты еще не реализовал, но, когда все уже готово, можно публиковать.

Разработанный китайскими учёными источник запутанных фотонов представляет собой вытравленное на плёнке нитрида галлия кольцо диаметром 120 мкм сама плёнка выращена на сапфировой подложке традиционным способом. При освещении кольца лучом лазера в инфракрасном диапазоне часть фотонов оказываются в своеобразной ловушке и начинают перемещаться по кольцу. Некоторые из таких частиц становятся резонансными парами. Резонансные пары, в свою очередь в процессе так называемого четвертьволнового смешения — известного явления в нелинейной оптике кольцо из нитрида галлия — это и есть нелинейный оптический канал , порождают новую пару уже запутанных друг с другом частиц. Измерения показали, что возникающая в кольце нитрида галлия запутанность такого же качества, как и в случае с другими квантовыми источниками света. Иными словами, предложенное решение можно брать на вооружение при проектировании оборудования для квантовых каналов связи и для квантовых процессоров. Более того, диапазон длин волн у GaN-источника света простирается до 100 нм против 25,6 нм у «традиционных» источников света. А это, в свою очередь, позволит расширить и уплотнить каналы передачи квантовой информации.

По словам разработчиков, помимо квантового источника света, GaN также является многообещающим материалом для изготовления других компонентов квантовых схем, включая лазер с накачкой и детекторы лёгких частиц. Решением проблемы станет открытие квантовой памяти, которая позволит сохранять и считывать квантовые состояния без разрушения. Это сняло бы проблему квантовых повторителей и развёртывания глобальных сетей квантового интернета. Источник изображений: Imperial College London Группа учёных из Имперского колледжа Лондона предложила свой способ решения этих проблем. Они создали и испытали платформу по записи квантовых состояний фотонов в облаке атомов рубидия. Нейтральные холодные атомы, как хорошо известно, часто выступают в роли платформ с ярко выраженными квантовыми свойствами. Исследователи создали целую систему для генерации фотонов, преобразования их длин волн в необходимую для передачи по волоконно-оптической сети и записи в облако атомов рубидия. Своеобразным активатором «памяти» стал лазер, импульс которого включал её и отключал. Фотоны генерировались квантовыми точками, а затем с помощью фильтров и модуляторов им придавалась другая частота, соответствующая длине волны 1529,3 нм для передачи по оптике. До попадания в облако атомов рубидия частота фотонов подвергалась ещё одной корректировке, но уже с прицелом на то, чтобы атомы рубидия могли их поглощать.

Такую память назвали ORCA нерезонансное каскадное поглощение. Лазерный импульс, о котором упоминали выше, своим воздействием менял свойства атомов рубидия по поглощению фотонов. Эксперименты показали, что система может работать на стандартном оптоволоконном оборудовании. Очевидно, что для внедрения этой разработки в практику пройдут годы, если не десятилетия, но это уже тот результат, который можно развивать. К счастью, он такой не один и что-то может стать реальностью намного раньше. Например, предложенная датчанами оптико-механическая квантовая память на запоминании квантовых состояний фотонов в фононах. Но это уже другая история. Решение Microsoft не только снижает частоту появления ошибок, но также позволяет исправлять ошибки, что открывает путь к коммерческим квантовым системам и новой эре в вычислениях. Источник изображения: Microsoft Современные квантовые платформы подвержены шуму и поэтому ошибки вычислений на них неизбежны и многочисленны. Например, согласно анализу специалистов Google, для достижения полной безошибочности вычислений каждый логический кубит должен состоять из 1000 физических кубитов.

Тем самым коммерчески значимый квантовый компьютер из 1000 логических кубитов, на которых будут исполняться алгоритмы, должен состоять из 1 млн физических кубитов. Это будет безумно дорого, но также неэффективно уверяют в Microsoft. Иначе говоря, необходимы такие решения, которые помогут снизить как частоту появления ошибок физических кубитов, так и логических. Это позволит создавать логические кубиты из меньшего числа физических кубитов и быстрее приведёт к появлению коммерчески значимых квантовых систем, ведь, худо-бедно, а собрать сегодня платформу из 1000 физических кубитов — это реально. Используя квантовую платформу компании Quantinuum на ловушках ионов и фирменный процессор Quantinuum H2, команда исследователей смогла объединить 30 физических кубитов в четыре высоконадёжных логических кубита. На этих четырёх кубитах было запущено свыше 14 тыс. Отдельные эксперименты были посвящены исправлению ошибок логических кубитов без разрушения их состояния. По мнению постановщиков экспериментов — это прорыв и начало новой эры квантовых вычислений. Это шаг в правильном направлении для квантовых вычислений. Остается ещё много проблем, которые предстоит решить, а затем повсеместно внедрить, но теоретически компьютер со 100 такими логическими кубитами уже может быть полезен для решения некоторых задач, тогда как система с 1000 кубитами, по словам Microsoft, «может обеспечить коммерческое преимущество».

Работа специалистов Microsoft, посвящённая этому исследованию, свободно доступна по ссылке. С кубитами в квантовых процессорах аналогичный подход может дать больше выгоды. Они тоже могут быть многоуровневыми, что увеличит плотность без усложнения архитектуры, а масштабирование квантовых систем пока является большой проблемой. Российские физики выбрали путь использования многоуровневых кубитов и это приносит результат. Выпущенный в России 8-кубитный процессор. Лебедева и МФТИ, в которой доказана эффективность кутритов — трёхуровневых квантовых систем. Работа освещает два важных аспекта. Во-первых, это независимость от выбора платформы — кубит может быть в принципе любым. Во-вторых, один многоуровневый кубит может заменить два обычных для исполнения алгоритма. В качестве дополнительного эффекта можно ещё назвать симуляцию физических явлений, которые не поддаются расчётам на классических компьютерах.

Идентичность результатов указывает на высокую достоверность и воспроизводимость расчётов на разных аппаратных средствах и, конечно, на справедливость квантовых постулатов. И, конечно, тот факт, что мы впервые использовали ионные и сверхпроводящие кутриты также выделяет данное исследование: в мире насчитывается всего несколько групп, которые овладели этим методом», — сообщил директор Физического института им. Исследователи использовали кутриты — кубиты с двумя основными состояниями и одним дополнительным. С помощью кутритов исследователи смоделировали неравновесный фазовый переход нарушения симметрии чётности и времени. Такая симметрия нарушается, если изолированная физическая система начинает взаимодействовать с окружающим миром, теряя при этом часть своей энергии. Фактически платформами на кутритах был выполнен алгоритм, позволивший смоделировать различные режимы затухающих колебаний абстрактной квантовой системы. Подобная концепция ранее была предложена научной группой хельсинского университета Аалто, однако, в отличие от финских коллег, российским учёным для реализации идеи потребовался всего лишь один кутрит вместо двух полноценных кубитов, что является более экономичным решением с точки зрения ресурсов квантового процессора. Предложенный подход обещает приблизить практическую ценность квантовых платформ без достижения умопомрачительного количества кубитов в архитектуре. Алгоритмы будут сложнее — этого не отнять.

Создан рекордно мощный квантовый компьютер

К примеру, стороны смогут построить квантовый компьютер и запустить на нем ключевые квантовые механизмы в режиме реального времени. В облаке эти задачи уже решены за счет отказоустойчивых высокодоступных сервисов, инструментов и мер безопасности, а также публичного облачного API, с которым могут работать пользователи", - прокомментировал управляющий директор VK Tech Павел Гонтарев. Доступ к квантовым вычислениям на облачной платформе будет открыт для исследователей и бизнес-пользователей. Также он станет основой для обучения разработчиков, которые используют квантовые технологии для решения прикладных задач.

В классическом компьютере единицей хранения информации является бит, который в зависимости от наличия или отсутствия напряжения принимает значение 0 или 1.

В КК роль основной единицы в квантовых вычислениях играют квантовые биты, или кубиты. Они отличаются от обычных битов тем, что могут равняться 0, 1 или находиться в суперпозиции. Что такое квантовая суперпозиция, чаще всего объясняют на примере подброшенной в воздух монетки. Пока она летит, для бросавшего монета находится в суперпозиции: ее значение и орел, и решка.

Суперпозиция сохраняется, пока монетку не поймали и не определили, что выпало. Еще один пример — кот Шредингера. Суперпозиция — это состояние кота, пока не открыли крышку ящика, то есть кот жив и мертв одновременно. В КК суперпозиция сохраняется, пока не производится вычисление кубита, или измерение его состояния: 0 или 1.

Именно благодаря этому свойству расчеты на КК производятся быстрее, чем на классических компьютерах. Однако для выполнения сложных алгоритмов на КК важно, чтобы значения одних кубитов были связаны со значениями других. В этом помогает такое явление, как квантовая запутанность. В нем состояния двух или большего числа частиц оказываются взаимосвязанными и их значения всегда противоположные.

Если у одной частицы значение 0, то у другой, «запутанной» с ним, гарантированно будет 1. Нередко для объяснения запутанности приводится пример с новой парой носков, когда один, надетый на левую ногу и ставший левым, автоматически превращает свою пару в правый, как бы далеко тот ни находился, причем происходит это моментально. Как сравнивать Многие мировые корпорации громко заявляют о прорывах в создании КК. Одни говорят о рекордном числе кубитов, другие — о рекорде связанных кубитов, третьи — о рекордной когерентности.

Что скрывается за этими рекордами и почему оценивать мощность КК стоит по квантовому объему? Под числом кубитов понимается объем информации, который может храниться и обрабатываться на квантовом компьютере за время когерентности. Чем больше число кубитов, тем больше возможностей для решения сложных задач. Если в обычной системе вычислительная мощность растет квадратично, то есть n2, то в квантовой — экспоненциально 2n n — в данном случае число битов, или кубитов.

По их словам, как только он будет создан, квантовая вычислительная платформа позволит ученым за считанные минуты производить вычисления, которые заняли бы у нынешних компьютеров миллиарды лет. Квантовые алгоритмы создают симуляции работы систем будущего, но в то же время могут быть запущены на существующих компьютерах уже сегодня. По мере прогресса в разработке квантового компьютера общего назначения, заинтересованные компании могут присоединиться к сети Microsoft Quantum Network , что дает им доступ к сервисам, также инспирированным квантовым подходом, работающим на Microsoft Azure и классическом аппаратном обеспечении, таком как процессоры CPU и GPU, а также матрицы FPGA.

Джулия Лав, директор по развитию квантового бизнеса Microsoft. Фото Марка Малиджана. Любой родитель знает, что достаточно приложить руку ко лбу ребенка и станет понятно, есть ли у него повышенная температура или нет.

Однако принять правильное решение, что делать в этом случае — подождать и посмотреть на дальнейшее состояние, дать лекарство или незамедлительно вызвать неотложку — без термометра намного сложнее. Магнитно-резонансный отпечаток — это способ предоставить врачу интерпретацию МРТ с аналогичной степенью точности измерения по целому ряду свойств разных тканей. То есть врачу больше не придется полагаться только на свой опыт, иначе говоря, исходить из субъективной оценки на основе яркости или цвета конкретной зоны, и на глаз делать вывод, здорова ли ткань или там присутствует заболевание.

Как заверяют ученые, этот метод уже используется в десятках медицинских исследовательких центров, но в ближайшие годы ожидается более широкое его распространение. Магнитно-резонансный отпечаток, который, как было доказано, в 1,8 раз превосходит по эффективности сравнимый количественный МРТ-протокол, производит цифровые измерения свойств ткани по каждому пикселю на снимке. Он выполняет это благодаря использованию намного более многосложных импульсных последовательностей — безвредных радиоволн, соединяющихся с магнитными полями и генерирующих определенные характерные сигналы в зависимости от типа ткани пациента и от наличия или отсутствия в ней опухоли.

Эти образцы, полученные на основе больших данных, затем сравниваются с обширной библиотекой тканей, для которых уже известен магнитно-резонансных отпечаток, и который может быть рассчитан напрямую с помощью физических симуляций. С большой долей точности такое сопоставление образцов может быть использовано для диагностики рака кишечника или мозга, избавляя пациетов от болезненных и инвазивных диагностических процедур. В заболеваниях типа множественного склероза и эпилепсии цифровые отпечатки могут зафиксировать изменения в мозге, которые не определяются традиционными методами, но более клинически значимы, чем видимые на сегодняшний момент.

Это поможет предсказать, как болезнь будет прогрессировать, или определить эффективность нового лекарственного препарата в борьбе с заболеваниями, для которых пока нет надежного критерия успеха лечения.

Такие кардинальные изменения абсолютно невозможно получить работая по-старому». Открытие алгоритмов, инспирированных квантовым подходом В квантовом компьютере уникальные свойства кубитов — в частности их способность принимать одновременно значение и 0, и 1 — позволяет им обрабатывать информацию во много раз быстрее и, теоретически, найти решение таких проблем, как изменение климата или борьба с голодом в мировом масштабе, которые пока остаются нерешаемыми. Но, как известно, квантовые частицы являются невероятно капризными и нестабильными. Поэтому Microsoft трудится над разработкой более надежных и масштабируемых кубитов, способных полностью поддерживать квантовую вычислительную платформу. Другой тип машины для квантового отжига использует потрясающие и непостижимые свойства квантовых частиц для выполнения одной единственной задачи: решение проблемы оптимизации со множеством сложных переменных и условий. Изначально ученые собирались просто исследовать работу квантовых анниляторов, поэтому они разработали алгоритмы для симуляции происходящего внутри процесса. Они решили протестировать на популярном оптимизационном тесте классический, но воодушевленный квантовым подходом, алгоритм и обнаружили, что у них появились также другие решения. Все стали задаваться вопросом: «Кто эти парни и откуда они взялись?

Это даже не ученые в области вычислительных систем! Это квантовые физики, у которых есть какие-то безумные алгоритмы, которые намного лучше», — рассказывает он. Для решения проблем оптимизации нужны компьютерные решения, требующие минимальных затрат усилий и стоимости. В каком-то смысле это как альпинист, пытающийся найти абсолютный высотный минимум в незнакомом горном ландшафте крайне неправильной и непредсказуемой формы. Как только он достигает долины, для него нет возможности узнать, будет ли за следующей горой более низкая точка. А выяснить это стоит огромных усилий, потому что надо взобраться на гору и пройти перевал. Вполне возможно он решит, что это слишком затратно и остановится там, где находится, так и не найдя самый низкий минимум или лучшее решение. Матиас Троер, главный исследователь Microsoft.

Все новости

  • Подписка на дайджест
  • Новости по теме: квантовый компьютер
  • Квантовый компьютер + Новости
  • ВЗГЛЯД / Путин дал совет ученому, который создает квантовый компьютер :: Новости дня

Япония ужесточит контроль экспорта полупроводников и квантовых технологий куда бы то ни было

Похоже, придется разрабатывать новые - это уже работа для квантовых программистов. Профессор Массачусетского технологического института Сет Ллойд в своей книге «Программируя Вселенную» выдвинул головокружительную теорию: Вселенная и есть один большой квантовый компьютер, который постоянно производит нас и все, что нас окружает. Так это или нет, мы, может быть, узнаем лет через десять - тогда квантовые компьютеры достигнут таких мощностей, что смогут смоделировать возникновение и развитие Вселенной. Тогда мы точно будем знать, в Матрице мы живем или нет. Велосипед без руля Кубиты очень сложно контролировать, в процессоре их число невелико. Например, в квантовом компьютере Sycamore англ. Для работы процессора приходится поддерживать минимальную температуру - в лаборатории используется жидкий азот, который позволяет охладить устройство до минус 273 градусов Цельсия.

При этом чип с кубитами должен быть надежно защищен от всех видов излучений. В противном случае процессор будет работать некорректно. Это немало. Google в сентябре 2019 года объявил о том, что его 54-кубитный Sycamore достиг «квантового превосходства» - то есть сумел выполнить вычисления, которые не под силу транзисторным суперкомпьютерам. Причем сделал это всего за 200 секунд, классическому компьютеру на это понадобилось бы 10 тысяч лет. Правда, коллеги из IBM тут же выступили со скептической публикацией о том, что это был лабораторный эксперимент, который имеет мало отношения к практическому применению.

И классический суперкомпьютер на самом деле может справиться с такой же задачей не за 10 тысяч лет, а за 2,5 дня, причем точность вычислений будет намного выше. Поэтому о «квантовом превосходстве» пока говорить рановато.

Здесь будут обучать экспертов в области естественных наук написанию квантовых программ, которые помогут в диагностике заболеваний и создании новых лекарств. Classiq создал ПО для проектирования, которое автоматизирует низкоуровневые задачи, позволяя разработчикам не вникать в детали функционирования квантового компьютера. Швейцарская Terra Quantum разрабатывает гибридные квантовые приложения для науки о жизни, энергетики и финансов, которые будут работать на CUDA Quantum.

Им были предложены тесты, с которыми квантовые, имея всего несколько десятков кубитов, справились за несколько минут. Так вот суперкомпьютерам они оказались вообще не под силу. Безоговорочная победа?

Значит, квантовые машины уже сейчас можно выпускать в "люди"? Руслан Юнусов: Увы, к этому мы еще не пришли. Да, квантовый победил, но в специальных, абстрактных тестах. А вот для реальных задач в промышленных масштабах он пока не приспособлен. Не может соперничать с традиционными компьютерами. Для этого нужны системы с многими тысячами, а возможно, миллионами кубит. Но если уже собрали вычислитель из сотен кубитов, почему нельзя, как в конструкторе ЛЕГО, объединить десятки тысяч, миллионы? Руслан Юнусов: Собрать, конечно, можно, но есть проблема - надежность.

И она сейчас является ключевой. Чем больше мы хотим объединить кубитов, тем сильней они влияют друг на друга. Как следствие, начинают вылезать ошибки. Понятно, что нам нужны точные, безошибочные вычисления. Кроме того, в отличие от работы кремниевого устройства квантовые состояния довольно неустойчивые. Для защиты от разных внешних воздействий необходимы специальные условия. Все это дает повод скептикам утверждать, что собрать одновременно много кубитов и обеспечить надежность, безошибочную работу такой большой системы никогда не удастся. Либо одно, либо другое.

Но с таким же упорством скептики заявляли, что никогда не удастся достичь квантового превосходства, а это произошло. Важно, что таких примеров становится все больше. Ключевой вопрос Квантовая криптография обеспечит полную защиту информации. Фото: iStock У лидеров собраны системы из сотен кубитов, движутся к тысячам, у нас 16. Грустная цифра. Руслан Юнусов: Год назад, когда у нас было 4 кубита, а у них сотни, я бы признал, что мы сильно отстаем. Сейчас ситуация кардинально иная. Важно, что мы не только достигли 16 кубитов, главное - есть четкое понимание, как к концу 2024 года выйти на сотню, а затем и на тысячи кубитов.

А также достичь квантового превосходства. На самом деле число кубитов - не самоцель. Как я уже говорил, надо иметь не просто много кубитов, а много хороших кубитов. Например, ионный процессор одного из наших зарубежных коллег всего на 20-30 кубитах бьет системы с сотнями кубитов. И мы знаем, как из наших 16 сделать такую же точную систему. Реализовав "дорожную карту", рассчитанную до конца 2024 года, значительно сократим отставание от лидеров.

И вот в этом главное отличие транзисторного компьютера от квантового. Вместо битов в квантовом компьютере кубиты. Они принимают уже три значения: «0», «1» и промежуточное, которое называется «суперпозиция». Кубиты постоянно меняют свое значение. В это сложно поверить, но фактически кубиты находятся в трех своих значениях одновременно. Квантовый компьютер мгновенно получает ответ, как только введены все исходные данные! Но есть одно но - вероятность того, что решение верно, не равна единице. Получается значение, очень близкое к правильному ответу, - все из-за непостоянства кубитов. Но вероятность получения правильного ответа можно максимально приблизить к единице - с помощью алгоритмов. Мы в Матрице? Ведущие техногиганты - Google, IBM, Intel, Microsoft - не хотят пропустить «квантовую компьютерную революцию», поэтому вкладываются в разработки. По мнению экспертов, квантовые мощности способны уже в недалеком будущем изменить здравоохранение, коммуникации, прогнозирование погоды и климата, градостроительство, астрономию, химические технологии. С помощью квантовых компьютеров можно разрабатывать новые лекарства, прогнозировать свойства веществ и миграцию, моделировать развитие городов. Серьезный вызов предстоит специалистам в области кибербезопасности и шифрования данных. Вычислительные возможности квантового компьютера теоретически позволяют взламывать самые сложные алгоритмы шифрования.

Похожие новости:

Оцените статью
Добавить комментарий