Анодирование можно определить как экологически чистый электрохимический процесс, который заключается в создании оксидного слоя на поверхности обрабатываемого металла. Home»НОВОСТИ»СОВРЕМЕННЫЕ ТЕХНОЛОГИИ»Что такое анодирование и зачем его применяют.
Анодированные украшения: особенности технологии, советы по выбору и уходу
Этапы анодирования Принципы процесса анодирования разделены на 3 этапа: • Рабочий процесс анодирования алюминия начинается с подготовки. Анодирование алюминия: создание прочного оксидного слоя, стойкого к коррозии и механическому воздействию Содержание статьи: 1. Что такое анодирование алюминия? Анодирование в компании Галарс-СПб, технология процесса, преимущества анодирования. Что такое анодирование? это процесс создания на поверхности алюминия защитной оксидной пленки путем погружения в раствор электролита и воздействия на металл током анодного заряда.
Что такое анодированный алюминиевый профиль и для чего он нужен?
#2 Что такое процесс черного анодирования? Черное анодирование относится к процессу электролитического окрашивания, который превращает поверхность алюминия в прочный черный оксид отделка. Что такое анодированный алюминий? Анодирование — Термин анодирование Термин на английском anodizing Синонимы anodising, электрохимическое оксидирование Аббревиатуры Связанные термины адгезия, нановискер, пористый материал. Анодирование — это процесс, который используется с 1920-х годов для защиты и придания цвета металлическим поверхностям.
Анодное оксидирование (отделка конструкций)
По этой причине возникла необходимость защитить его и одним из способов стали применять электрохимический процесс. Технология заключается в воздействии на изделие концентрированной кислотой, что приводит к быстрому формированию той заветной пленки. Похожими свойствами обладает и естественный слой оксида алюминия, который образуется под действием обыкновенного воздуха, но при этом она очень тонкая, из-за чего предмет не обладает должным уровнем защиты. Воздействие же концентрированной кислоты способствует созданию более толстого оксида, который не проникает глубже и создает герметичный защитный слой. Преимущества Процесс анодирования металла имеет много плюсов, из-за чего он стал массово применяться для разных сфер деятельности человека. Сформированное таким способом покрытие обладает великолепной механической стойкостью к любым воздействиям.
Оно также обладает следующими плюсами: Барьерная защита от коррозии, в том числе проникающего характера. Толстый оксидный слой предотвращает проникновение влаги к металлу, из-за чего может образоваться разрушающая коррозия. Механическая прочность и стойкость к истиранию. Пленка закрепляется на молекулярном уровне, что обеспечивает высокие механические показатели. Свойства диэлектрика.
Сформированная на поверхности металла оксидная пленка практически не электропроводна.
Именно о нём подробно расскажем в этой статье. Анодирование — это электрохимический процесс, цель которого — создание на поверхности алюминиевой заготовки защитного слоя, устойчивого к коррозии, УФ-излучению и износу.
Слой создаётся путём погружения металла в раствор кислого электролита и проведения через систему постоянного тока. За счёт такого воздействия на поверхности образуется оксидная плёнка, которая маскирует дефекты заготовки, обеспечивает сопротивление коррозии и защиту от механических повреждений. Срок службы покрытия — около 20 лет.
Краткая история анодирования Анодирование алюминия начало широко использоваться в 1923 году. Изначально оно применялось для защиты дюралюминиевых деталей кораблей от коррозии. Обработка позволяла защитить суда от воздействия солёной воды.
Процесс основывался на использовании хромовой кислоты в качестве электролита, и получил название процесс Бенгуа-Стюарта. Он вошёл в стандарт обработки для сил британской армии. Несмотря на устаревшую технологию, этот процесс до сих пор используется.
К 1927 году анодирование развилось: начала использоваться серная кислота, которая до сих пор остаётся основным электролитом. Этапы анодирования алюминия Анодирование алюминия можно разделить на пять основных этапов: подготовка поверхности, травление, анодирование, покраска, герметизация. Рассмотрим их подробнее.
Подготовка поверхности Прежде всего заготовку необходимо очистить от жира и масел. Это осуществляется путём погружения алюминия в ванну с раствором на основе кислоты или щелочи. Это очень важный этап, влияющий на конечный результат: любые частицы пыли или грязи могут повлиять на равномерность травления и внешний вид готового изделия.
Травление заготовок Это процесс подготовки поверхности, подразумевающий удаление тонкого алюминиевого слоя с заготовки.
После этого нужно провести химическое полирование. Для этого алюминиевая деталь помещается на десять минут в состав из 75 объемных долей ортофосфорной кислоты и 25 серной кислоты.
Затем ее можно погружать в раствор электролита. Положительный заряд источника тока присоединяется к детали, а отрицательный — к токопроводящей емкости с электролитом. Анодировка длится обычно примерно 90 минут.
Окончательным этапом является уплотнение пор пленки, которые уплотняются после кипячения детали в воде примерно в течение двадцати минут. Анодированные детали имеют серый, золотистый, оливковый, черный или коричневый оттенок и незначительную приятную шероховатость. Качество анодировки можно проверить следующим образом: по анодированной поверхности нужно провести черту химическим карандашом.
Если черта не смоется проточной водой, то процедура выполнена хорошо.
В ходе травления с поверхности также убирают все микродефекты, что делает ее более гладкой. Далее заготовки извлекают из ванны с травильным раствором и тщательно очищают от остатков кислоты и других загрязнений с помощью специальных составов — гидроксида натрия, нейтрализующих добавок, содержащих аммиак или аммиачные соединения, деминерализованной воды и т. Осаждающиеся на поверхность металла частички формируют прочную оксидную пленку. Такие электрохимические реакции сопровождаются выделением большого количества тепла, в связи с этим электролитный раствор в ванне необходимо постоянно охлаждать. По завершении анодного оксидирования заготовки промывают в деионизированной воде, что позволяет удалить заряженные частицы, из-за которых на анодированной поверхности могут появиться пятна. Добавление цвета Пористая структура полученного при анодировании покрытия позволяет использовать его для последующей окраски, которая придает изделиям дополнительную эстетичность и защищает их от воздействия влаги и агрессивных химических веществ. Герметизация На завершающем этапе обработки заготовки погружают в емкость с раствором ацетата никеля, который заполняет микропустоты и герметизирует поры, что позволяет придать анодированной поверхности деталей дополнительную гладкость и однородность. Процесс обработки различных типов металла При анодировании заготовок из стали учитываются свойства и характеристики конкретного металла.
Рассмотрим особенности технологического процесса для других металлов и их сплавов: Анодирование меди и медных сплавов Медь тяжело поддается анодированию. Чаще всего медные детали обрабатывают электрохимическим способом, который позволяет изменить цвет поверхности. Электролитный раствор готовят на основе фосфатов или оксалатов. Оксидирование меди и ее сплавов — очень сложный технологический процесс, поэтому применяется очень редко. Анодирование титана Для изделий из этого металла оксидирование — практически обязательная процедура. Нанесение оксидной пленки позволяет не только повысить прочность и износостойкость деталей, но и придать поверхности требуемый цвет. Покрытие может окрашиваться в любой оттенок из весьма широкого спектра. Электролитные растворы для анодирования титановых заготовок изготавливаются на основе практически любой кислоты. Анодирование серебра При анодном оксидировании поверхности изделий из серебра чаще всего применяется смесь полисульфидов натрия серная печень , с помощью которой поверхность окрашивается в различные оттенки синего или фиолетового цветов.
Анодирование алюминия Для улучшения характеристик поверхности алюминиевых заготовок широко применяется анодное оксидирование. Существует большое количество методик, позволяющих не только повышать прочность и износостойкость изделий, но и окрашивать их поверхность в различные цвета.
Анодирование алюминия
Анодирование — Термин анодирование Термин на английском anodizing Синонимы anodising, электрохимическое оксидирование Аббревиатуры Связанные термины адгезия, нановискер, пористый материал. это процесс электрохимического наращивания оксидной пленки путем анодного окисления. Обычно анодирование проводят при постоянном токе в гальваностатическом или потенциостатическом режиме. В этой статье вы узнаете, что такое анодирование и как происходит нанесения защиты на изделия. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Что такое анодирование. Процессом анодирования называется электролитическая химическая реакция металла с окислителем.
Что называют анодированием и зачем его применяют
Анодирование алюминия или анодное окисление – процесс создания на поверхности металла оксидной пленки. Анодирование можно определить как экологически чистый электрохимический процесс, который заключается в создании оксидного слоя на поверхности обрабатываемого металла. Анодирование в компании Галарс-СПб, технология процесса, преимущества анодирования. При анодировании защитная пленка из окислов образуется из самого защищаемого металла.
Что такое анодирование металлов и зачем его использовать?
Анодирование алюминия — наиболее эффективный способ защиты поверхности профиля от коррозии, исключающий отслоение покрытия и подпленочную коррозию. Помимо этого, анодирование алюминия придает изделиям дополнительные эстетические свойства и респектабельный внешний вид. Прекрасный внешний вид этого материала делает возможным его использование для производства декоративных изделий, а высочайшие показатели функциональности делают его незаменимым при изготовлении высокопрочной фурнитуры, а также антипригарной посуды и отделки в стиле хай-тек дорогих автомобилей. Фирма SeVen осуществляет продажу фурнитуры для стекла премиум класса vk.
Анодированные украшения Из анодированных металлов изготавливают пуссеты, кольца, подвески, броши, украшения для пирсинга. Сочетание с драгоценными и полудрагоценными камнями, эмалью рождает необыкновенные ювелирные композиции, выполненные в оригинальном цвете. Иногда анодированный металл используется только в качестве вставки Это особенно ценно при создании украшений в анималистическом и флористическом стилях. Персонажи тропических широт, яркие и разноцветные, создаются при помощи анодирования. Что касается украшений для пирсинга, среди них широко представлены анодированные модели. Особенных советов по выбору не существует.
Нужно руководствоваться лишь своими предпочтениями и желаниями. Размер подскажет мастер по пирсингу. Особенности ухода Пленка, покрывающая изделие, разрушается под воздействием хлора, лака для волос, некоторых чистящих средств.
Ввиду малой пористости тонкие анодно-окисные покрытия окрашиваются плохо. Толстые пористые аноднооксидные покрытия получают из агрессивных растворов например, из раствора серной кислоты.
В покрытиях, полученных из агрессивных электролитов, обычно выделяют два слоя рисунок 3 : Тонкий беспористый барьерный слой, прилегающий к металлу 1 , формирующийся из условия 0,008 - 0,012 мкм на 1 В приложенного напряжения, и обычно составляющий 0,01 - 0,03 мкм. Толстый пористый слой 2 , представляющий собой систему конусообразных пор, пронизывающих оксидную пленку, и имеющий толщину от нескольких микрометров до миллиметров. Рисунок 3 — Структура слоев оксида алюминия, полученного из агрессивных электролитов. Структура толстого пористого аноднооксидного покрытия подтверждается результатами электрохимической импедансной спектроскопии рисунок 4. Слева - модуль Боде, справа - фаза Боде.
Квази-горизонтальная область в графике модуля Боде и соответствующая область минимума в графике фазы Боде характеризуют поведение сопротивления пористого слоя. Крутая часть при более высоких частотах на графике модуля Боде характеризует емкостное поведение пористого слоя. Эквивалентная электрическая схема пористого аноднооксидного покрытия с уплотнением в воде приведена на рисунке 5. Рисунок 5 — Эквивалентная электрическая схема пористого аноднооксидного покрытия с уплотнением в воде: Rsol - сопротивление электролита, Ro и Co - сопротивление и емкость внешнего кристаллического слоя, Rpw и Cpw - сопротивление и емкость стенки поры, Rp и Cp - сопротивление и емкость тела поры, Rb и Cb - сопротивление и емкость барьерного слоя. Что касается состава анодно-оксидных покрытий, то тонкие беспористые пленки представляют собой в основном безводный оксид алюминия, который в чистом виде располагается у границы с металлом.
Гидратация стенок усиливается от дна к устью. Большинство исследователей склоняется к мнению, что вода в покрытии химически не связана, за исключением поверхностных слоев, где она входит в состав бемита. Последние называют структурными анионами. Примеси металлов, содержащиеся в сплавах алюминия, в большинстве своем остаются в оксидной пленке железо, медь, кремний, магний, кальций. В цветных оксидных пленках обнаруживаются включения углерода, серы и их оксидные соединения, которые и придают окраску.
Большая часть ионов не удаляется из покрытия ни длительной промывкой водой при высокой температуре, ни использованием других растворителей. Такая высокая прочность связи ионов с веществом анодной пленки при отсутствии простых стехиометрических соотношений между внедрившимся ионом и оксидом алюминия свидетельствует о внедрении ионов в элементарные образования пленки. По-видимому, часть анионов удерживается капиллярными силами в порах покрытия, другая часть химически связана со стенками пористого слоя. С увеличением количества примесей в металле, повышением температуры электролита и плотности анодного тока увеличивается нерегулярность микроструктуры оксидных покрытий - нарушается перпендикулярность роста ячеек и пор, их параметры становятся более неравномерными. Наиболее хаотичная структура наблюдается в пленках, сформированных на алюминиевых сплавах в растворах хромовой и ортофосфорной кислот.
Рисунок 6 — Исходная поверхность алюминия до анодирования. Рисунок 7 — Поверхность алюминия с оксидом, после анодирования в сернокислом электролите. Как видно из рисунков 4 и 5 после анодирования на поверхности алюминия исчезают микронеровности, вызванные механической обработкой. При этом формируется плотная пористая оксидная пленка. Если разделить пористый и барьерные слои, то можно увидеть седующую картину рисунок 8 : Рисунок 8 — Пример поверхности алюминия, анодированного промышленным способом: а - реплика пористого слоя, b - реплика барьерного слоя, с - схематичное изображение.
Теории образования пленок оксида алюминия при анодировании. Существуют две теории образования и роста анодно-оксидных покрытий: структурно-геометрическая и коллоидно-электрохимическая. С позиции этой теории при наложении на алюминиевый электрод анодного напряжения т. Наружная часть ячеек в агрессивных электролитах, растворяющих оксид, начинает разрушаться в дефектных местах и превращаться в пористое покрытие. Разрушение барьерного слоя, приводящее к образованию поры, протекает, по мнению одних исследователей, в центре ячейки, по мнению других — в местах стыка ячеек.
Таким образом, под влиянием локальных воздействий ионов электролита в барьерном слое зарождаются поры, число которых обратно пропорционально напряжению.
Затем изделие помещается в щелочной раствор, для его протравливания. Последней стадией подготовки становиться погружение в кислотный раствор, где оно осветляется, после чего изделие тщательно промывается от кислоты.
Непосредственно этап химического анодирования алюминия. Для этого изделие подвешивают на специальные кронштейны и помещают в ванну с электролитом между двумя катодами. В качестве электролитов могут выступать растворы серной, щавелевой, хромовой и сульфосалициловой кислот, иногда с добавлением органической кислоты или соли.
Серная кислота является самым распространенным электролитом, однако с его помощью не удается качественно обработать изделия с мелкими отверстиями или зазорами. Для этих целей лучше подходят хромовые кислоты. Щавелевая кислота в свою очередь создает наилучшие изоляционные покрытия разных цветов.
Разные концентрации кислот и плотность тока дают разные результаты конечной продукции. Повышение температуры и понижение плотности тока дает мягкую и пористую пленку. При понижении температуры и повышении плотности тока покрытие увеличивает свою твердость.
В процессе анодирования анодные ячейки, включая поры образуют шестигранную структуру, которая, как считают специалисты, выполняет принцип минимальности энергии и не зависит от применяемого типа электролита. Шестигранная форма имеет энергетическое происхождение. Толщина анодного покрытия увеличивается с увеличением длительности анодирования.
Однако степень роста толщины зависит от нескольких факторов, таких как тип электролита, плотность тока, длительность обработки и т.