Новости миллисекундный пульсар

«Этот быстрый и энергичный миллисекундный пульсар был впервые обнаружен как точечный источник. С другой стороны, миллисекундные пульсары или рециклированные пульсары — это нейтронные звезды с очень быстрым периодом вращения.

Science news

Наблюдаемый факт: в центре Млечного Пути отсутствуют миллисекундные пульсары. Millisecond pulsar, MSP) — пульсар с периодом вращения в диапазоне от 1 до 10 миллисекунд. Общепринятый сценарий образования миллисекундных пульсаров сводится к тому, что старая, медленно вращающаяся нейтронная звезда начинает поглощать вещество компаньона, обычно красного гиганта.

Аномальный пульсар оказался тройной системой

Происходить это может следующим образом: сначала нейтронная звезда, резко ускорившая свое вращение, за счет огромной плотности вступает в гравитационное взаимодействие с черной дырой. Какое-то время они кружат друг вокруг друга, пока пульсар внезапно не захватывает черную дыру, которая мгновенно оказывается в его центре. Затем она начинает медленно пожирать изнутри нейтронное «тело» звезды, пока наконец не поглощает его целиком — превращаясь в «обычную» черную дыру звездной массы. К слову, нечто похожее, только в другом масштабе, астрономы уже недавно наблюдали. Однако подтвердить или опровергнуть существование такого механизма в реальности, мягко говоря, сложно: определить по черной дыре, не «пообедала» ли она когда-то пульсаром, представляется невозможным. Одно ясно: полностью объяснить отсутствие миллисекундных нейтронных звезд в ядре Млечного Пути, по словам самих исследователей, эта версия не может.

В активном режиме ученые выделяют два состояния — высокий уровень активности, который возникает чаще всего и характеризуется пульсациями рентгеновского, ультрафиолетового и оптического излучения от пульсара, и низкий уровень активности, когда пульсаций нет. Астрофизиков очень интересует, каким образом эти режимы возникают и почему непредсказуемо меняются.

В 2013 году он перешел в режим высокого уровня активности, демонстрируя признаки формирования аккреционного диска. Данные наблюдений позволили астрономам построить физическую модель переключения миллисекундного пульсара между режимами активности. Во время высокого уровня активности существует ударная волна между ветром от пульсара и внутренним аккреционным потоком, где возникает большая часть рентгеновского излучения, а также рентгеновские, ультрафиолетовые и оптические пульсации.

На аппарате установлены два главных инструмента - телескоп LAT, предназначенный для обзора неба в гамма-диапазоне, и детектор гамма-вспышек GBM. Астрономы из коллаборации LAT под руководством Тайрела Джонсона Tyrel Johnson из университета имени Джорджа Мейсона в городе Фейрфакс США обнаружили при помощи этого телескопа очень яркий источник гамма-излучения в звездном "кладбище" - древнем шаровом скоплении NGC 6624, удаленном от Земли на 27 тысяч световых лет. Этим источником периодических колебаний гамма- и радиоизлучения оказался миллисекундный пульсар, получивший кодовое имя J1823-3021A. Периодические колебания в мощности гамма-излучения от этого объекта оказались достаточно четкими для того, чтобы вычислить скорость его вращения и другие параметры.

Джонсон и его коллеги проследили за изменениями в силе самых мощных всплесков в излучении J1823-3021A с 2008 по 2010 год. Этот объект оказался самым ярким и удаленным миллисекундным пульсаром среди известных человечеству. Исследователи отмечают, что такая высокая мощность J1823-3021A указывает на то, что только этот пульсар, а не "коллектив" из нескольких угасших звезд, является основным источником гамма-излучения в скоплении NGC 6624.

Источник был обнаружен в ходе повторной обработки результатов обзора пульсаров Вселенной с высоким временным разрешением на южных низких широтах HTRU-S LowLat. Нейтронная звезда — космическое тело, являющееся одним из возможных результатов эволюции звезд, состоящее, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой около 1 км корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звезд сравнимы с массой Солнца, но типичный радиус нейтронной звезды составляет лишь 10—20 километров. Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерного вещества, возникающее за счёт взаимодействия нейтронов.

Многие нейтронные звезды обладают чрезвычайно высокой скоростью осевого вращения, — до нескольких сотен оборотов в секунду.

Новости по теме

  • Астрономы впервые поймали момент рождения миллисекундного пульсара
  • Астрономы обнаружили новый миллисекундный пульсар
  • В центре галактики обнаружен первый миллисекундный пульсар | Пикабу
  • Раскрыта загадка странного поведения пульсара
  • Радиотелескоп FAST нашел самый медленный пульсар в шаровом скоплении. Он наблюдал за скоплением М15
  • arXiv: обнаружен миллисекундный пульсар в шаровом скоплении GLIMPSE-C01

Быстрейший пульсар

arXiv: обнаружен миллисекундный пульсар в шаровом скоплении GLIMPSE-C01. Общепринятый сценарий образования миллисекундных пульсаров сводится к тому, что старая, медленно вращающаяся нейтронная звезда начинает поглощать вещество компаньона, обычно красного гиганта. По предварительным наблюдениям, находка — это аккрецирующий рентгеновский миллисекундный пульсар. Между тем, обычно двойные миллисекундные пульсары (пульсары, у которых период импульса меньше 10 миллисекунд) имеют практически идеальные круговые орбиты.

Астрономы обнаружили новый миллисекундный пульсар

Быстро вращающиеся миллисекундные пульсары резко замедляют свое вращение при смерти звезды-компаньона. Группа астрономов использовала южноафриканский радиотелескоп MeerKAT для обнаружения восьми миллисекундных пульсаров, расположенных в шаровых скоплениях с высокой. Группа китайских астрономов провела исследование, направленное на изучение сценариев формирования миллисекундного пульсара PSR J1946 + 3417. Миллисекундные пульсары – это особый класс нейтронных звезд с периодом вращения в диапазоне от 1 до 10 миллисекунд. Миллисекундные пульсары любимы учёными — они выступают идеальной «лабораторией» для изучения материи в экстремальных условиях. Используя радиотелескоп FAST, астрономы объявили об открытие двойного миллисекундного пульсара, получившего название PSR J1717 + 4308A или M92A.

«Смертельное танго»: астрономы, возможно, раскрыли тайну исчезнувших пульсаров

Однако астрономам известны миллисекундные пульсары, представляющие собой быстровращающиеся нейтронные звезды, которые находятся в маломассивных рентгеновских двойных системах и раскручиваются до миллисекундных периодов вращения за счет аккреции вещества звезды-компаньона. Они могут находиться в двух состояниях: радиопульсар объект порождает импульсы радиоволн и активный режим нейтронная звезда ярко излучает в рентгеновском диапазоне, аккрецируя вещество из диска вокруг нее. В активном режиме ученые выделяют два состояния — высокий уровень активности, который возникает чаще всего и характеризуется пульсациями рентгеновского, ультрафиолетового и оптического излучения от пульсара, и низкий уровень активности, когда пульсаций нет. Астрофизиков очень интересует, каким образом эти режимы возникают и почему непредсказуемо меняются. В 2013 году он перешел в режим высокого уровня активности, демонстрируя признаки формирования аккреционного диска.

Шаровые скопления содержат очень большое количество звезд, что делает столкновения и взаимодействия между звездами обычным явлением в таких системах. Из-за этого в подобных звездных скоплениях наблюдается необычно большое количество маломассивных рентгеновских двойных систем и миллисекундных пульсаров, которые рождаются, когда нейтронная звезда раскручивается до больших скоростей вращения за счет аккреции вещества со звезды-компаньона. Такие системы интересны с точки зрения исследования процессов аккреции и взаимодействия звезд в двойных системах. К настоящему моменту обнаружено более трехсот пульсаров в сорока шаровых скоплениях.

После выделения пульсара в данных Ферми, удалось получить немало полезной информации. В частности, компаньоном нейтронной звезды скорее всего является другая умершая звезда.

Размер ее составляет около 88000 километров, что несколько меньше, чем диаметр Юпитера. При этом масса объекта превышает наш газовый гигант в восемь раз. Поэтому плотность оказывается примерно в 30 раз выше, чем у Солнца. Близость обоих звезд двойной системы имеет решающее влияние не судьбу этого объекта. Мощное излучение главного пульсара PSR J1311-3430 приводит к постепенному испарению его компаньона. При этом именно материя спутника пульсара дает материю, которая питает его излучение. Это может оказаться тем самым способом образования одиноких пульсаров, происхождение которых пока толком не понято», — говорит Плеш.

Наука Астрономы раскрыли природу необычно ярких одиночных импульсов от миллисекундного пульсара Астрономам удалось раскрыть природу аномальных по своей яркости одиночных импульсов от миллисекундного пульсара. Соответствующая работа проводилась сотрудниками Амстердамского университета. Специалистам в ходе наблюдений и анализа полученных данных удалось разгадать, по какой причине миллисекундный пульсар PSR B1744-24A, который скрывается в созвездии Terzan 5, способен излучать настолько странные одиночные импульсы.

Похожие новости:

Оцените статью
Добавить комментарий