Новости взрыв звезды в космосе

У звёзд с массой порядка солнечной в конце фазы красного гиганта ожидается сброс планетарной туманности без взрыва и превращение звезды в белый карлик. Астрономы из университета Шеффилда зафиксировали крайне редкий тип взрыва звезды в космосе. Взрыв сверхновой в Большом Магеллановом облаке продолжался сотни лет и дал астрономам возможность изучить разные фазы жизни звезды — до и после ее смерти.

«Будет видно невооруженным глазом»: в 2024 году в небе взорвется уникальная звезда

Телескоп ART-XC им. М. Н. Павлинского, который установлен на борту космической обсерватории "Спектр-РГ", заснял взрыв сверхновой звезды. Звезда в космосе. Звезда в космосе. Звезда в космосе.

«Воскресшая» звезда: яркий взрыв в миллиарде световых лет поставил астрономов в тупик

Такие редкие кадры можно получить один раз за век. Ведь не часто такое происходит в космосе.

Величина потери массы значительно влияет на их судьбу. Однако удивительно капризное поведение Бетельгейзе не является доказательством того, что звезда вот-вот взорвется в ближайшее время. Таким образом, событие потери массы не обязательно является сигналом неминуемого взрыва. Теперь Дюпре собирает воедино все кусочки головоломки капризного поведения звезды до, после и во время извержения в связную историю о невиданных ранее титанических конвульсиях стареющей звезды. Дюпре подчеркивает, что данные Хаббла сыграли ключевую роль в разгадке тайны. Это совершенно новое явление, которое мы можем наблюдать непосредственно и рассматривать детали поверхности с помощью Хаббла. Мы наблюдаем за эволюцией звезд в режиме реального времени ".

Вспышка гиганта в 2019 году, возможно, была вызвана конвективным шлейфом диаметром более миллиона миль, поднимающимся из глубины звезды. Он вызвал толчки и пульсации, которые оторвали кусок фотосферы, оставив звезду с большой площадью холодной поверхности под облаком пыли, образовавшимся в результате охлаждения части фотосферы.

Гамма-всплески — это короткие выбросы самой энергичной формы света. Этот взрыв, получивший название GRB 230307A, вероятно, возник, когда две нейтронные звезды — невероятно плотные остатки звезд после вспышки сверхновой — слились в галактике на расстоянии около одного миллиарда световых лет. Согласно исследованию, опубликованному в журнале Nature , помимо выброса гамма-всплеска, в результате слияния возникла килоновая звезда — редкий взрыв, который происходит, когда нейтронная звезда сливается с другой нейтронной звездой или черной дырой.

Американский астрофизик индийского происхождения С. Чандрасекар, будущий нобелевский лауреат, в 1930-х гг. Масса, которая получила название «предел Чандрасекара», составляет около 1,4 массы Солнца За сутки до кончины звезды ее ядро нагревается до 3,3 млрд К. Последние поглощаются другими ядрами, образуя все более тяжелые элементы. Поскольку далее термоядерный синтез не идет, железное ядро сжимается и нагревается. В результате возрастает кинетическая энергия атомов железа, и они претерпевают хаотические превращения. Некоторые из них распадаются, а некоторые, напротив, вступают в реакции слияния и порождают более тяжелые элементы, такие как платина и золото. Поскольку эти реакции идут за счет накопленной тепловой энергии, температура звездного ядра уменьшается, давление его вещества падает, и ядро вновь начинает сжиматься. Этот процесс ускоряется, если в окрестностях ядра продолжаются процессы термоядерного синтеза, которые порождают новые и новые ядра железа. Затем наступает финальный катаклизм.

Электроны прижимаются к ядрам и сливаются с протонами, превращаясь в нейтроны и нейтрино. Нейтроны остаются на месте, а нейтрино вылетают в пространство. В результате сердцевина звезды охлаждается, давление ее вещества вновь падает, а темп сжатия увеличивается. Этот процесс имплозии начинается и завершается за считанные секунды, поэтому внешние слои звезды не успевают ничего почувствовать. Наружный наблюдатель в течение еще нескольких часов не заметит ни малейших перемен. На этой стадии возможны два сценария. Полагают, что звезды с массой от 30 до 100 солнечных масс коллапсируют полностью и дают начало черным дырам. У звезд в диапазоне 12—30 по другим модельным симуляциям 12—20 солнечных масс образуются ядра из нейтронной материи, плотность которой в 100 триллионов раз превышает плотность воды. Внешние слои звезды обрушиваются на ядро и «отскакивают» от него со скоростью в десятки тысяч километров в секунду. Поскольку эта скорость значительно превышает скорость звука в звездном веществе, образуется ударная волна, буквально разрывающая звезду изнутри.

По всей вероятности, ей «помогают» тепловые нейтрино, приходящие из «вскипающего» нейтронного ядра, нагретого как минимум до 150 млрд К это самая высокая температура, возможная в нынешней Вселенной. От звезды остается деформированный нейтронный шар радиусом около десяти километров, окруженный облаком сверхгорячей плазмы. Это и есть нейтронная звезда. Звезде был присвоен индекс SN 2007bi. Возможно, это было первое наблюдение сверхновой с парной нестабильностью. Звезды этой группы очень быстро сжигают водород и гелий. После сгорания углерода в их ядрах возникают гамма-кванты, которые при столкновениях превращаются в электронно-позитронные пары, а возможно, и в более тяжелые частицы и античастицы. Однако в этом случае пульсаций не возникает, и внешние слои звезды падают в ее центр. Давление в перегретом ядре катастрофически возрастает, и ядро взрывается, не успев сколлапсировать в черную дыру. Однако подобные симуляции выполняются лишь при значительном упрощении базовых моделей и при этом требуют месяцев работы суперкомпьютеров.

Чтобы сделать их более реалистичными, необходимы компьютеры, на два порядка более мощные, но появятся они не раньше, чем через десять лет. Как ни парадоксально, но надежней всего моделируется гравитационный коллапс самых массивных звезд с начальной массой более 100 солнечных. В их недрах уже на стадии синтеза кислорода появляются жесткие гамма-кванты, которые при взаимных столкновениях превращаются в электронно-позитронные пары. Поскольку часть гамма-квантов при этом теряется, происходит падение лучевого давления, которое противодействовало гравитационному сжатию звезды и удерживало ее в состоянии гидростатического равновесия. Далее все зависит от начальной массы. Если она не превышала 130—140 солнечных, то в недрах звезды возникают пульсации, способные инициировать быстрый выброс части вещества внешних оболочек, однако недостаточно сильные, чтобы полностью разрушить ее изнутри. Эти пульсации быстро гасятся, и звезда возобновляет коллапс, приводящий к образованию железного ядра. Они также порождают коллапсирующие железные ядра, но в этом случае на стадии термоядерного горения углерода ядро прекращает дальнейшее сжатие, так что кислород не поджигается. Когда углерод полностью выгорает, превратившись в неон и магний, кислородно-неоново-магниевое ядро сжимается до тех пор, пока сила тяготения не уравновешивается квантовым давлением вырожденного электронного газа. Однако эта задержка недолговечна.

Ядра неона и магния поглощают электроны и превращаются в изотопы элементов с меньшими номерами по таблице Менделеева. Плотность электронного газа падает, сердцевина звезды стягивается, и процесс все равно заканчивается коллапсом железного ядра. Гиперновые, сила аккреции и чудеса связанных пар В апреле 2007 г. В каталоги она вошла под индексом SN 2007bi. Не исключено хотя пока и не доказано! Опубликованные тогда сценарии описывали эволюцию звезд с начальными массами от 130 до 250 солнечных. Масса звезды-предшественницы новооткрытой сверхновой лежала как раз в середине этого промежутка. Звезды этой группы обычным образом но очень быстро сжигают водород и гелий. Давление в перегретом ядре катастрофически возрастает, ядро взрывается, не успев сколлапсировать в черную дыру. Взрывы сверхмассивных звезд принято называть гиперновыми.

Строго говоря, этот термин не относится к финальной стадии жизни звезд с начальной массой более 250—260 солнечных масс, которые изобиловали в ранней Вселенной. В их центральных зонах порождаются гамма-кванты, энергии которых достаточны для возбуждения и последующего распада атомных ядер этот процесс называется фотодезинтеграцией. Такие звезды не взрываются, а просто исчезают, давая начало черным дырам. Сначала посмотрим на системы, состоящие из нормальных звезд главной последовательности, обращающихся вокруг общего центра инерции. Каждая звезда окружена областью пространства, где господствует ее собственное притяжение. Если такие области пересечь плоскостью, в которой движутся оба светила, получатся две вытянутые в линию петли с общей точкой на отрезке, соединяющем звездные центры для наглядности придется остановить время, поскольку вся фигура вращается.

Ученые впервые увидели взрыв умирающей звезды. Он приблизит человечество к раскрытию тайн космоса

Зафиксирован крайне редкий тип взрывов в космосе Интересно, что этот взрыв не самое яркое явление, когда-либо наблюдавшееся.
Зафиксирован крайне редкий тип взрывов в космосе — Федеральная служба новостей Однако взрыв оказался беспрецедентно плоским, что является очень необычным явлением, поскольку звезды обычно взрываются в сферической форме из-за своей формы.
«Воскресшая» звезда: яркий взрыв в миллиарде световых лет поставил астрономов в тупик Ранее российские физики в соавторстве с европейскими коллегами сымитировали в лаборатории рождение новых звезд в результате взрыва сверхновой.

Прорыв в понимании

  • Зафиксирован крайне редкий тип взрывов в космосе – Земля - Хроники жизни
  • Дыхание сверхновых: что за 20 лет произошло в туманностях, оставшихся от взорвавшихся звезд — видео
  • Космический корабль NASA сделал фото на расстоянии 3,7 миллионов километров от Земли
  • Такое случается раз в 80 лет: на Земле увидят взрыв «полыхающей звезды» - Телеканал «Моя Планета»
  • Дыхание сверхновых: что за 20 лет произошло в туманностях, оставшихся от взорвавшихся звезд — видео
  • Одна вспышка — как сотни миллионов термоядерных бомб

Новости Рубцовска

Зафиксирован крайне редкий тип взрывов в космосе — Федеральная служба новостей Эхо взрыва звезд Гамма-всплески открыли в конце 1960-х военные американские спутники с рентгеновскими и гамма-детекторами.
Ученые зафиксировали очень редкий тип взрывов в космосе Телескоп ART-XC им. М. Н. Павлинского, который установлен на борту космической обсерватории "Спектр-РГ", заснял взрыв сверхновой звезды.
«Воскресшая» звезда: яркий взрыв в миллиарде световых лет поставил астрономов в тупик Особенно наблюдательные любители космоса в течение нескольких недель смогут невооружённым глазом рассмотреть в ночном небе уникальное событие — взрыв звезды RS Змееносца.
Наше время - Все публикации Особенно наблюдательные любители космоса в течение нескольких недель смогут невооружённым глазом рассмотреть в ночном небе уникальное событие — взрыв звезды RS Змееносца.
Зафиксирован крайне редкий тип взрывов в космосе – Земля - Хроники жизни Взрыв еще одной сверхновой был зафиксирован астрономами, он произошел в галактике М101 в 21 млн световых лет от Солнечной системы.

В космосе впервые зафиксировали взрыв сверхновой в результате столкновения звезд

Звезды питаются за счет термоядерной реакции, которая выталкивает энергию из их ядер наружу. Но когда стареющие гигантские звезды исчерпывают топливо, их собственная гравитация преодолевает термоядерную реакцию. Звезда коллапсирует со взрывом, который разбрасывает ее вещество по космосу. И различные тяжелые элементы часто образуются как раз при взрывах сверхновых. Свет от взрыва Кассиопеи A достиг Земли около 340 лет назад. Ученые оценивают, что первоначально звезда, давшая этот взрыв, имела массу в 16 раз больше массы Солнца, но уменьшилась примерно до 5 масс Солнца, прежде чем взорваться.

Когда на поверхность белого карлика сбрасывается достаточное количество вещества, температура становится настолько высокой, что на поверхности белого карлика начинается термоядерный взрыв, объясняют ученые. Руководитель отдела метеороидной среды НАСА Билл Кук говорит, что это очень яркое событие — земляне смогут увидеть, как на небе начинает появляться новая звезда. Раньше для того, чтобы увидеть T Северной Короны, мог понадобиться телескоп, но она вспыхнет так ярко, что ее можно будет увидеть и невооруженным глазом. По словам Кука, звезда делает это примерно каждые 79 лет. Последний раз «Полыхающая звезда» взрывалась в 1946 году.

Критическая масса накапливается примерно за 80 лет, достигает предела и происходит взрыв. Обычно на это уходят тысячи лет, чтобы дойти до момента, когда вы увидите новую звезду. Но Тау Северной Короны, похоже, делает это гораздо быстрее, что делает ее исключительной», — говорит Коррен Макгрегор, один из авторов исследования. Когда яркость T CrB достигнет своего пика, по светимости она может сравняться с Марсом. Явление вполне может продлиться и больше недели.

В масштабах всего основного цикла эволюции звезды стадия красного гиганта довольно короткая. У Солнца она, правда, может растянуться и на целый миллиард лет, потому что оно само по себе долгожитель, а вот у такой однодневки, как Бетельгейзе, разве что на 100 тысяч лет, не больше. И сколько существует человечество, столько оно и наблюдает её именно в таком виде. Поэтому трудно сказать, когда именно она состарилась. Может, 50 тысяч лет назад, а может, и 100. А что же будет, когда этот этап закончится? Будет великолепная вспышка, которая затмит в ночном небе саму полную Луну. Это называется взрывом сверхновой звезды. Её мантия сбрасывается в окружающий космос. Как будет выглядеть взрыв сверхновой Бетельгейзе. Поэтому астрономы пристально всматриваются в Бетельгейзе, ловят каждое её дыхание и при любом заметном изменении замирают в ожидании.

Новости Рубцовска

Бразильские астрономы из Пресвитерианского университета Маккензи установили возможную причину сверхмощных вспышек на некоторых звездах. Звезда за короткое время быстро потускнела — появилось предположение. что она может взорваться и превратиться в сверхновую. Произойдёт ли взрыв и, если да, чем это нам грозит? Исследователи полагают, что это связано с тем, что обломки сверхновой проталкиваются и формируют газ, оставшийся после звезды перед ее взрывом.

Астрономы зафиксировали крупнейший в истории наблюдений космический взрыв

Именно она, как показали наблюдения, и излучила как минимум в 2,5 миллиарда раз больше видимой энергии, чем Солнце, высвободившее свою энергию за тот же период времени на всех длинах волн. Сообщается, что SN 2010jl - это сверхновая типа II. То есть, ученые наблюдали гибель массивной звезды, которая в течение своей жизни имела массу как минимум в 40-50 раз больше солнечной. Взрывы сверхновых происходят, когда у массивных звезд заканчивается топливо для ядерного синтеза. Наблюдения телескопа Хаббла также показали, что ширина галактики UGC 5189A составляет всего 36 000 световых лет. Для сравнения, ширина нашего Млечного Пути оценивается в 100 000 световых лет.

В отличие от сверхновой типа Ia, в которой взрывается белый карлик, обе звезды выживают и продолжают свои отношения, чтобы снова взорваться в другой раз. Сама Новая звезда может продолжать светиться несколько дней или месяцев. Не сразу понятно, какая звезда произвела взрыв V1405 Cas, но есть предположение: затменная переменная двойная звезда CzeV3217, которая находится на расстоянии примерно 5 500 световых лет от Солнечной системы. Дальнейшие наблюдения помогут астрономам лучше изучить взрыв Новой и подтвердят, что источником действительно является CzeV3217.

Сигнал, названный GRB 221009A, был обнаружен 9 октября, хотя сама вспышка произошла 1,9 млрд лет назад. Луч энергии прибыл из созвездия Стрелы и был виден на протяжении десяти часов — один из самых долгих гамма-всплесков за всю историю наблюдений, пишет Phys. Цифровой прорыв: как искусственный интеллект меняет медийную рекламу Кроме того, гамма-всплеск GRB 221009A оказался самым мощным из всех известных астрономам. Энергия этих событий обычно измеряется в гигаэлектронвольтах ГэВ , но у некоторых она достигала 1 ТэВ. Когда образуются черные дыры, они выбрасывают мощные струи частиц, которые развивают околосветовую скорость. Они проходят через останки взорвавшейся звезды, излучая в космос волны рентгеновского и гамма-излучения.

И различные тяжелые элементы часто образуются как раз при взрывах сверхновых. Свет от взрыва Кассиопеи A достиг Земли около 340 лет назад. Ученые оценивают, что первоначально звезда, давшая этот взрыв, имела массу в 16 раз больше массы Солнца, но уменьшилась примерно до 5 масс Солнца, прежде чем взорваться. NIRCam Уэбба "видит" длины волн света, которые шире видимого света, так что их не может различить человеческий глаз. Поэтому, для формирования изображения, исследователи перевели инфракрасный свет в разные цвета, демонстрируя нам красочную картину. Яркие оранжевые и бледно-розовые области на новом изображении представляют собой внутреннюю оболочку сверхновой и состоят из серы, кислорода, аргона и неона, сформированные звездой.

Ученые зафиксировали очень редкий тип взрывов в космосе

Однако исследователи из Университета Тохоку в Японии и Женевского университета в Швейцарии заново проанализировали все данные по Бетельгейзе и пришли к выводу, что звезда может иметь намного больший размер и её судьба — это превратиться в сверхновую за тридцать-пятьдесят лет или около того. Согласно нашим наблюдениям, яркость Бетельгейзе меняется с двумя более-менее выраженными периодами — коротким длительностью 420 дней и большим длительностью 2200 дня. Если для оценки скорости эволюции звезды использовать более короткий период, то это определяет её радиус примерно в 800-900 раз больше радиуса нашего Солнца. Японские и швейцарские астрономы показали, что опора на 2200-дневную периодичность может указывать на радиус Бетельгейзе примерно в 1300 раз больше радиуса Солнца, что вносит радикальные коррективы в прогнозирование судьбы этой звезды. Если они правы, Бетельгейзе превратится в сверхновую после 2050 года. Вечерний 3DNews Каждый будний вечер мы рассылаем сводку новостей без белиберды и рекламы.

Совершить открытие удалось случайно: сначала ученые заметили вспышку поляризованного света. С помощью Ливерпульского телескопа была измерена степень поляризации. Это позволило выявить форму взрыва, который оказался сопоставим по размеру с Солнечной системой.

Затем полученные данные использовали для воссоздания трехмерной модели взрыва.

Затем, в течение нескольких месяцев звезда начинает испускать все меньше света и становится заметной с Земли. В конце ноября, помимо всего прочего, сверхновая уйдет из зоны видимости за Солнце. Лучше всего звезда, по словам ученых, будет видна в декабре-феврале 2023 г.

В этот период ученые, по их словам, и смогут выяснить, что произошло в момент взрыва на самом деле. Также, как считают астрономы, наблюдение за GRB 221009A поможет им точнее определить, где во Вселенной создаются тяжелые элементы.

Нет, это не сверхновая Основное различие между новой и сверхновой — взрывом звезды достаточно большой массы в конце ее жизни — заключается в том, что новая — это явление, при котором происходит только выброс поверхностного слоя звезды в результате термоядерных реакций, протекающих на ее поверхности. Это означает, что звезда продолжает существовать, не уничтожена полностью и может дать начало новым взрывам после перезарядки аккреционного диска. В случае сверхновой, напротив, происходит взрыв всей звезды в результате термоядерных реакций, происходящих внутри нее. После взрыва может образоваться туманность, а в центре может остаться компактный объект, например нейтронная звезда или звездная черная дыра.

Как наблюдать эту новую звезду? T Coronae Borealis находится в созвездии Северная Корона, которое довольно легко заметить благодаря его типичной форме "U". В летние месяцы Северная Корона хорошо видна и достигает максимальной высоты над горизонтом. Положение новой звезды относительно созвездия Северной Короны обведено красным. Поначалу новая будет видна невооруженным глазом и по яркости будет схожа с Полярной звездой. Примерно через неделю яркость начнет уменьшаться, и для продолжения наблюдений понадобится небольшой бинокль, а еще лучше — телескоп.

Взорвется ли звезда Бетельгейзе? И что будет после этого с нами?

Открытие было сделано благодаря яркому гамма-излучению в качестве ориентира. Уточняется, что это приблизит ученых к пониманию происхождения самых тяжелых элементов во Вселенной. Предполагается, что в ядрах массивных звезд формируются элементы легче железа. Но создать достаточно плотные и горячие условия для более тяжелых металлов, платины или теллура, у них не получается, считают ученые.

Специалистов насторожил характер явления - они не понимают, как объект кодовым названием AT2021lwx может «полыхать» так долго. В космосе происходят взрывы и помощнее например, при столкновении и слиянии черных дыр , но они мгновенны - вся энергия высвобождается за доли секунды, а здесь речь идет о нескольких годах. Астрофизики убеждены, что это не звезда, а объект совершенно невообразимой массы - по предварительным оценкам, это минимум 100 миллионов Солнц.

И все эти годы он поглощает гигантские массы материи.

Во время наблюдения за созвездием Северная Корона он заметил, что одна из слабых звезд стала ярче, а спустя неделю вернулась в исходное состояние. Это и был один из термоядерных взрывов звезды Тау. Впоследствии это событие наблюдали каждые 80 лет. Последний раз Тау взрывалась в 1946 году, и недавно астрономы заметили новые признаки скорого взрыва. Вам будет интересно: Правда ли, что в 2025 году у Сатурна исчезнут кольца Как найти созвездие Северная Корона Вспышку сверхновой можно будет увидеть невооруженным глазом, она будет выглядеть как яркая звезда на небе. Чтобы найти ее, в первую очередь нужно понять, где находится созвездие Северная Корона.

Оно располагается слева от Большой Медведицы и выглядит как небольшая дуга из семи звезд. Тау находится у левого края — если периодически поглядывать в эту область, летом 2024 года можно будет заметить, что звезда стала ярче. Примерно через неделю она снова потухнет и будет видна только через бинокль или телескоп. Созвездие Северная Корона на ночном небе.

А астроном Тихо Браге решил померить до нее расстояние. Оказалось, она дальше Луны, дальше Сатурна и вообще за пределами Солнечной системы. Нам этот вывод кажется естественным, но тогда он потряс основы науки — ученые думали, что выше Луны вообще не может быть никаких изменений, там «вечность».

Вспышка сверхновой — это самое катастрофичное явление во Вселенной. Именно в таких взрывах образуется все химическое разнообразие окружающей нас жизни: ведь изначально во Вселенной был только водород, все остальное синтезировано в сверхновых. То есть сверхновые — это химические и ядерные реакторы. Ваши тела состоят из элементов, которые когда-то были произведены там. Но есть и плохие новости: вспышки сопровождаются выбросом мощной радиации. Грозит ли нам радиоактивный душ из Большой Медведицы? К счастью нет.

Радиация летит медленнее света и не по прямой. Ее отклоняют силовые линии магнитного поля галактик. Пока к нам долетит, если долетит, все рассеется. Так что на сверхновую можно спокойно смотреть. А где и как? Берите ручку «ковша». Две крайние звезды.

Между ними отмерьте мысленно середину. И поднимитесь вверх примерно на то же расстояние, что и между звездами «ручки».

В 2024 году произойдет первый за 80 лет видимый взрыв сверхновой — как на него посмотреть

Бразильские астрономы из Пресвитерианского университета Маккензи установили возможную причину сверхмощных вспышек на некоторых звездах. Взрыв вспыхнул, когда Вселенной было 6 миллиардов лет. Однако взрыв оказался беспрецедентно плоским, что является очень необычным явлением, поскольку звезды обычно взрываются в сферической форме из-за своей формы.

Похожие новости:

Оцените статью
Добавить комментарий