Новости теория струн кратко и понятно

Теория струн, имеет все шансы разрешить главный спор в физике XX века – включить гравитационное взаимодействие в Стандартную модель.

Противоречие физики

  • Содержание
  • Теория струн
  • Теория струн — кратко и понятно
  • Теория струн: кратко и понятно о сложном. В чем она заключается?
  • Теория струн: кратко и понятно о сложном. В чем она заключается?

Теория струн кратко и понятно. Теория струн для чайников.

Но до сих пор исследователи исходили из того, что теория струн создана в соответствии с квантовой механикой и работали только в направлении использования квантовой механики для попыток проверки струнной теории поля. Авторы данной работы решили поступить наоборот. Предположив, что струнная теория поля верна, они использовали ее, чтобы попытаться подтвердить саму квантовую механику. В работе, которая переформулирует струнную теорию поля на более ясном языке, Ицхак Барс и Дмитрий Рычков показали, что набор фундаментальных принципов квантовой механики, известных как «правила коммутации» принципы неопределенности , могут быть получены из геометрии слияния и расщепления струн. Таким образом, вместо того, чтобы принять квантовые правила коммутации в качестве постулата, авторы получают их из физического процесса струнных взаимодействий.

Этот результат может послужить аргументом в пользу «физичности» теории струн. Ведь если с ее помощью удастся объяснить происхождение законов квантовой механики, то, по словам Ицхака Барса, это не только «может разгадать тайну, откуда исходит квантовая механика», но и откроет дверь для признания струнной теории поля, или пока еще не разработанного более широкого ее варианта, под названием M-теория, основой всей физики.

Ее парадигма подразумевает существование большого количества измерений. Кроме того, теория струн говорит, что мир состоит не из частиц, а из вибрирующих нитей — тех самых струн. Представьте себе гитару. Удар по струнам вызывает вибрацию, рождается звук.

Однако согласно результатам нового исследования, опубликованного в журнале Letters in Mathematical Physics , теория струн все же, имеет право на существование. Математики из университета штата Юта и Сент-Луисского университета опубликовали результаты математических расчетов о двух ветвях теории струн. В ходе работы исследователи изучили специальное семейство компактных K3-поверхностей — связанных комплексных двумерных поверхностей. Они представляют собой важные геометрические инструменты для понимания симметрий физических теорий. Пример поперечного сечения поверхности K3 в 3-х мерном пространстве, используемой математиками для изучения струнных двойственностей между F-теорией и гетеротической теорией в восьми измерениях. Напомним, что одной из важных особенностей теории струн является то, что она требует дополнительных измерений пространства-времени для математической согласованности. Однако далеко не каждый способ обработки этих дополнительных измерений, также называемый «компактификацией», дает модель с правильными свойствами для описания природы. Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3. В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях. Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик.

Развитие Существует два типа частиц: фермионы — частицы вещества, и бозоны — переносчики взаимодействия. К примеру, фотон является бозоном, переносящим электромагнитное взаимодействие, гравитон — гравитационное, или тот же бозон Хиггса, распространяющий взаимодействие с полем Хиггса. Так вот если теория струн учитывала лишь бозоны, то теория суперструн также учла и фермионы, что позволило избавиться от тахионов. Читайте также: Ученые утверждают, что много кофе сердцу не вредит Конечный вариант принципа суперструн разработан Эдвардом Виттеном и называется «м-теория», согласно которой для объединения всех различных версий суперструнной теории следует ввести 11-тое измерение. На этом, пожалуй, можно и закончить.

Из Википедии — свободной энциклопедии

  • Из Википедии — свободной энциклопедии
  • Теория суперструн кратко и понятно
  • Популярно о теории струн
  • Теория струн простыми словами
  • Из Википедии — свободной энциклопедии

Теория струн простым языком

В своей основе Теория струн отрицает теорию Большого взрыва и утверждает, что Вселенная существовала всегда. Теория струн предположительно решает эту проблему и стремится описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации. Важнейшее значение теории струн для физиков, если излагать кратко: она претендует на роль «теории всего», то есть может объединить в одно целое все физические аспекты существования Вселенной. это активная исследовательская платформа в области физики элементарных частиц, которая пытается согласовать квантовую механику и общую теорию относительности. Новости науки, высокие технологии и научные открытия. Теория струн пытается объединить четыре силы – электромагнитную, сильные и слабые ядерные взаимодействия, и гравитацию – в одну.

Космический эксперимент поставил под сомнение теорию струн

Макроскопический уровень — вещество 2. Молекулярный уровень 3. Атомный уровень — протоны, нейтроны и электроны 4. Субатомный уровень — электрон 5. Субатомный уровень — кварки 6. Ramos В Общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут — гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой.

Они создают деформации пространства-времени — то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая Общая теория относительности находится в неразрешимом конфликте с «взбалмошной хулиганкой» — квантовой механикой, и, как следствие, макромир не может «помириться» с микромиром. Вот тут на помощь и приходит теория струн. Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть — даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле. ОТО описывает одну из самых известных сил Вселенной — гравитацию.

Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил. С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие — но вот гравитация к ним не присоединяется никак. Теория струн — одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во Вселенной — недаром ее еще называют «Теорией Всего». Вначале был миф До сих пор далеко не все физики пребывают в восторге от теории струн.

А на заре ее появления она и вовсе казалась бесконечно далекой от реальности. Само ее рождение — легенда. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел функцию двухсотлетней давности, впервые записанную швейцарским математиком Леонардом Эйлером. Каково же было удивление Венециано, когда он обнаружил, что функция Эйлера, которую долгое время считали не чем иным, как математической диковинкой, описывает это сильное взаимодействие. Как же было на самом деле? Формула, вероятно, стала результатом долгих лет работы Венециано, а случай лишь помог сделать первый шаг к открытию теории струн.

Функция Эйлера, чудесным образом объяснившая сильное взаимодействие, обрела новую жизнь. Эти частицы вели себя так, что не могли быть просто точечными частицами. Сасскинд понял — формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться. Описав свое открытие, Сасскинд представил революционную идею струн. К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно.

Стандартная модель В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что Вселенная намного богаче, чем это можно было себе представить. Это был настоящий «демографический взрыв» элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, — не хватало даже букв для их обозначения. Но, увы, в «родильном доме» новых частиц ученые так и не смогли отыскать ответ на вопрос — зачем их так много и откуда они берутся?

Это подтолкнуло физиков к необычному и потрясающему предсказанию — они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы-переносчики взаимодействий. Таковым, например, является фотон — частица света. Ученые предсказывали, что именно этот обмен частицами-переносчиками — есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил.

Кроме того, физика квантов говорит также о том, что, если разорвать микрочастицу на две части, то эти две части будут продолжать вертеться по своей оси в одном и том же направлении. А также любые воздействия на первую частицу несомненно передадутся и второй, причем мгновенно и совершенно независимо от удаленности этих частиц. Так в чем же сложность по совмещению понятий двух этих теорий? По теории квантовой физики микромир совершенно неровный, имеет вездесущие шероховатости. Это если говорить обыденным языком. А математики и физики вовлекли свои теории в формулы. И вот, когда формулы квантовой физики и ОТО попытались соединить, то в ответе получилась бесконечность. Бесконечность в физике равносильна утверждению, что уравнение построено неправильно.

Полученное равенство перепроверяли на много раз, но ответ по-прежнему был бесконечностью. Теория струн внесла коренные изменения в будничный мир науки. Она представляет собой постановление о том, что все микрочастицы не шарообразной формы, а формы вытянутых струн, которые пронизывают всю нашу вселенную.

Математики из университета штата Юта и Сент-Луисского университета опубликовали результаты математических расчетов о двух ветвях теории струн. В ходе работы исследователи изучили специальное семейство компактных K3-поверхностей — связанных комплексных двумерных поверхностей.

Они представляют собой важные геометрические инструменты для понимания симметрий физических теорий. Пример поперечного сечения поверхности K3 в 3-х мерном пространстве, используемой математиками для изучения струнных двойственностей между F-теорией и гетеротической теорией в восьми измерениях. Напомним, что одной из важных особенностей теории струн является то, что она требует дополнительных измерений пространства-времени для математической согласованности. Однако далеко не каждый способ обработки этих дополнительных измерений, также называемый «компактификацией», дает модель с правильными свойствами для описания природы. Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3.

В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях. Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик.

Однако таких искажений астрофизики не зафиксировали. Это поставило под сомнение теорию струн. Исследователи считают, что, возможно, теперь сторонникам этой теории придется пересмотреть прогнозы о диапазоне масс этих частиц. Теоретикам придется задуматься, поскольку одной из возможных интерпретаций этой работы является то, что аксионоподобных частиц не существует.

Но есть и другое объяснение. Оно заключается в том, что такие частицы имеют более низкие значения конвертируемости, чем предел обнаружения обсерватории "Чандра". Возможно, будущие исследования, когда появятся более чувствительные инструменты, все-таки помогут обнаружить неуловимые аксионы.

Теория струн. Теория всего

Теория струн возникла в середине 1970-х годов в результате развития струнной модели строения адронов. Теория струн применима к познанию строения микромира не в том смысле, что там кругом висят верёвочки, а что описание происходящих в микромире процессов математически сходно с описанием неких “струн”. Квантовая теория струн – это фундаментальная теория, которая стремится объединить квантовую механику и общую теорию относительности. Теория струн, вероятно, это одна из самых интригующих гипотез в мире науки. Заметьте, что теория струн совсем не противоречит, а скорее дополняет Стандартную модель, в основу которой заложена теория строения атома Бора, критикуемая в начале этой статьи. Теория струн возникла в середине 1970-х годов в результате развития струнной модели строения адронов.

Теория струн, Мультивселенная

В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно. Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией. Ученые в качестве объяснения краткой сути теории струн пытались ввести понятие нулевого измерения. Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее. Понятно, что с математиче ской точки зрения с гладкими поверхностями работать гораздо лучше и плодотворнее, чем с сингулярными — в этом объяснение успехов математи ческого аппарата теории струн. Сравнительно недавно появился подход, дающий возможность разрешить это противоречие — теория струн.

Теория струн для чайников

В природе существуют четыре фундаментальные силы: гравитация , электромагнетизм и слабые и сильные ядерные силы. Одна из главных целей физиков - разработать теорию, которая может описать все эти силы. За последние 6 десятилетий, пытаясь объединить все силы, физики-теоретики выдвинули много разных интересных идей и новых теорий. Одна из самых многообещающих из этих теорий - теория струн. Теория струн в настоящее время стала самой противоречивой концепцией в физике, целью которой является объединение двух столпов физики 20-го века: теории относительности Эйнштейна и квантовой механики. Проще говоря, это всеобъемлющая структура, которая может объяснить всю физическую реальность если она доказана. Основная идея теории струн Выбери что-нибудь вокруг себя. Допустим, вы взяли яблоко со стола. Из чего сделано яблоко? Ну, чтобы ответить на этот вопрос, вам нужно заглянуть в него. Если вы продолжите увеличивать его, рано или поздно вы начнете видеть молекулы.

Но это не конец истории, если вы еще больше увеличите их и сделаете их достаточно большими, вы начнете видеть атомы. Атомы не являются концом истории, потому что, если вы увеличите масштаб, вы увидите электроны и ядра. Ядро само состоит из протонов и нейтронов. Если вы возьмете одну из этих частиц скажем, нейтрон и увеличите ее, вы найдете еще больше крошечных частиц внутри, называемых кварками. Теперь это то, где традиционная идея останавливается и теория струн приходит, предполагая, что внутри этих крошечных частиц есть что-то еще. Обычная идея гласит, что внутри кварков нет ничего, но теория струн гласит, что вы найдете крошечную нитку, похожую на струну. Они похожи на струну на скрипке: когда вы отрываете струну, она вибрирует и создает небольшую музыкальную ноту. Иллюстрация струны Однако крошечные струны в теории струн не дают музыкальных нот. Вместо этого, когда они вибрируют, они сами производят частицы. Каждый тип вибрации соответствует различным частицам.

И теперь единая теория должна объединять не две силы, а четыре. Мечта Эйнштейна стала еще более призрачной. В конце 1960-х и в начале 1970-х годов пошла обратная волна.

Физики осознали, что методы квантовой теории поля, успешно применённые в электромагнетизме, также хорошо описывают слабое и сильное ядерные взаимодействия. Таким образом, все три негравитационные силы описываются на одном математическом языке. Более того, при подробном исследовании этих квантовых теорий поля обнаружились взаимосвязи, указывающие на возможное единство электромагнитных, слабых и сильных взаимодействий.

Давайте рассмотрим этот вопрос подробнее. Глэшоу, Салам и Вайнберг предположили, что электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия. Электрослабая теория была подтверждена в экспериментах на ускорителе в конце 1970-х и начале 1980-х годов.

Глэшоу и Джорджи пошли дальше и предложили, что электрослабое и сильное взаимодействия являются проявлениями ещё более фундаментального взаимодействия, в рамках подхода, который был назван великим объединением. Однако простейшая версия великого объединения была отброшена, когда учёным не удалось экспериментально подтвердить одно из предсказаний — что протоны должны время от времени распадаться. Тем не менее есть много других вариантов великого объединения, которые пока экспериментально не отвергнуты, например, потому, что предсказываемая ими скорость распада протона настолько мала, что чувствительность современного экспериментального оборудования недостаточна для обнаружения распада.

Однако даже если великое объединение не подкрепляется экспериментальными данными, уже нет никаких сомнений, что три негравитационных взаимодействия могут быть описаны на едином математическом языке квантовой теории поля. Всё это являлось впечатляющим продвижением к единой теории, однако на таком обнадёживающем фоне возникла досадная проблема. Когда учёные применили методы квантовой теории к четвёртой силе в природе — гравитации, оказалось, что математика просто не работает.

Как бы успешно ни работали общая теория относительности и квантовая механика на своих естественных масштабах, на больших и малых расстояниях, бессмысленный результат, полученный при попытке их объединения, означал глубокую трещину в понимании законов природы. В середине 1980-х годов произошёл следующей ключевой скачок. Новая теория, теория суперструн, завладела умами физиков по всему миру.

Она смягчила разногласия между общей теорией относительности и квантовой механикой и дала надежду, что гравитация может быть встроена в объединённый квантово-механический каркас. Была развита впечатляющая и изощрённая математическая структура, но многое в теории суперструн оставалось неясным. Открытие теории суперструн дало толчок к развитию других, тесно связанных теоретических подходов, направленных на поиски единой теории фундаментальных взаимодействий.

В частности, суперсимметричная квантовая теория поля и её гравитационное расширение супергравитация глубоко изучались в середине 1970-х годов. Суперсимметричная квантовая теория поля и супергравитация основаны на новом принципе суперсимметрии, который был открыт в рамках теории суперструн, но эти подходы подключают суперсимметрию к обычным теориям точечных частиц. Позже начиная с середины 1990-х годов, попытки теоретиков распутать эти загадки неожиданно привели теорию струн к сюжету с мультивселенными.

Учёным давно было известно, что математические методы, применяемые при анализе теории струн, используют множество приближений, а потому их можно усовершенствовать. Когда была сделана часть уточнений, учёные осознали, что соответствующий математический аппарат ясно указывает, что наша Вселенная является, возможно, частью некоторой мультивселенной. Квантовые поля Начнем с рассмотрения традиционной квантовой теории поля.

В классической физике поля описываются как нечто типа тумана, который пронизывает область пространства и может переносить возмущения в виде ряби и колебаний. В квантовой механике понятия поля приводит к квантовой теории поля. Квантовая неопределенность заставляет значение поля в каждой точке случайно колебаться.

Подобно воде, состоящей из молекул H2O, квантово-механическое поле состоит из бесконечно малых частиц — кванты поля. Но как бы не представлять частицы в рамках квантовой теории поля они математически описываются как крохотные точки, не имеющие пространственного размера и внутренней структуры. Осведомлённый читатель может не согласиться с утверждением, что каждое поле ассоциируется с частицей.

Более точное утверждение звучит так: малые флуктуации поля около локального минимума его потенциала обычно интерпретируются как возбуждения частиц. Этого определения будет достаточно для наших обсуждений. К тому же осведомлённый читатель заметит, что локализация частицы в точке сама по себе является идеализацией, потому что для этого потребуется — из принципа неопределённости — бесконечный импульс и энергия.

Опять же суть в том, что в квантовой теории поля нет, в принципе, предела того, как можно локализовать частицу. Вера физиков в квантовую теорию поля обусловлена одним существенным фактором: ни один эксперимент не противоречит её предсказаниям. Наоборот, данные подтверждают, что уравнения квантовой теории поля описывают поведение частиц с изумительной точностью.

После такого успеха можно ожидать, что квантовая теория поля является математическим фундаментом для понимания всех сил в природе. В результате упорного труда многих из физиков к концу 1970-х было установлено, что слабое и сильное ядерные взаимодействия действительно прекрасно описываются квантовой теорией поля. Однако многие из физиков быстро пришли к выводу, что ситуация с четвёртым взаимодействием в природе — гравитацией, гораздо тоньше.

Как только уравнения общей теории относительности объединяются с уравнениями квантовой теории, математика начинает бунтовать. Совместное использование уравнений для вычисления квантовой вероятности некоторых физических процессов — таких как вероятность того, что два электрона оттолкнутся друг от друга — как правило, приводит к ответу бесконечность. Но вероятности бесконечными быть не могут.

По определению значение вероятности должно находиться между 0 и 1 между 0 и 100, если считать в процентах. Бесконечная вероятность шлёт очевидный математический намёк: совместное использование уравнений бессмысленно. Физики выяснили, что проблема кроется в дрожании и флуктуациях из-за квантовой неопределённости.

Математические методы квантовой теории поля были разработаны для анализа флуктуаций сильных, слабых и электромагнитных полей, но, при их применении к гравитационному полю — полю, которое определяет кривизну пространства-времени, — оказалось, что они бесполезны. Целое поколение физиков боролось с квантовыми флуктуациями, и к началу 1970-х годов были развиты математические методы, адекватно описывающие квантовые свойства негравитационных полей. Однако флуктуации гравитационного поля качественно другие.

Они больше похожи на землетрясение. Поскольку гравитационное поле вплетено в саму ткань пространства-времени, квантовые флуктуации сотрясают всю его структуру вдоль и поперёк. Математические методы, используемые для анализа таких всеобъемлющих квантовых флуктуаций, перестают работать.

В течение многих лет физики смотрели сквозь пальцы на эту проблему, потому что она возникает только при весьма экстремальных условиях. Гравитация вступает в игру, когда объекты очень массивны, а квантовая механика — когда их размер очень мал.

Дополнительные измерения Теории струн требуются дополнительные измерения: говорится о добавлении по меньшей мере 6 измерений к 4 известным всего 10 измерений. В ней также предусмотрены способы связать большие дополнительные измерения с малыми. Мы знаем три измерения, что нас окружают — те, которые определяют длину, ширину и глубину всех объектов оси x, y и z соответственно. Четвёртое измерение — это время, оно определяет свойства всей известной материи в любой заданной точке.

Кто открыл теорию струн? Основателем теории струн, ключевым теоретиком, стоящим за самыми ранними моделями, считается итальянский физик-теоретик Габриеле Венециано родился в 1942 г. Также в середине 1970-х годов одними из первых и наиболее важных теоретиков были: Пьер Рамон,.

Субатомный уровень 5. Субатомный уровень 6. Ramos Особенности Теории струн 10-ое измерение Однако проблема заключается в том, что эти струны не могут существовать в четырех измерениях. Согласно теории струн в нашей Вселенной существует больше измерений, чем четыре. Мы знаем о трех пространственных и времени.

Теория струн предполагает, что таких измерений минимум десять. Суперсимметрия Существует два класса элементарных частиц: бозоны и фермионы. Согласно Теории струн, между этими частицами существует суперсимметрия: напротив каждого фермиона есть свой бозон. Это правило исключает существование воображаемого уровня энергии и придает смысл самой теории.

Что такое теория струн? Простой обзор

Теория струн и квантовая механика 06. В своей работе , опубликованной в журнале PhysicsLetters B, они показали, что один из фундаментальных принципов квантовой механики — принцип неопределенности Гейзенберга — можно вывести из теории струн. Об этом пишет портал e ScienceNews. Ученые решили развернуть последовательность рассуждений.

В результате некоторых математических выкладок появилось антисимметричное тензорное поле 3-го ранга, которое по теории могло взаимодействовать только с продолговатыми объектами, которые и назвали струной. Но как Вальтер Ритц, так и разработчики теории струн не смогли наполнить родившиеся объекты материальной сущностью, поэтому были вольны с ними делать любые невероятные процедуры, которые не возможны для реальных объектов. Предложенная мною модель кванта отсекает все не возможное и объясняет все происходящее в природе логично, безо всякого дуализма, суперпозиции , суперсимметрии и т. Обычно ученому, что не рассказывай, он никогда не будет тебя слушать, если ты не подкрепишь свои мысли математикой. Модель моего кванта подтверждается теорией Ритца, а модель фотона — теорией струн, хотя я их и не знаю. Будем двигаться по книге дальше. Брайан полагает, что это одно из предсказаний теории струн, вытекающее из суперсимметрии.

До этого в различных теориях существовала симметрия, но она ничего не говорила о новых частицах. Теория струн расширила симметрию до суперсимметрии, из которой следовало, что моды колебаний струны реализуются парами суперпартнёров, спин которых отличается на?. Они на много тяжелее протона. Из-за этого ученые полагают, мы их и не можем обнаружить. Книгу Брайан писал до постройки Большого адронного коллайдера, но уже знал, что такой ускоритель строится. Он, и много других ученых, возлагали надежду обнаружить суперпартёры этим ускорителем, но пока положительных результатов нет. Да и быть не должно: там частицы разбиваются, а не собираются. Так что это предсказание пока ничем не подтверждено. Второе предсказание. Частицы с дробным электрическим зарядом.

Ну а это, то что частица может обладать дробным зарядом, для тех, кто знает, что ускоряемая частица излучает и поглощает это является послесказанием, а не предсказанием. Излучившая частица потеряла часть заряда и массы, а поглотившая частица прибавила в заряде и массе. А величины этих изменений можно и посчитать.

Различия между этими теориями очень сложны математически. Теория струн тип I: включает открытые и замкнутые струны; содержит форму симметрии, которая математически является группой симметрии O 32. Теория струн тип IIA: открытые струны этого типа прикреплены к структурам D-браны с нечётным числом измерений; замкнутые струны где модели колебаний симметричны перемещаются независимо вправо и влево по замкнутой струне. Теория струн тип IIB: открытые струны прикреплены к структурам D-бранам с чётным числом измерений; у замкнутых струн модели колебаний асимметричны зависит от того, перемещаются ли они влево или вправо по струне. Теория струн тип HO англ: "Эйч О", полное название "Гетеротическая теория струн O 32 " : форма гетеротической теории струн; содержит только замкнутые струны, у которых правосторонние колебания напоминают струны типа II, а левосторонние напоминают бозонные струны.

Теория струн тип HE англ. Группа симметрии отличается от предыдущей теории типа HO. Этот тип также имеет важные математические различия в отношении группы симметрии.

В 1971 году была создана обновлённая теория струн, уже под названием «теория суперструн». Обновление заключалось в том, что если первый вариант теории включал в себя описание только бозонов, то теория суперструн схавала ещё и фермионы. Тут нужно остановиться и уяснить подробнее. Демонстрация полуцелого спина на примере кофе Все элементарные частицы обладают такой характеристикой, как спин. Школьники могут вообразить это себе как скорость вращения частицы вокруг собственной оси подобно тому, как Земля вертится вокруг себя, сменяя день и ночь. Хотя на самом деле спин показывает как бы крутилась частица, если бы крутилась, причем по расчетам скорость ее оборота превышает световую и при всем прочем создает магнитное поле. Имеется и другой вариант объяснения сути спина «на пальцах», не менее, впрочем, майндфачный в итоге: спин — это количество оборотов вокруг своей оси, которые надо сделать частице, чтобы выглядеть так же, как вначале. И если для спинов в пределах единицы все вроде понятно любому предмету неправильной формы можно приписать «спин», равный единице , то при попытке представить себе форму объекта, который надо прокрутить вокруг оси дважды, чтобы он выглядел так же, как вначале, могут произойти необратимые изменения в коре головного мозга или замещающего органа. Чтобы уменьшить градус майндфака, попробуйте повернуть на 360 градусов чашку кофе, стоящую на ладони. Получилось то же, с чего начали? Ощущения в руке вам подскажут, что не совсем то. А вот если… впрочем, гляньте-ка лучше видео. Бозонами называются те частицы, которые имеют целочисленный спин. Фермионы — те, у кого спин полуцелый. Так вот, первая версия теории струн описывала только бозоны, что было ещё одной из причин, по которым она до сих пор стоит на морозе. Обновлённый вариант теории струн включал в себя и фермионы, и тут все поняли, что при таком подходе проблема ненужных тахионов, как и множество других противоречий, исчезает! Но, как всегда, не обошлось без проблем. Новая теория струн не только заставила всех просветлиться, но и вбросила говна на вентилятор: по ней получалось, что для каждого бозона должен существовать соответствующий фермион, то есть между бозонами и фермионами должна существовать определённая симметрия. Такой вид симметрии предсказывался и раньше — под названием «суперсимметрия». Фейл заключался в том, что никто и никогда не наблюдал эти самые суперсимметричные фермионы. Объяснение тому нашли простое: по расчётам, суперсимметричные фермионы должны обладать огромной для микромира массой, и потому в обычных условиях их хрен получишь. Для того, чтобы зарегистрировать их, нужны огромные энергии, которые достигаются при столкновении лёгких частиц на почти световых скоростях. Физики, осознав, в какой жопе они оказались, стали плакаться в жилетку всем, кому ни попадя, и причитать «бида-бида, канец науке». Неизвестно, кому они продали душу , но в итоге им удалось разжалобить больших дядь на серьёзные бабки для строительства Большого адронного коллайдера и пары коллайдеров поменьше. Да-да, именно так, Анон — одной из целей воздвижения этой НЁХ было именно получение суперсимметричных фермионов. Доводы школолофизика о 9-и измерениях, часть рас часть два Итак, теорию струн заменили теорией суперструн, но легче не стало: не успели физики прийти в себя от бодуна после празднования новой теории, как во все дыры полезли новые глюки. В итоге помощь пришла оттуда, откуда совсем не ждали. Ещё в далёком 1919 году никому тогда не известный немецкий математик Калуца прислал Эйнштейну письмо, где изложил свою теорию: наша Вселенная, вполне может статься, не трехмерная, а измерений может иметься более 9000. В своих работах Калуца делал допущение, что на самом деле Вселенная может быть четырехмерной в пространстве, и в доказательство своих слов приводил свои расчёты, из которых получалось, что при таком условии ОТО замечательно согласовывается с теорией электромагнитного поля Максвелла, чего невозможно достичь в обычной трехмерной Вселенной. Эйнштейна письмо не впечатлило ещё бы, он только что придумал охуительно сложную теорию, хочется дать продохнуть мозгам, а тут ещё какой-то укуренный немец лезет со своим атсралом , и он ответил лишь « Окей ». В 1926 году физик Оскар Клейн заинтересовался работами Калуцы и усовершенствовал его модель. По Клейну получалось, что дополнительное измерение действительно может существовать, но оно находится в «свёрнутом» и зацикленном на самом себе виде. Причём свернуто четвёртое измерение очень туго — до размеров элементарных частиц, поэтому мы его и не замечаем. Вспомнили о Калуце в восьмидесятых годах, когда теория струн в очередной раз оказалась в жопе. Воспалённые мозги физиков в попытке объяснить несоответствия теории струн с квантовой механикой докатились до того, что было выдвинуто предположение — вся хуйня в расчётах была в том, что струны в нашей теории могут колебаться всего лишь в трёх направлениях, которыми располагает наша Вселенная. Вот если бы струны могли бы колебаться в четырёх измерениях… О, да тут же был какой-то Калуца, кстати, где он? Расчёты показали, что и в этом случае следует неиллюзорный фейл, но зато число противоречий в уравнениях вроде уменьшилось. Взбодренные физики продолжали увеличивать число измерений, пока не ввели все 9!!! И тогда физики громогласно провозгласили, что на самом деле мы живём в десятимерной Вселенной, в том числе одно измерение во времени, три знакомых нам измерения развернуты до космических размеров, а остальные шесть свернуты в микроскопических масштабах и потому незаметны. Такие дела. Причём ни подтвердить, ни опровергнуть это на эксперименте практически никак нельзя, ибо речь идёт о таких малых масштабах струн и свернутых измерений, что современная аппаратура ничего не найдёт. Физики были счастливы, общественность охуевала и окончательно утвердилась в мысли, что физика — бесполезная наука. Рождение M-теории[ править ] Двумерная проекция трехмерной визуализации пространства Калаби-Яу Окрыленные новыми успехами, физики ринулись в бой, но скоро опять стали раздаваться возгласы: « WTF? Основным успехом явилось то, что физикам удалось по крайней мере, на бумаге установить общий вид шести свернутых измерений, необходимый для того, чтобы наш мир при этом оставался таким, какой он есть. Оказалось, что этот вид соответствует некоторым математическим объектам из группы под названием «Многообразия Яу» названа по имени развеселого и улыбчивого китайского математика по фамилии Яу, описавшего ее. Главный фейл — то, что хотя общий вид этих объектов и вычислили, но точный вид, как оказалось, нельзя установить без эксперимента. Без нахождения точного вида пространства Калаби-Яу нашей Вселенной вся теория струн скатывалась практически в гадание на кофейной гуще. Впрочем, работы продолжались, и постепенно физикам удалось вычленить из общей массы гипотез пять более-менее правдоподобных теорий, которые могли бы описать нашу Вселенную. Ситуация сложилась вообще аховая — теперь теорий стало больше, чем надо, и это было нехорошо. Авторитет теории струн падал, дальнейшие направления для исследований не виделись, учёные пинали хуи целыми месяцами и потихоньку начали тухнуть. Но в середине девяностых годов прошлого века произошла так называемая вторая революция в теории струн. Неизвестно, чем и куда упоролись физики, но путём фатальных разрывов мозга один из них родил гипотезу, что десять измерений — это, конечно, хорошо, но всё выглядит так, будто чего-то не хватаэ. Оказалось, что введение ещё одного измерения со скрипом, но укладывается в ложе квантовой теории и ОТО, и более того — снимает очень многие накопившиеся проблемы в теории струн. В том числе успешно скрещивает все пять недотеорий в одну-единственную убертеорию.

Из Википедии — свободной энциклопедии

  • Что такое теория струн и может ли она открыть дверь в другие измерения
  • Что такое теория струн простыми словами (насколько это возможно)?
  • Теория суперструн
  • Предсказания теории струн.

Квантовая теория струн

меньших, чем атомы, электроны или кварки. Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на развлекательном портале Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее. Теория струн естественно включает в себя и гравитацию с ее гипотетическим переносчиком — гравитоном.

Что такое теория струн? Простой обзор

Описание теории струн простым и понятным языком, или как принято говорить "Для чайников". Как известно, теория струн была предложена в 1970-х годах для решения проблем квантовой гравитации и Стандартной модели. Действительно, теория струн способна объединить квантовую теорию и гравитацию, но сделать это, как оказалось, можно пятью способами. Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме. Самые интересные и оперативные новости из мира высоких технологий. Стало отчетливо понятно, что эта программа на самом деле является отнюдь не содержанием теории струн, а только еще одной областью ее приложения.

Похожие новости:

Оцените статью
Добавить комментарий