27489. На рисунке изображен график функции y = f(x), определенной на интервале (-5;5). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней. Решение: 1. График получен путём смещения графика функции Формула на 2 единицы вправо и на 2 единицу вниз, следовательно, b=-2, с=-2; 2. График проходит через точку (4;1). Подставим её и найдём а: Ответ: 50,5.
Другие задачи из этого раздела
- На рисунке изображен график функции y=f(x) - Варианты и решения ответов на
- Графики функций
- Графики функций. Онлайн тесты
- На рисунке изображён график функции f(x)=kx+b. Найдите f(-5).
Задание 11. ЕГЭ профиль демоверсия 2024. График функции.
Задача 3 — 03:55 В скольких из этих точек производная функции f x положительна? Задача 4 — 05:09 Определите количество целых точек, в которых производная функции положительна. Задача 5 — 08:18 В скольких из этих точек производная функции f x положительна? Задача 6 — 09:53 В скольких из этих точек производная функции f x отрицательна? Определите количество целых точек, в которых производная функции отрицательна.
Задача 8 — 12:55 Сколько из этих точек лежит на промежутках возрастания функции f x?
Однако важно понимать, в каких случаях его использование является уместным, а в каких нет. Уместное использование: Образовательные цели: ЯсноПонятно24 отлично подходит для студентов и исследователей, ищущих дополнительные материалы для обучения или исследований.
Решение бытовых вопросов: Пользователи могут получать советы по повседневным вопросам, например, по кулинарии, домашнему мастерству или организации личных финансов. Креативные идеи: Художники, писатели и другие творческие личности могут использовать сервис для генерации идей и вдохновения. Технические консультации: Полезен для получения информации о программировании, инженерии и других технических областях.
Найдите f 15. Найдите ab.
Найдите количество точек экстремума функции. График функции Экстремумы - это точки минимума и максимума функции «вершины» и «впадины». На рисунке я их отметил красными точками. Всего точек экстремума пять штук. График функции Во-первых, производная положительна, когда функция возрастает, и отрицательна - когда убывает. Другими словами, чем быстрее растет или убывает функция чем круче ее график , тем больше по модулю ее производная. Наименьшее значение производной будет там, где функция быстрее убывает. График производной функции Тут важно не запутаться и помнить, что перед вами график производной функции.
Регистрация
- Контроль заданий 11 ОГЭ | Образовательная социальная сеть
- Разместите свой сайт в Timeweb
- Прототипы задания №6 ЕГЭ по математике
- ЕГЭ математика профиль. Задание 9. На рисунке изображен график функции вида f(x)=x^2/a+bx+c.
- Алгебра. 8 класс
Линия заданий 7, ЕГЭ по математике базовой
На рисунке изображены графики функций вида y = kx + b. Установите соответствие между графиками функций и знаками коэффициентов k и b. На рисунке изображён график функции $y=f(x)$ и касательная к нему в точке с абсциссой $x_0$. Задание №1. На рисунке изображены график функции y = f(x) и касательная к нему в точке с абсциссой x0. Решение: 1. График получен путём смещения графика функции Формула на 2 единицы вправо и на 2 единицу вниз, следовательно, b=-2, с=-2; 2. График проходит через точку (4;1). Подставим её и найдём а: Ответ: 50,5. Задание 9. На рисунке изображен график функции вида f(x)=x^2/a+bx+c. Задачи 11 ОГЭ графики функций.
Линия заданий 7, ЕГЭ по математике базовой
ОГЭ / Графики функций | Задача 1. На рисунке изображен график функции $y=f(x)$, определенной на интервале $(-4;10)$. |
На рисунке изображён график функции вида f(x)=|ax-b|, где a и b - целые числа | Условие задачи: На рисунке изображен график функции y = f(x) и отмечены точки -7, -3, 1, 5. В какой из этих точек значение производной этой функции наибольшее? |
Задача №35278: График линейной функции (прямая) — Каталог задач по ЕГЭ - Математика — Школково | На рисунке изображён график функции вида f(x)= + +c, где числа a, b и c — целые. |
На рисунке изображен график какой функции у = f(x) ?
На рисунке 69 изображён график линейной функции (y=f(x)). Какие из следующих утверждений о данной функции верны? Дана функция у = ах2 + bх + с. На каком рисунке изображен график этой функции, если известно, что а > 0 и квадратный трехчлен ах2 + bх + с имеет два положительных корня? Решение №7 (2021 вар1): На рисунке изображен график y=f'(x) производной функции. на рисунке изображены графики функций вида y=kx+b установите соответствие между графиками k и b. Задания под номером 10 ЕГЭ по профильной математике с видеоразборами. Решенные задачи сохраняются, а также показывается прогресс по каждой теме в личном кабинете.
Редактирование задачи
Задача 6 — 09:53 В скольких из этих точек производная функции f x отрицательна? Определите количество целых точек, в которых производная функции отрицательна. Задача 8 — 12:55 Сколько из этих точек лежит на промежутках возрастания функции f x? Задача 9 — 14:15 Сколько из этих точек лежит на промежутках убывания функции f x? Задача 10 — 15:40 Найдите количество точек экстремума функции f x , принадлежащих отрезку [-17;-4]. Задача 11 — 17:20 Найдите точку экстремума функции f x , принадлежащую отрезку [1;6].
Графики ОГЭ все варианты. Соответствие Графика и функции.
Соответствие между функции графики. График 11 задание ОГЭ. Задания с графиками. Соответствие между функциями и их графиками. График функции задания. Соответствие между функциями и их графиками формулы. Задачи на графики ОГЭ 9 класс.
Задание функции. Графики функций и формулы которые их задают. Графики функций и их формулы 9 класс. Производные ЕГЭ база. Графики ЕГЭ база. Графики функций ЕГЭ база. Задания на производную в ЕГЭ база.
Функции и их графики. Графики функций и их формулы. Графики и функции которые их задают. Демоверсия ОГЭ 2020 по математике 9 класс. Пробник по математике 9 класс 2020 ОГЭ варианты с ответами. Решу ОГЭ математика 9 класс 2020. Задания ОГЭ по математике 2022.
ОГЭ графики функций как решать. Формулы графиков ОГЭ. Как решать графики функций 9 класс ОГЭ. Как определять функции по графику ОГЭ. Графики функций парабола ОГЭ. Квадратичная функция задания ОГЭ. ОГЭ математика графики квадратичной функции.
Открытый банке заданий ЕГЭ математика профиль задание 3. ФИПИ график 5 заданий. Задание 23 ОГЭ математика. Решение 23 задания ОГЭ математике. Задача 23 ОГЭ математика. ОГЭ математика 2022 задания. Первое задание ОГЭ по математике 2022.
Разбор заданий ОГЭ по математике 2022 с решениями. ОГЭ построение графиков с модулем. Построение Графика с модулем ОГЭ. Построение графиков функций с модулем 9 класс ОГЭ. ОГЭ 23 задание график с модулем. Гипербола график функции и формула. Гипербола график формула.
Задания по гиперболе ОГЭ. Вариант ОГЭ математика 9 класс 2021. Пробный экзамен по математике 9 класс 2021 год.
Отметим с помощью штриховых линий промежутки, где график функции убывает «спускается с горы» и где он возрастает «идет в гору». Запишем через знаки неравенств, какие значения принимает « x » на полученных промежутках. Обратите внимание, что во всех случаях при указании промежутков, мы указываем, что их концы входят в промежуток, то есть используем знаки нестрогого неравенства. Остаётся записать полученные промежутки возрастания и убывания функции в ответ.
Отсюда имеем пару: В—3. Эта дата попадает в период 8—14 января. Значит, имеем: Б—4. Производная в точке больше нуля, если касательная к этой точке образует острый угол с положительным направлением оси Ох. Решение: Точка А. Она находится ниже оси Ох, значит значение функции в ней отрицательно. Если провести в ней касательную, то угол между нею и положит. Точка Б. Она находится над осью Ох, то есть точка имеет положит. Касательная в этой точке будет довольно близко «прилегать» к оси абсцисс, образуя тупой угол немногим меньше 1800 с положительным ее направлением. Соответственно, производная в этой точке отрицательна. Получаем ответ: В—1. Точка С. Точка расположена ниже оси Ох, касательная в ней образует большой тупой угол с положит. Ответ: С—2. Точка D. Точка находится выше оси Ох, а касательная в ней образует с положит. Это говорит о том, что как значение функции, так и значение производной здесь больше нуля. Ответ: D—4. По горизонтали указываются месяцы, по вертикали — количество проданных холодильников. Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж холодильников. Анализировать следует характеристики 1—4 правая колонка , находя для каждой из них соответствие в виде временного периода левая колонка. Решение: Анализируем характеристики: Меньше всего холодильников продано в начале и в конце года. Поэтому рассмотрим периоды январь—март и октябрь—декабрь. Значит, здесь подходит все-таки последний период. Ответ: Г—1. Длительный рост продаж наблюдался с апреля по июль. Это время охватывает полностью период апрель—июнь и захватывает начало следующего. Поэтому получаем: Б—2. Тут тоже требуется найти сумму проданных единиц за целые периоды. Для 1-го и последнего периода она уже найдена см. К требуемым 800 холодильникам максимально приближен объем продаж в январе—марте. Поэтому имеем: А—3. Одинаковое падение объема продаж означает, что разница между кол-вом проданных холодильников должна быть одинаковой. Падение продаж наблюдалось, начиная с конца июля. Ответ: В—4. По горизонтали указывается год, по вертикали — объем добычи угля в миллионах тонн. Для наглядности точки соединены линиями. Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов характеристику добычи угля в этот период. Анализируем по очереди приведенные в правом столбце характеристики, используя данный график.
Графики функций
В скольких из этих точек производная функции отрицательна? График функции Производная отрицательна тогда, когда функция убывает график идет вниз. Найдите количество точек экстремума функции. График функции Экстремумы - это точки минимума и максимума функции «вершины» и «впадины». На рисунке я их отметил красными точками. Всего точек экстремума пять штук. График функции Во-первых, производная положительна, когда функция возрастает, и отрицательна - когда убывает. Другими словами, чем быстрее растет или убывает функция чем круче ее график , тем больше по модулю ее производная.
Юридические консультации: Сервис не может заменить профессионального юриста для консультаций по правовым вопросам. Конфиденциальная информация: Не следует использовать ЯсноПонятно24 для работы с конфиденциальной или чувствительной информацией. Критические решения: Не рекомендуется полагаться на сервис при принятии решений, связанных с безопасностью, финансами или важными жизненными изменениями. Вопрос пользователя: На рисунке изображён график линейной функции. Напишите формулу, которая задаёт эту линейную функцию.
Точка Б. Она находится над осью Ох, то есть точка имеет положит. Касательная в этой точке будет довольно близко «прилегать» к оси абсцисс, образуя тупой угол немногим меньше 1800 с положительным ее направлением. Соответственно, производная в этой точке отрицательна.
Получаем ответ: В—1. Точка С. Точка расположена ниже оси Ох, касательная в ней образует большой тупой угол с положит. Ответ: С—2.
Точка D. Точка находится выше оси Ох, а касательная в ней образует с положит. Это говорит о том, что как значение функции, так и значение производной здесь больше нуля. Ответ: D—4.
По горизонтали указываются месяцы, по вертикали — количество проданных холодильников. Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж холодильников. Анализировать следует характеристики 1—4 правая колонка , находя для каждой из них соответствие в виде временного периода левая колонка. Решение: Анализируем характеристики: Меньше всего холодильников продано в начале и в конце года.
Поэтому рассмотрим периоды январь—март и октябрь—декабрь. Значит, здесь подходит все-таки последний период. Ответ: Г—1. Длительный рост продаж наблюдался с апреля по июль.
Это время охватывает полностью период апрель—июнь и захватывает начало следующего. Поэтому получаем: Б—2. Тут тоже требуется найти сумму проданных единиц за целые периоды. Для 1-го и последнего периода она уже найдена см.
К требуемым 800 холодильникам максимально приближен объем продаж в январе—марте. Поэтому имеем: А—3. Одинаковое падение объема продаж означает, что разница между кол-вом проданных холодильников должна быть одинаковой. Падение продаж наблюдалось, начиная с конца июля.
Ответ: В—4. По горизонтали указывается год, по вертикали — объем добычи угля в миллионах тонн. Для наглядности точки соединены линиями. Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов характеристику добычи угля в этот период.
Анализируем по очереди приведенные в правом столбце характеристики, используя данный график. Определяем соответствие каждой из них конкретного временного периода. Решение: Анализируем характеристики: Объем добычи меньше 190 млн т приходился на период с 2001 года по 2005 год. Затем спад добычи зафиксирован в 2009 году, но один год не составляет периода.
Поэтому получаем ответ: А—1. Такая формулировка «объем… сначала уменьшался, а затем начал расти» соответствует 2 периодам — 2002—2003 гг. Но так как первый из этих периодов уже взят в качестве ответа, то правильно здесь использовать пару Г—2. Ситуация, описанная в 3-й характеристике, наиболее точно отображена в периоде 2006—2008 гг.
Отсюда получаем: А—2. Это соответствует периоду времени Б, то есть имеем: Б—3. Прирост населения начал увеличиваться после 2011 г. Поэтому получаем: Г—4. В правом столбце указаны значения производной функции в точках А, В, С и D.
Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней. Сравниваем их, находим соответствие среди пары соответствующих значений производных. Рассматриваем пару касательных, образующих с положит. Сравниваем их по модулю, определяем соответствие их значениям производных среди двух оставшихся в правой колонке. Решение: Острый угол с положит.
Эти производные имеют положит. Применяя правило о том, что если угол меньше 450, то производная меньше 1, а если больше, то больше 1, делаем вывод: в т. В производная по модулю больше 1, в т. С — меньше 1. Это означает, что можно составить пары для ответа: В—3 и С—1.
Производные в т. D образуют с положит. И тут применяем то же правило, немного перефразировав его: чем больше касательная в точке «прижата» к линии оси абсцисс к отрицат. Тогда получаем: производная в т. А по модулю меньше, чем производная в т.
Отсюда имеем пары для ответа: А—2 и D—4. По горизонтали указываются числа месяца, по вертикали — температура в градусах Цельсия. Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику изменения температуры. Ставим каждой из них в соответствие конкретный временной период левая колонка. Решение: Рост температуры наблюдался только в конце периода 22—28 января.
Здесь 27 и 28 числа она повышалась соответственно на 1 и на 2 градуса. В конце периода 1—7 января температура была стабильной —10 градусов , в конце 8—14 и 15—21 января понижалась с —1 до —2 и с —11 до —12 градусов соответственно. Поэтому получаем: Г—1. Поскольку каждый временной период охватывает 7 дней, то анализировать нужно температуру, начиная с 4-го дня каждого периода. Неизменной в течение 3—4 дней температура была только с 4 по 7 января.
Поэтому получаем ответ: А—2. Месячный минимум температуры наблюдался 17 января. Это число входит в период 15—21 января. Отсюда имеем пару: В—3. Эта дата попадает в период 8—14 января.
Значит, имеем: Б—4. Производная в точке больше нуля, если касательная к этой точке образует острый угол с положительным направлением оси Ох. Решение: Точка А. Она находится ниже оси Ох, значит значение функции в ней отрицательно. Если провести в ней касательную, то угол между нею и положит.
На рисунке изображен график функции y=f(x)
Обратите внимание, что во всех случаях при указании промежутков, мы указываем, что их концы входят в промежуток, то есть используем знаки нестрогого неравенства. Остаётся записать полученные промежутки возрастания и убывания функции в ответ. Обратимся снова к определению убывания функции. Вспомним, как записать условия убывания функции с точки зрения формул.
Найдите количество точек максимума функции f x , принадлежащих отрезку [-2;17]. Найдите количество точек минимума функции f x , принадлежащих отрезку [-18;3]. В какой точке отрезка [-5;-1] функция f x принимает наибольшее значение? В какой точке отрезка [2;8] функция f x принимает наименьшее значение? На оси абсцисс отмечены точки -1, 2, 3, 4.
В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.
Задание 7. На рисунке изображён график , определённой на интервале -9; 6.
Найдите количество точек минимума функции , принадлежащих отрезку [-8; 5].
Вместо « x » подставим « x1 » и « x2 ». Перенесем из правой части все члены неравенства в левую часть с противоположными знаками. Некоторые члены неравенства взаимоуничтожатся.
Решение №7 (2021 вар1): На рисунке изображен график y=f'(x) производной функции
На рисунках изображены графики функций вида . Математика базовая 24686 | - производной функции f(x), определенной на интервале (- 3 ; 8). |
На рисунке изображен график функции y=f(x) | На рисунке 15 изображены графики функций видов f(x)=2x2-5x+5 и g(x)=ax2+bx+c, пересекающиеся в точкаx A и B. Найдите ординату точки B. |
ЕГЭ задание 9 На рисунке изображен график функции вида f(x)=ax²+bx+c - YouTube | На рисунке изображён график функции у = f(x) и отмечены точки -5, -4, -1, 1 на оси абсцисс. |
Решение на Задание 35 из ГДЗ по Алгебре за 9 класс: Макарычев Ю.Н. | На рисунке 15 изображены графики функций видов f(x)=2x2-5x+5 и g(x)=ax2+bx+c, пересекающиеся в точкаx A и B. Найдите ординату точки B. |
7. Анализ функций
Открытый банк задач 8.3. Первообразная (Задачи ЕГЭ профиль). Примеры, решения, проверка ответа. а. Количество целых точек, в которых производная функции положительна; б. Количество целых точек, в которых касательная к графику функции параллельна прямой у = 1; с. Количество точек, в которых производная равна нулю. Задачи 11 ОГЭ графики функций. Какие из следующих утверждений о данной функции неверны? О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам Условия использования Конфиденциальность Правила и безопасность Как работает YouTube Тестирование новых функций. Вокруг прямого проводника с током (смотри рисунок) существует магнитное поле. определи направление линий этого магнитного поля в точках a и внимание, что точки a и b находятся с разных сторон от проводника (точка a — снизу, а точка b — сверху).
Задание №306
Если график функции убывает — производная отрицательна верно и наоборот. Если график функции возрастает — производная положительна верно и наоборот. Эти две фразы помогут вам решить большую часть задач. Внимательно смотрите, рисунок производной вам дан или функции, а дальше выбирайте одну из двух фраз. Построим схематично график функции. Получается, что 3 точки лежат на участках возрастания: x4; x5; x6. Функция f x определена на промежутке -6; 4. На рисунке изображен график ее производной. Найдите абсциссу точки, в которой функция принимает наибольшее значение.
На рисунке изображён график функции f x и двенадцать точек на оси абсцисс: x1, x2,... В скольких из этих точек производная функции отрицательна? Задача обратная, дан график функции, нужно схематично построить, как будет выглядеть график производной функции, и посчитать, сколько точек будет лежать в отрицательном диапазоне. Положительные: x1, x6, x7, x12. Отрицательные: x2, x3, x4, x5, x9, x10, x11. Ноль: x8. Ответ: 7 Еще один вид заданий, когда спрашивается про какие-то страшные "экстремумы"? Что это такое вам найти не составит труда, я же поясню для графиков.
Для наглядности точки соединены линиями. Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов характеристику добычи угля в этот период. Анализируем по очереди приведенные в правом столбце характеристики, используя данный график. Определяем соответствие каждой из них конкретного временного периода.
Решение: Анализируем характеристики: Объем добычи меньше 190 млн т приходился на период с 2001 года по 2005 год. Затем спад добычи зафиксирован в 2009 году, но один год не составляет периода. Поэтому получаем ответ: А—1. Такая формулировка «объем… сначала уменьшался, а затем начал расти» соответствует 2 периодам — 2002—2003 гг.
Но так как первый из этих периодов уже взят в качестве ответа, то правильно здесь использовать пару Г—2. Ситуация, описанная в 3-й характеристике, наиболее точно отображена в периоде 2006—2008 гг. Именно в это время добыча сначала понемногу увеличивалась примерно с 190 млн т до 210 , а потом резко возросла до 250 млн т. Медленный рост следует искать в период, когда линия графика имеет наиболее пологий вид.
Это: 2004—2006 год, что соответствует периоду Б, то есть получаем: Б—4. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя, на вертикальной оси — температура двигателя в градусах Цельсия. Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику температуры. Решение: Выше 600 температура была с 4-й по 7-ю минуту.
Поэтому здесь нужно взять интервал 4—6 мин. Получаем: В—1. Температура падала только после 7-й минуты. Соответственно, тут подходит интервал 7—9 мин.
Ответ: Г—2. Самый быстрый рост температуры происходил там, где график имеет наиболее «крутой» вертикальный подъем. Это имеет место только в 1-ю минуту нагревания. Ответ: А—3.
В пределах 40—50 0С температура имела место, начиная со 2-й по 3-ю минуту. Значит, нужно выбрать интервал 2—3мин. Ответ: Б—4. На горизонтальной оси отмечено время в минутах , прошедшее с начала выступления гимнаста, на вертикальной оси — частота пульса в ударах в минуту.
Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику пульса гимнаста на этом интервале. Для точек графика, которые не попадают в «узлы» сетки рисунка то есть для которых невозможно определить точные значения , нужно определять значения приблизительно. Величина роста пульса связана с пологостью или, напротив, крутизной линии графика. Это означает, что чем большее изменение значения функции происходит за тот или иной но обязательно одинаковый промежуток времени, тем больше величина роста.
Решение: Анализируем предложенные характеристики: Если частота пульса сначала падала, а затем росла, то на графике это должно выразиться в «прогибе» линии графика вниз. Такая кривизна наблюдается только в течение 3—4 минуты. Значит, получаем ответ: Г—1. Самый большой «подъем» линии на 1-й половине графика имеет место с 1-й по 2-ю минуту.
Отсюда получаем: Б—2. Частота пульса падала, начиная со 2-й минуты. В течение 3—4 минут тоже наблюдалось падение, однако оно потом перешло в рост. Поэтому правильным здесь следует считать интервал В.
Постройте график функции y 3x-2. Нахождение общих точек графиков функций. ФИПИ задания математика открытый банк заданий. Банк заданий ЕГЭ. Задания ГВЭ 9 класс математика 2021. Задания ГВЭ по математике 9 класс. ГВЭ 9 класс математика 2020. График дифференциальной функции. Найдите значение производной функции f x.
F X — функция, дифференцируемая в точке x0.. График производной и касательная к графику функции. Задачи с оптикой ЕГЭ физика. Открытый банк заданий ЕГЭ по физике. Оптика физика ЕГЭ. Задачи на оптику ЕГЭ по физике. Построить график функции с модулем 9 класс. Решение графиков функций с модулем. Алгоритм построения графиков с модулем 9 класс.
Построение Графика функции 9 класс ОГЭ. ОГЭ по математике задание 23 графики с модулями с решением. Решение функций с модулем 9 класс ОГЭ. Постройте график функции y. Графики функций и их формулы 3х. График формулы y x2. Установите соответствие между функциями и их. Установите соответствие между функциями и их графиками. Установите между функциями и их графиками.
Задание 9 ЕГЭ математика профильный уровень 2022. Задание 9 ЕГЭ математика профильный уровень. Задания ЕГЭ математика профиль 2022. ГВЭ 11 класс математика 2021. Лысенко ГВЭ математика 11 класс 2021. ГВЭ математика вариант 802. ГВЭ математика 2021. ГВЭ по математике 9 класс 2020 год демоверсия. Математика 9 класс ГВЭ письменная форма.
ГВЭ по математике 9 класс 2020 год тренировочные. Открытый банк заданий ОГЭ. Соответствие между графиками. Задание 9 ЕГЭ по профильной математике. Задание 9 профильная математика ЕГЭ. Графики ЕГЭ профиль. Парабола ЕГЭ. Графики функций и их формулы шпаргалка 10 класс. Все графики функций и их формулы таблица 9 класс.
Шпаргалка по графикам функций 9 класс. Алгебра 9 класс графики функций.
Так же, как на данном рисунке. Следовательно, выбираем пункт 3. Ответ: 3 График какой из приведенных ниже функций изображен на рисунке? Следовательно, выбор стоит между 2 и 4 пунктами. Прямая на рисунке наоборот опущена на 4 единицы вниз.