Генеративный ИИ — тип системы искусственного интеллекта, способной создавать текст, изображения и другой контент на основе данных, на которых выполнено обучение.
Бизнес-практика ИИ
- Сферы применения систем искусственного интеллекта
- Технологии искусственного интеллекта. Обзор TAdviser
- Как ИИ влияет на экономику
- Значимость искусственного интеллекта и нейронных сетей в современном мире
Лишённый чувств? Учёный — об искусственном интеллекте
Например, Alphabet использует искусственный интеллект для фильтрации спама пользователей Gmail и для улучшений рекомендаций результатов поиска. Amazon и Netflix используют нейросети для формирования подходящих рекомендаций для своих покупателей и пользователей. Другие компании напрямую зарабатывают на росте популярности искусственного интеллекта, продавая оборудование и программное обеспечение. По прогнозам, общие расходы на системы искусственного интеллекта достигнут 97,9 млрд долларов в 2023 году — против 37,5 млрд в 2019 году. Видеокарты, суперкомпьютеры и процессоры Nvidia. Один из главных претендентов на лидерство в области аппаратной составляющей для искусственного интеллекта — производитель графических чипов и видеокарт Nvidia, чьи решения стали стандартом в центрах обработки данных, машинном обучении и работе генеративных нейросетей. По итогам 2022 года доход от центров обработки данных может превзойти доход от игровой индустрии. Кроме того, чипы компании используются в работе автономных автомобилей, которые должны обрабатывать огромные объемы данных с нескольких датчиков и камер в режиме реального времени: обнаруживать объекты дорожной инфраструктуры, пешеходов и другие транспортные средства и принимать сложные решения. Это требует огромных вычислительных мощностей, что и обеспечивают программные и аппаратные решения Nvidia. Другой крупный игрок — одна из старейших технологических компаний в США, ставшая прародителем современных нейросетей, — IBM. Еще в 2006 году компания представила суперкомпьютер IBM Watson — одну из первых когнитивных систем в мире, способных понимать естественный язык, обрабатывать запрос и выдавать ответ на него.
Но возможности IBM Watson широко применимы во многих отраслях.
Причина в распространении чат-ботов и виртуальных помощников и устройств с поддержкой голосовой связи. Глобальный сегмент генеративного ИИ в 2022 г. При этом, по оценкам аналитиков Стэнфордского университета корпоративные инвестиции в искусственный интеллект в 2022 г. Эти инвестиции учитывают финансирование за счет слияний и поглощений, покупку акций, частные инвестиции, выход на биржу.
Работа над технологией велась с… 8 Софт Производители стремятся внедрить искусственный интеллект в самую обычную бытовую технику Может ли «умный дом» стать слишком умным — настолько, что ему перестанет хватать ресурсов для интеллектуальной деятельности и он «поглупеет»? Ответ от Forbes — это непременно случится, потому что крупные производители бытовой техники уже движутся по такому пути развития событий. Ради максимизации прибыли они готовы… 0 Интернет Американская телекомпания Channel 1 анонсировала новый сервис, который радикально меняет способ подачи новостной информации. В его основе лежит специально созданная модель искусственного интеллекта, способная быстро анализировать множество источников информации. Она компилирует материал из них в таком виде, чтобы… 0 Гаджеты Стартап Rabbit сообщил о грандиозной вечеринке в Нью-Йорке, которая пройдет 23 апреля. Ожидается, что на ней первые покупатели гаджета R1 смогут получить свои устройства. Они уже изготовлены и на следующей неделе будут отправлены в США, но путь займет немало времени. Предполагается, что на ее основе будет построен коммерческий инструмент для прогнозирования спроса на новые сорта данного напитка. Пиво выбрано не только из-за его распространенности,… 0 Технологии NVIDIA в тесном сотрудничестве с Hippocratic AI создала искусственный интеллект, способный выполнять функции медицинской сестры лучше, чем это делают реальные люди. Разработка ориентирована на решение глобального «кадрового голода» в сфере здравоохранения. Во время прохождения обучения в нейросеть «залили» данные свыше 100 000 автомобилей, прошедших оценку в дилерских… 2 Технологии Искусственный интеллект SIMA избавит геймеров от гринда в видеоиграх Разработчики ИИ сделали очередной шаг к реализации заветной мечты человечества о том, чтобы переложить на роботов скучную работу. Не специализированную, а почти любую, когда ИИ обучается чему-то у человека, а потом ему доверяют реализацию рутинных функций, которые дают реальный результат. Он построен на архивных материалах об актрисе Мэрилин Монро и должен имитировать ее личность при контакте с аудиторией.
Реализованный эффект от внедрения искусственного интеллекта к 2028 году может достичь 4,2—6,9 трлн руб. Из них 0,8-1,3 трлн руб. Марина Дорохова, соавтор отчёта и руководитель проектов «Яков и Партнёры» Собственные базовые модели генеративного искусственного интеллекта в мире разрабатывают около десяти стран, в том числе Россия, при этом наша страна занимает 7-е место в мире по уровню поддержки государством сферы разработки искусственного интеллекта. Подобный фокус не случаен — внедрение искусственного интеллекта будет иметь гораздо более широкие последствия для страны, чем непосредственно экономический эффект, в частности развитие искусственного интеллекта положительно повлияет на качество и продолжительность жизни, повысит качество образования, создаст новые рабочие места. Это сократит временные затраты и позволит сотрудникам сосредоточиться на более творческих задачах. Для России такие перспективы скорее привлекательны: с учётом прогнозируемого к 2030 г. Подробнее с выводами исследования можно ознакомиться по ссылке.
Искусственный интеллект в реальной жизни
- Сферы применения систем искусственного интеллекта
- Будущее сейчас. Как технологии искусственного интеллекта влияют на экономику и бизнес
- Технологии ИИ в смартфонах
- Искусственный интеллект и нейросети: технологическое будущее или красивый маркетинг
- Его превосходительство ИИ: в каких направлениях искусственного интеллекта РФ опережает Запад
Сферы применения систем искусственного интеллекта
Сочетая мозговые имплантаты, искусственный интеллект и электрическую стимуляцию, группа исследователей, инженеров и хирургов разработала новую технологию «двойного нейронного шунтирования». В торгово-финансовом секторе искусственный интеллект так же хорошо себя показывает в работе. Технологии искусственного интеллекта (далее — ИИ), которые еще вчера казались фантастикой, все более уверенно внедряются в различные сферы общественной жизни. Прогресс искусственного интеллекта оказывает существенное воздействие на сферу электронной коммерции. Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем. Искусственный интеллект (ИИ) — это общее понятие, которое описывает машинные алгоритмы и технологии, направленные на создание интеллектуальных систем.
Каким будет будущее нейросетей в 2024 году
Будущее искусственного интеллекта | Искусственный интеллект уже способен генерировать тексты, изображения, видео и аудиозаписи, что открывает новые возможности для творчества, но также создает угрозу злоупотребления. |
Что такое искусственный интеллект и зачем он нужен | Генеративный ИИ — тип системы искусственного интеллекта, способной создавать текст, изображения и другой контент на основе данных, на которых выполнено обучение. |
Искусственный интеллект, большие данные могут помочь здоровью планеты, говорит эксперт | «Революция искусственного интеллекта в медицине: GPT-4 и дальше» Питера Ли, Кэри Голдберга и Исаака Кохана «Революция искусственного интеллекта в медицине: GPT-4 и далее» для тех, кто хочет быть. |
Будущее искусственного интеллекта: перспективы и выгоды | Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем. |
Массовая безработица и безграничные возможности? Как сегодня поживает искусственный интеллект
«Революция искусственного интеллекта в медицине: GPT-4 и дальше» Питера Ли, Кэри Голдберга и Исаака Кохана «Революция искусственного интеллекта в медицине: GPT-4 и далее» для тех, кто хочет быть. — Какие изменения нас ждут в области искусственного интеллекта через 30–50 лет? Таким образом, актуальность исследований искусственного интеллекта имеет бинарный характер. Актуальность данной статьи состоит в том, что в современном мире искусственный интеллект (ИИ) имеет довольно серьезную роль в выполнении множества процессов. Машинное обучение, искусственный интеллект и нейросети из зыбких концепций превратились в функциональные решения, способные выполнять сложные задачи.
Дмитрий Чернышенко обозначил основные тренды развития искусственного интеллекта
В последнее время в разговорной речи стало модненьким употреблять выражение «уметь в... Например, «уметь в журналистику» значит хорошо писать тексты, «уметь в цифры» — хорошо считать и т. Так давайте попробуем научиться «уметь в ИИ». Фото: freepik. Цунами, извержение вулкана, просто вселенский информационный потоп. Эти потоки закручивают, бросают человека из стороны в сторону. В итоге невозможно увидеть цельной картины происходящего. Люди запутываются окончательно. Оно и понятно: калейдоскоп текстов, передач в духе клипового потока сознания взрывает мозг. Одни авторы пугают, что скоро исчезнут многие профессии и десятки миллионов людей потеряют работу. Другие сетуют, что школьники и студенты быстро сориентировались и используют самую медийно раскрученную систему ChatGPT для выполнения учебных заданий.
Масса заметок по каждому чиху, связанному с ИИ. Яндекс будет нанимать гуманитариев для дообучения своей GPT-подобной системы с зарплатой 150 тысяч рублей просто за общение с программой. И бесконечные новости о том, как картины, созданные нейросетями, побеждают на выставках; как ИИ работает в медицине, геологии... Проще сказать, где он не применяется. Но самое главное, что искусственный интеллект не просто показывает эффектные фокусы. Он реально стал практическим инструментом, практически незаменимым по жизни. Чистая математика в основе Для понимания, как все работает, нам понадобятся всего три определения: что такое ИИ, ML машинное обучение и NN нейронные сети. Без них никак не обойтись, потому что они ключевые. Искусственный интеллект ИИ — это общее понятие, которое описывает машинные алгоритмы и технологии, направленные на создание интеллектуальных систем. Машинное обучение Machine Learning, ML — это класс методов ИИ, позволяет компьютерам обучаться на основе больших объемов данных, извлекая из них закономерности.
Используется в основном для решения различных задач классификации и прогнозирования. Нейронные сети Neural Networks, NN — это одна из технологий машинного обучения, которая моделирует работу мозга человека. Нейронные сети могут использоваться для решения множества различных задач: для распознавания образов например, автомобильных номеров на фотографии , перевода голосового сообщения в текстовое, генерации изображений по тексту, создания моделей чего-либо, текстов, картин и т. То есть нейронные сети — это один из способов реализации машинного обучения. Вообще специалисты стараются меньше употреблять словосочетание «искусственный интеллект». Они предпочитают термин «машинное обучение». Это связано с тем, что существуют два принципиально разных способа использовать компьютер для решения задач. Классический заключается в том, что есть исходные данные. И есть формула алгоритм , которая обеспечивает преобразование исходных данных в выходные результат. Второй способ применяют, когда у человека не получается разработать алгоритм самому.
Есть входные и выходные данные, а алгоритм неизвестен. И вот чтобы компьютер мог решить задачу например, распознавания лиц людей или товаров в магазине , применяются методы машинного обучения. Вы скажете, зачем нам сдались все эти определения?! Но я попрошу не торопиться. Ведь все, что скрывается за написанными выше понятиями, очень помогает нам в повседневной жизни. Повторюсь, почти у каждого из нас есть смартфон, компьютер. Мы регулярно забиваем свои запросы в поисковые системы, и они выдают нам нужные ответы. Например, тот же прогноз погоды. Или когда мы используем навигатор, управляя машиной, — он ведь тоже подстраивается под наши привычки и предпочтения. Я, например, в течение месяца, выезжая в дальнее Подмосковье, заправлялась на одной и той же заправке и останавливалась взбодриться кофе в конкретном месте.
Но буквально на днях, следуя в том же направлении с полным баком топлива и со своим кофе в термосе, я не планировала остановок. Однако навигатор упорно предлагал мне заправиться и перекусить в уже «знакомых» ему местах. И еще много чего предлагал. То есть он уже сам за меня начал «думать».
Да, они будут расти. Но приведёт ли этот тренд к качественным прорывам? Я сомневаюсь. Моё мнение: большие языковые модели — это бездумные «обезьянки», которые просто достают из «мешков со словами» каждое следующее слово. Они по своей сути такими и останутся, что бы мы с ними ни делали.
Используемая сегодня архитектура нейросетей просто не позволит им совершить качественный скачок. Поэтому стоит ожидать концентрации усилий разработчиков на создании когнитивных архитектур, которые называют BICA biologically inspired cognitive architectures. Здесь могут появиться очень интересные решения. Такие модели способны конвергировать с архитектурами, основанными на других принципах. Сейчас есть все предпосылки для развития в этом направлении. Развитие опенсорсных моделей и демократизация ИИ Что случилось за год Параллельно с закрытыми проприетарными моделями развились нейросети с открытым исходным кодом. Если в 2022 году анонс свободной языковой модели BLOOM BigScience large open-science open-access multilingual language model стал громким событием, то в 2023 году IT-комьюнити представило сотни опенсорсных нейронок. Начало этому процессу положила представленная в феврале 2023 года цукерберговская модель LLaMA , а затем её более продвинутый вариант LLaMA 2 , разработанный совместно с Microsoft. Нейросетка, представленная в типоразмерах на 7, 13, 33, 65 и 70 миллиардов параметров, по ряду показателей показала результаты, сопоставимые с GPT-3.
Цукерберг решил сыграть против тренда на закрытость и объявил, что LLaMA будет доступна с рядом ограничений для научных организаций, которые его компания посчитает заслуживающими доверия. Но модель вскоре «утекла» в интернет , где её начали распространять и «допиливать» энтузиасты ИИ и свободного ПО. Она стала основой для множества проектов, развивающих модель за счёт экспериментов с архитектурой, вариантами тонкой настройки и обучения. Следующий прорыв случился, когда учёные из Стэнфорда провели тонкую настройку модели и научили один из вариантов LLaMA следовать инструкциям пользователя, затратив на это всего лишь 600 долларов. Нейросеть получила название Alpaca. Сейчас таких проектов стало больше и не все они основаны на LLaMA. Вот некоторые из самых интересных опенсорсных моделей, которые появились в 2023 году: Dolly от компании Databricks, специализирующейся на разработках в области больших данных. Отечественная ruGPT-3. Для неё опубликована лишь предобученная версия «претрейн» , поэтому для выполнения инструкций её нужно дообучать.
Orca 2 от Microsoft. Даже из нашей скромной подборки видно, что открытые LLM разрабатывают все: крупные компании, небольшие стартапы и научные организации со всего мира. При необходимости они могут быть дообучены и настроены с учётом пожеланий заказчика и требований местного законодательства. Большинство опенсорсных моделей содержат меньшее число параметров, чем известные проприетарные сети. За счёт этого они могут быть запущены на относительно слабом «железе», иногда даже на домашнем компьютере. Сравнение возможностей опенсорсных и проприетарных LLM Инфографика: Майя Мальгина для Skillbox Media Опенсорсные модели, которые можно запустить локально на сервере или компьютере, снижают риски утечки данных и взлома инфраструктуры. Но возрастает опасность, что такие нейросети могут использоваться в противозаконной деятельности. Например, для воссоздания голоса и внешнего вида реальных людей с их использованием для получения доступа к банковским счетам или социальной инженерии. Стоит быть осторожным при внедрении опенсорсных разработок от малоизвестных коллективов, поскольку они могут быть обучены на неполных или предвзятых данных и иметь недокументированные проблемы в работе.
Точность их работы будет низкой.
Мы хотели создать рейтинг с душой, но остаться беспристрастными. Считаю, мы справились». Наталья Соколова, управляющий партнер Brand Analytics: «Применение ML-технологий для обработки естественного языка — одно из ключевых направлений в развитии индустрии аналитики соцмедиа, лидером которой является Brand Analytics. Мы хорошо понимаем, что участникам рынка важно не только отслеживать новости в области ИИ, но и иметь перед глазами навигатор компаний и решений в этой важнейшей для нашего с вами будущего отрасли. Представленный билайном совместно с Brand Analytics рейтинг ИИ претендует как раз на место такого навигатора. Проект получился интересным. Рейтинг одновременно учитывает и медийную активность игроков, и внимание к теме и компаниям со стороны СМИ, и «народное» обсуждение в социальных медиа, в данном случае — в Telegram-каналах.
Кроме того, программа может обучаться на ходу. Возможно, в скором времени она отберет часть работы у копирайтеров, журналистов пишущих новостные заметки , учителей, врачей и людей самых разных профессий. Если, конечно, не лишит их всех работы, — резюмирует Bloomberg. Apple, Samsung или Xiaomi? Один из них возник в попытке ответить на вопрос: можно ли считать творчество нейросети настоящим? Кроме того, есть опасения практического характера. Как отмечает Science, эксперты полагают, что ИИ в процессе своего «творчества» может нарушать авторские права, распространять ложную информацию и сокращать рабочие места. Но все же ИИ, скорее, благо, чем опасность. Какие-то рутинные, простые задачи, для которых человек объективно не нужен, может спокойно выполнять искусственный разум. Также важно понимать, что искусственный интеллект никогда не сможет полностью заменить человека. Ведь, по сути, он не умеет самостоятельно обучаться.
Как искусственный интеллект повлияет на нашу жизнь в будущем
Яков и Партнёры - Искусственный интеллект в России – 2023: тренды и перспективы | Руководитель лаборатории искусственного интеллекта "Яндекса" Александр Крайнов рассказал, как развивается искусственный интеллект и в каких сферах используется. |
Искусственный интеллект: ближайшее будущее | В этой статье мы объясним, что означает искусственный интеллект, расскажем, зачем нужен ии, и рассмотрим, что относится к искусственному интеллекту. |
Как искусственный интеллект изменит нашу жизнь через 30–50 лет | «Эпоха искусственного интеллекта началась»: Билл Гейтс опубликовал эссе о том, как нейросети изменят нашу жизнь. |
Как искусственный интеллект повлияет на нашу жизнь в будущем - Investlab | Авторы ежегодного доклада AI Index Report 2023 подчеркивают, что искусственный интеллект вступает в новую фазу развития. |
Искусственный интеллект в 2023 году: тренды и популярные инновации — 01.11.2023 — Статьи на РЕН ТВ | Искусственный интеллект Microsoft Copilot следующего поколения будет требовать использования нейронных процессоров с вычислительной мощностью не менее 40 триллионов операций в секунду (TOPS). |
«Искусственный интеллект в нашей жизни»
Более оптимизированные и стандартизированные процессы машинного обучения в организациях 3. Генеративный искусственный интеллект в маркетинге и медиа ИИ создает контент для маркетинговых нужд бизнеса 4. Возрастающая важность платформ управления моделями Популяризация платформ управления моделями среди организаций 5. Более широкое распространение адаптивного искусственного интеллекта Более персонализированный опыт работы в магазине 6. Умные производственные подразделения, розничные магазины и цепочки поставок 7. Лучший и более автоматизированный опыт телемедицины 8. Лучшее прогнозирование спроса и автоматизация рабочих процессов в розничной торговле Уменьшение дефицита запасов, улучшение качества обслуживания, снижение затрат 9. Улучшенное обнаружение мошенничества и персонализация в сфере финансовых технологий Улучшенная идентификация клиентов и управление рисками, автоматизированное и быстрое обнаружение мошенничества. Творческий ИИ в мире искусства Изменение способов создания произведений искусства и иллюстраций 1.
Рост этического ИИ кредиты: pixabay. В истории ИИ компании в основном полагались на саморегулирование внутри отрасли. Раньше индустрия искусственного интеллекта работала с небольшими ограничениями, но ситуация быстро меняется. Новые законы, такие как Закон Европейского Союза об искусственном интеллекте, Американский Конфиденциальность данных Закон о защите и Закон о защите программного обеспечения с открытым исходным кодом меняют ситуацию. В отчете Gartner прогнозируется, что к 2025 году предприятиям придется уделять первоочередное внимание этике, прозрачности и конфиденциальности при использовании ИИ из-за этих правил. Этот сдвиг знаменует собой значительные перемены в отрасли. Для систем искусственного интеллекта важно быть этичными и заслуживающими доверия. Доверие имеет решающее значение в этом контексте, поскольку ИИ полагается на данные, большая часть которых может быть очень конфиденциальной, например, информация о здоровье или финансовая информация.
Если пользователям продуктов искусственного интеллекта будет неудобно делиться своими личными данными, вся экосистема искусственного интеллекта может оказаться под угрозой краха. Поэтому решение этой проблемы станет главным приоритетом в 2023 году. Лица, ответственные за внедрение систем искусственного интеллекта, должны убедиться, что они могут объяснить процессы принятия решений и данные, используемые их моделями искусственного интеллекта. Кроме того, решающее значение будет иметь устранение предвзятости и несправедливости в автоматизированных системах принятия решений, что еще больше повысит важность этики ИИ. Стандартизация процессов ML Внедрение искусственного интеллекта ИИ и машинного обучения МО в крупных организациях может оказаться сложной задачей из-за их способности нарушать различные бизнес-операции. На некоторых крупных предприятиях, внедривших искусственный интеллект и машинное обучение, отдельные группы по обработке данных работают независимо в разных отделах, используя свои собственные инструменты и методы. Хотя этот подход может работать для небольших проектов или конкретных задач, он не подходит для развертывания машинного обучения в больших масштабах, особенно в приложениях, взаимодействующих с клиентами.
Vision Labs, разрабатывающая системы распознавания лиц и иные решения для крупных банков «Центр речевых технологий» — компания, разработавшая ряд решений для телеком-компаний, а также создавшая систему идентификации болельщиков на стадионах.
Обработка естественного языка Natural Language Processing Это особое направление математической лингвистики, которое работает над способностью искусственного интеллекта как распознавать текст на практически человеческом уровне понимания, так и генерировать его. Она применяется в ряде весьма важных отраслей, с которыми человек сталкивается почти каждый день: Перевод текста с одного языка на другой Автоматическая генерация текстов Работа чат-ботов и роботов-собеседников Распознавание и синтез речи Здесь эксперты особенно выделяют работу компании «Яндекс», уже давно обогнавшей таких титанов, как Google и Microsoft по качеству машинного перевода с русского языка на английский и с английского на русский. И хотя экспертные оценки нередко расходятся, но многие мировые специалисты признают, что система-помощник «Алиса» действительно совершеннее многих западных аналогов. Кроме того, в «Сбере» во время конференции отметили работу российских специалистов над «Трехмодальной моделью распознавания речи», которая позволила бы машине обладать своего рода интуицией и дала бы возможность еще более гибко импровизировать во время общения с человеком. При этом разработка уже существует — она носит название FusionBrain, но пока что находится в процессе совершенствования. Беспилотные перевозки Путин заявил, что интеллектуальные системы заменят людей на опасном производстве Изначально речь идет о способности машины не только управлять транспортным средством будь то автомобиль или летательный аппарат , но и адекватно реагировать на нестандартные ситуации во время движения. Однако в России пошли несколько дальше и уже готовы вскоре запустить весьма смелый эксперимент по грузоперевозкам, которыми будет управлять ИИ.
Каков нынешний IQ таких ИТ -решений, и в каком направлении им еще предстоит совершенствоваться? Поэтому ограничиться созданием одной цифровой модели для того или иного функционала умного города невозможно. В умном городе набор умных цифровых решений и состав моделей постоянно изменяется. Как интеллектуальные технологии повышают IQ российских населенных пунктов, читайте в следующем материале TAdviser. Соответственно меняются технологии ИИ, применяемые для решения бизнес-задач с помощью ИТ.
В таком подходе есть сразу несколько плюсов. Во-первых, появилась возможность построить итоговый рейтинг на основе отдельных номинаций с большим числом показателей. Во-вторых, нам доступны сырые данные, «провалившись» в которые мы можем убедиться в корректности расчета. Конечно, о рейтинге будет много споров. Мимо такого проекта не пройдешь, а мы этого и хотим». Ai, Михаил Бурцев, заведующий лабораторией нейронных систем и глубокого обучения МФТИ, кандидат физико-математических наук, а также Дмитрий Романов, основатель Университета искусственного интеллекта. Подробно со всеми номинациями и представленными в них компаниями можно ознакомиться на специальной странице рейтинга искусственного интеллекта.
Искусственный интеллект в реальной жизни
- Проект по применению искусственного интеллекта
- Обзор развития ИИ-технологий: как изменится экономика, образование и общество? -
- Что такое искусственный интеллект?
- Искусственный интеллект / ИТ Новости
- Новости по теме: искусственный интеллект
Лишённый чувств? Учёный — об искусственном интеллекте
Что нужно знать о перспективах развития искусственного интеллекта и нейросетей. Таким образом, актуальность исследований искусственного интеллекта имеет бинарный характер. Оно оценивает состояние рынка искусственного интеллекта в России и мире, потенциальный экономический эффект от внедрения технологии и выделяет ключевые тренды и области применения ИИ. Обучили нейросеть на данных открытых источников, в основном это новости СМИ и публикации открытых Telegram-каналов, посвященные теме искусственного интеллекта, за 2022 год. Актуальность данной статьи состоит в том, что в современном мире искусственный интеллект (ИИ) имеет довольно серьезную роль в выполнении множества процессов.
Значимость искусственного интеллекта и нейронных сетей в современном мире
Уже после пациент сможет записаться на прием к врачу лично для оценки заболевания и более глубокой диагностики, если это потребуется. Будем откровенны, лишь предрассудки мешают эффективно использовать такие системы в 2017-м повсеместно, но экономический и социальный факторы неизбежно должны изменить эту ситуацию. Образование Роль очного образования будет падать, в то время как онлайн-школы, университеты, МООС будут только расти и развиваться. Для того, чтобы поднять эффективность и уровень доверия к удаленным платформам, ведущим поставщикам услуг основную часть которых составляют, собственно, топовые мировые вузы придется прибегнуть к услугам ИИ.
По аналогии со здравоохранением, на основании дифференцированных тестов поступающие и обучающиеся будут зачисляться на курсы, делиться на группы, отчисляться, переводиться. Кроме того, ожидается, что подобные системы станут менее зависимы от преподавателей в плане информации, ведь каждый из учеников будет получать тот объем теории, который он в состоянии усвоить на данный момент. Ну и конечно ИИ сыграет ключевую роль в перепрофилировании тех, кто потерял работу из-за внедрения ИИ.
Трудоустройство И здесь мы подходим к главной проблеме общества будущего — высокий уровень безработицы. Тенденция на снижение стоимости физического труда в сравнении с ростом оценки интеллектуального капитала и требований к нему приведет к серьёзным политическим, экономическим и социальным сдвигам. Поддерживать тот уровень жизни, что доступен среднестатистическому человеку сейчас, будет крайне сложно.
Исполнительские функции будут заменены искусственным интеллектом, а человек должен понимать и уметь объяснить, как что устроено и функционирует изнутри. В последние годы в образовании преобладает тенденция обучения прикладным навыкам, поэтому многие даже не могут обосновать, почему что-то нужно делать так, а не иначе. В будущем, я надеюсь, в высших учебных заведениях будут учить думать глубоко. Курс «Профессия Аналитик данных» — обучение аналитике данных с нуля Машинное творчество и проблема авторских прав — Какие области искусства и культуры наиболее сильно трансформируются под влиянием генеративных нейросетей? Как это повлияет на творческие процессы?
Появятся новые традиции и даже новые виды искусства, появился же киберспорт. Оборотная сторона медали тут тоже возможна: начиная от авторских прав и заканчивая потерей неповторимой индивидуальности, присущей большим художникам, — можно сделать сколько угодно копий их произведений, отредактировать их, попросить нейросеть сгенерировать, например, изображение в стиле художника и т. Если считать нейросеть инструментом, то права и ответственность за результат, который она создала, лежит на человеке, который написал промпт, или запрос. Пользователь в случае генерации контента, который, например, нарушает закон или этические нормы, может обратиться с претензией к разработчикам, которые либо создали нейросеть, либо приобрели ее и дообучили. Как будут обстоять дела с этим в будущем?
Как это сейчас делают, например, банки. Также разработчики должны обеспечить защиту личной информации пользователей. Кроме того, в будущем будет трудно доказать, что в генерации контента участвовали данные, собранные без разрешения. И как выработать меры для решения этой проблемы, пока непонятно. Технологии и ресурсы ИИ — Какие технологии искусственного интеллекта будут востребованы и развиты через 30—50 лет?
Сейчас они не очень популярны, но в будущем будут удобные гаджеты и инфраструктура, которая сделает метавселенные доступными большому числу людей и станет широко использоваться в разных сферах. Скажем, в образовательном процессе, изучая историю, дети смогут погрузиться в исторический контекст и увидеть реалистичные модели уже разрушенных объектов, воочию увидеть, предположим, древний Вавилон. Искусственный интеллект будет внедряться в различные устройства. Это будет не просто программа, а технология автономных поездов, автомобилей, роботов и другой техники, которая сможет физически выполнять какие-то действия. Думаю, что через 30—50 лет уже появятся мощные квантовые компьютеры и они в комбинации с ИИ позволят осуществить прорыв и фундаментальные открытия в разных областях науки.
Продолжит развиваться генеративный ИИ. Сейчас в контенте, создаваемом им, могут быть ошибки и противоречия. В будущем, надеюсь, эта проблема решится. Как с этим будут обстоять дела?
Перепечатка материалов без согласования допустима при наличии активной ссылки на страницу-источник. Направляя нам электронное письмо или заполняя любую регистрационную форму на сайте, Вы подтверждаете факт ознакомления и безоговорочного согласия с принятой у нас Политикой конфиденциальности.
Развлечения Еще одним шагом в борьбе с растущим недовольством населения будет развитие индустрии видеоигр. В данной сфере ИИ и без того развивается сумасшедшими темпами, но теперь на него косвенно будет возложена социальная функция.
Молодые люди, которые не смогут найти работу или получить образование, будут вымещать своё недовольство перед экранами мониторов, телевизоров, мобильных устройств. То, что вчера было нарушением социального поведения, к 2030-му станет нормой. Развитие будет поддержано на самом высшем уровне, киберспорт заменит спорт физический, а системы онлайн-услуг и дешевые электронные устройства ещё больше отвлекут внимание людей от растущего кризиса.
Социальная сфера С другой стороны, большее количество людей получит доступ к образовательным и информационным ресурсам, зависимость от местоположения и социального статуса будет снижена, что предоставит возможность большему количеству людей повысить свое благосостояние. Системы моделирования и прогнозирования выйдут на новый уровень; стихийные бедствия можно будет предвидеть еще раньше, социальную помощь оказывать адресно, городская инфраструктура будет развиваться эффективнее, статистические данные будут основываться на принципиально большей выборке. В 2030 для них всё ещё серьёзными проблемами будут преодоление физических препятствий вроде лестниц, бордюров и ям, взаимодействие с окружающим миром.
Поэтому не стоит ожидать, что через 15 лет к вам сможет приехать рободоставщик пиццы. С большой долей вероятности, зависимость людей от онлайн-услуг, будь то шоппинг, вызов такси или покупка билетов в кино, выйдет на такой уровень, что эти действия будут совершать только благодаря мобильному помощнику с голосовым управлением.