Новости почему магнит притягивает железо

это явление, при котором магнит притягивает к себе предметы, содержащие железо. И так, магнит притягивает к себе железо потому, что может намагнитить его из-за особых свойств. Таким образом, магниты притягивают железо благодаря своим магнитным свойствам и магнитным веществам, которые содержатся внутри магнита. это явление, при котором магнит притягивает к себе предметы, содержащие железо.

Основные сведения о постоянных магнитах — описание свойств

Какой цветной металл магнитится – список лома цветмета для проверки магнитом А правда, почему кусок железа или ферромагнетика притягивается к магниту?
Почему магнит притягивает железо? — точный ответ! Микроатомы обладают магнитным эффектом и состоят в полном равновесии, но магниты своим притяжением влияют на некоторые виды металлов, таких как: железо, никель, кобальт.
Магнит и магнитное поле: почему притягивается только металл? . Почему магнит притягивает железо? Постоянный магнит — вещество, имеющее остаточную намагниченность. Атомы в магнитах упорядочены таким образом, что их способность взаимодействовать с атомами других тел значительно выше, чем у.
3 разных типа магнитов и их применение Тем не менее немногие способны объяснить, что заставляет магнит притягивать, и почему его силе подвластно именно железо.
Почему магнит притягивает железо? — точный ответ! Поэтому железо магнититься к магниту почти с такой же силой, как магнит к магниту.

Магнит железо почему притягивает металл

Расстояние между магнитом и притягиваемым объектом влияет на силу притяжения: сила ослабевает с увеличением расстояния. Марикур указывает, что в каждом куске магнита имеются две области, особенно сильно притягивающие железо. Это объясняет, почему железо притягивается к магниту с большой силой. Магниты притягивают только определенные металлы, главным образом железо, никель и кобальт, называющиеся ферромагнетиками. Рассмотрим, почему кусок железа притягивается к магниту. Почему магнит притягивает?

Новосибирский школьник «притягивает» к себе ложки и мелочь — его мама сняла это на видео

В ней дается также простая теория магнетизма, которая может служить примером очень хорошей теории. Магниты Магнит — это металлический брусок, который может притягивать небольшие кусочки железа, например железные опилки. К концу нашего повествования мы, возможно, захотим видоизменить это грубое определение, но на том более высоком уровне понимания оно нам уже не потребуется[63]. Вначале перечислим четыре основных свойства магнитов: 1 Магниты притягивают и захватывают небольшие кусочки железа. Магнит притягивает железные опилки. Подвешенные магниты другой формы также самостоятельно ориентируются, показывая, что у них имеется определенная «магнитная ось», которая стремится принять направление N-S. Подвешенный магнит ориентируется в направлении север-юг. Его конец, указывающий на север, называется северным магнитным полюсом. Определение полюсов магнита с помощью компасной стрелки.

Компасная стрелка, которая сама является небольшим, свободно вращающимся магнитом, поворачивается так, что ее северный полюс указывает на южный полюс магнита или ее южный полюс на северный полюс магнита. В действительности, компасная стрелка показывает направление магнитного поля, создаваемого большим магнитом. Силовые линии этого поля исходят из областей вблизи полюсов, но выходят из магнита не под прямым углом, так как в отличие от электрических свойств металла магнитные материалы не являются хорошими магнитными «проводниками». Этот способ — трение магнитного железняка, естественного магнитного материала, о стальной стержень — и был древнейшим способом получения магнитов. Сейчас гораздо проще и лучше намагничивать стержень, помещая его внутрь проволочной катушки, через которую пропущен электрический ток. Намагничивание стального бруска. Полюсы[64] Те места магнита, которые сильнее всего притягивают железные опилки, называются полюсами. У длинных намагниченных брусков полюсы обычно находятся на концах, хотя, если постараться, можно изготовить магнит и с полюсами в других местах.

Пробная компасная стрелка, поднесенная к полюсу магнита, будет точно указывать на этот полюс. Вообще говоря, полюсами следует считать те области магнита, откуда исходит его магнитное действие. Простой намагниченный брусок, свободно подвешенный за середину, будет крутиться до тех пор, пока его полюсы не совпадут с линией, идущей приблизительно в направлении север-юг. Таким образом, за ось магнита можно принять прямую, соединяющую его полюсы. Полюс магнита, который поворачивается к северу, мы сокращенно называем северным полюсом и обозначаем буквой N, вкладывая в это название тот смысл, что этот полюс указывает на север[65]. Опыт 1. Изготовление магнитов. Поместите стержни из различных материалов внутрь полой проволочной катушки, через которую пропущен электрический ток.

Исследуйте магнитные свойства стержней с помощью железных опилок или мелких гвоздей при включенном и выключенном токе. Попробуйте также, как действует переменный ток. Эти эксперименты покажут вам, что 1 большинство веществ, как, например, медь, стекло, дерево, не поддаются намагничиванию; 2 железо, сталь и некоторые сплавы эти материалы называются магнитными можно намагнитить. Они частично сохраняют свою намагниченность и после выключения тока, или если их вынуть из катушки с током; 3 с помощью катушки, через которую пропущен переменный ток, удается размагнитить намагниченный стержень; 4 тем не менее, используя ту же катушку с переменным током, можно сохранить стержень намагниченным; 5 из некоторых сортов закаленной стали выходят отличные постоянные магниты. Мягкое железо намагничивается лишь на то время, когда через катушку течет электрический ток, а после выключения тока оно почти полностью теряет свои магнитные свойства; 6 электрический ток в полой катушке без всякого железного сердечника сам по себе обладает магнитным действием. Опыт 2. Подвешенные магнита. Подвесьте к кронштейну стержень на шелковой нити.

Заметьте его ориентацию и затем поднесите к его концам другие стержни. Открыть или проверить этот закон не так-то легко. Для этого нужны два изолированных полюса, способных двигаться по направлению друг к другу или друг от друга. Мы не можем воспользоваться для этого двумя обычными магнитами, поскольку каждый из них обязательно имеет оба полюса, и должны прибегнуть к специальным ухищрениям, как, например, взять очень длинные магниты, у которых другие полюсы находятся столь далеко, что уже не играют роли. Мы можем также взять небольшие магниты и проверить, совпадают ли силы взаимодействия с теми, которые предсказываются законом обратных квадратов для всех четырех полюсов. Тщательные эксперименты, в которых силы взаимодействия измеряются путем уравновешивания или с помощью крутильных весов Кулона , показывают, что они действительно хорошо соответствуют закону обратных квадратов. Хотя здесь мы и не имеем таких совершенных критериев, как, например, отсутствие электрического поля внутри заря- заряженного металлического ящика в электростатике, зато располагаем другими, вполне удовлетворительными косвенными методами. Опыт 3.

Постоянные и временные полюсы. Подвесьте на нити брусок из мягкого железа. Вы заметите, что 10 Мягкое железо всегда притягивается обоими полюсами магнита. Погрузите магниты в железные опилки. Опустите туда и стержень из мягкого железа. Выньте и снова погрузите один конец стержня из мягкого железа в опилки, а к другому его концу поднесите полюс магнита. Дальнейшие опыты показывают, что это явление объясняется временным намагничиванием мягкого железа, причем направление намагничивания обеспечивает притяжение стержня магнитом. Задача 1 Какие экспериментальные факты еще до того, как вы испробовали действие магнита на подвешенный железный стержень, убеждали вас в том, что мягкое железо легко меняет свою намагниченность?

Опыт 4. Применение компаса. Закрепите магнит на оси так, чтобы он легко поворачивался в горизонтальной плоскости. Именно так и действует стрелка компаса! Некоторые из предыдущих экспериментов можно теперь повторить, поднося к магниту компас фиг. Это даст нам возможность использовать компасную стрелку для маркировки полюсов любого магнита индексами N и S. Острие стрелки компаса, которое приблизительно указывает на север, мы зовем северным полюсом N-полюсом и все аналогичные полюсы других магнитов тоже называются северными. Опыт 5.

Временное намагничивание мягкого железа. Найдите с помощью компаса северный и южный полюсы длинного магнита и подержите один из его концов около конца бруска из мягкого железа. Проверьте, что на каждом конце бруска образуются полюсы. Поверните магнит другой стороной и снова исследуйте железный брусок. Какие полюсы возникли у бруска в том и другом случае? Магнитные поля Мы говорим, что магнит всюду вокруг себя создает магнитное поле, аналогично тому, как электрические заряды создают электрические поля. Линии, вдоль которых двигался бы маленький пробный северный полюс, мы называем магнитными силовыми линиями. Если же возможность получить свободный полюс кажется вам сомнительной, то под ними можно подразумевать линии, вдоль которых ориентируется крошечная компасная стрелка.

Оба этих определения эквивалентны: магнитное поле, которое притягивает северный полюс стрелки в направлении вдоль силовой линии, отталкивает ее южный полюс в обратном направлении, заставляя стрелку повернуться вдоль линии. Напряженность магнитного поля мы могли бы по аналогии с напряженностью электрического поля определить как результирующую силу, действующую на единичный пробный полюс со стороны всех расположенных поблизости магнитов. Однако вводить такое определение нет необходимости. Картину расположения магнитных силовых линий можно воспроизвести, исходя из закона обратных квадратов точно таким же путем, как и для электрических полей. Поэтому большинство рассуждений, касавшихся характера распределения электрического поля, применимо и здесь. Нужно только не забывать о том, что у нас нет таких идеальных проводников магнетизма, какими являются металлы для электричества. И хотя конфигурации силовых линий обоих полей бывают сходными, магнитное поле по своей природе совершенно отлично от электрического. Это два различных силовых поля, и одно из них относится к тем физическим объектам, которые мы называем магнитами, а другое создается обычными электрическими зарядами.

Опыт 6. Магнитные поля. Чтобы лучше познакомиться с природой магнитного поля и расположением магнитных силовых линий, проведите опыты с компасной стрелкой. Как бы ни была помещена стрелка, она устанавливается в направлении магнитного поля. Положите магнит и рядом с ним небольшой компас на лист бумаги. Перемещайте компас в направлении, указываемом его стрелкой. При этом ваш компас будет двигаться вдоль магнитной силовой линии. Отмечайте путь компаса на бумаге.

Для этого поставьте карандашом точку прямо против острия компасной стрелки. Передвиньте компас дальше, так, чтобы точка осталась позади. Поставьте следующую точку и т. После этого начните снова и наметьте вторую линию, идущую из другой начальной точки, и продолжайте так до тех пор, пока вы не получите полную картину распределения линий. Вычерчивание карты магнитного поля с помощью компаса. Приблизьте небольшой компас к северному полюсу магнита и поставьте точку у северного полюса компасной стрелки. Перемещайте компас в направлении, указываемом стрелкой до тех пор, пока точка не окажется сзади ее южного полюса. Снова поставьте точку впереди северного полюса стрелки и т.

Возможно, что некоторые линии вам будет удобно начинать от края листа. Вместо компаса можно воспользоваться железными опилками, которые ведут себя как небольшие компасные стрелки, соединяясь в цепочки, идущие вдоль силовых линий. Опилкам труднее поворачиваться, поэтому помогите им выстроиться, легонько постучав по листу бумаги. Сделайте натурные зарисовки силовых линий для различных расположений магнитов. Железные опилки указывают расположение силовых линий. Помните, что несколько расходящихся в разные стороны линий дают лучшее представление об общей конфигурации поля, чем их густое скопление фиг. На фиг. Сделайте аналогичные карты для различных расположений магнитов, показанных на фиг.

Размер каждой карты должен быть с ладонь руки или больше. Советуем вам при составлении карты пользоваться пунктирными линиями. Помните, что небольшое число основных линий лучше передает общую картину, чем густое скопление. Примеры конфигураций магнитного поля. Примеры расположения магнитов для составления карт магнитного поля. Интерпретация карт магнитного поля Составляя карты различных магнитных полей, мы видим, что они могут кое-что рассказать нам о силах, которые действуют на магниты, создающие эти поля. Силовые линии кажутся похожими на упругие натянутые трубки, которые пытаются сокращаться в продольном направлении, одновременно расталкивая друг друга и выгибаясь в сторону, как если бы они были заполнены жидкостью. Конфигурация линий между северным и южным полюсами напоминает протянутые навстречу щупальца, что говорит о притяжении; между двумя северными полюсами линии сплюснуты и наталкиваются друг на друга, как буфера, что свидетельствует о силах отталкивания.

В более сложных случаях можно заметить, что силовые линии как бы растягивают и изгибают магнит. По мере приближения к полюсу силовые линии сходятся все более тесно. Мы уже знаем, что у полюсов магнитное поле становится сильнее закон обратных квадратов. Так что сгущение силовых линий идет рука об руку с ростом напряженности поля. Если детально исследовать самые различные конфигурации силовых линий, то обнаружится, что чем больше сгущаются линии, тем сильнее становится поле. Таким образом, картина силовых линий может дать нам представление о напряженности поля. В более серьезных курсах магнетизма эта идея преломляется в некоторый способ численного определения напряженности магнитного поля по густоте силовых линий. Полезно выработать привычку представлять себе магнитные силовые линии как агенты, посредством которых магниты притягивают и отталкивают друг друга, так как это представление приложимо и к магнитным силам, с которыми электрические токи взаимодействуют с другими токами и магнитами.

Таким образом, карты магнитных полей дают нам в руки способ наглядного изображения действия электрических моторов, амперметров и т. Электрическое поле имеет совсем другую природу, однако конфигурация силовых линий этого поля также может сказать о его напряженности. Можно представить себе, что радиоволны бегут вдоль комбинации силовых линий электрического и магнитного полей наподобие колебаний туго натянутых веревок. Этот пример дает ощущение того, что силовые линии электрического и магнитного полей вполне реальны. Конечно, не следует забывать, что в действительности существуют не силовые линии, а сами поля. Магнитное поле Земли Если воспользоваться компасом, чтобы построить карту окружающего нас магнитного поля, то мы получим ряд параллельных линий, идущих приблизительно с севера на юг. Подвешенный на нити намагниченный стержень, представляющий собой гигантскую компасную стрелку, повернется в том же направлении. Эти линии говорят о существовании магнитного поля, которое, разумеется, останется и после того, как мы уберем все наши магниты.

Обследовав всю поверхность Земли, мы увидим, что линии сходятся на севере Канады, а также в некоторой области в Австралии. Почти повсюду эти линии идут не горизонтально, а наклонены к земной поверхности[67]. Их направление указывает на то, что Земля похожа на огромный магнит с магнитной осью, слегка повернутой относительно географической оси вращения фиг. Именно это слабое земное магнитное поле используется для навигации с помощью компаса, несмотря на то, что стальные корабли обладают собственным магнитным полем, которое частично имеет переменный характер, что сильно затрудняет навигационное дело. Эквивалентный магнит для внешнего магнитного поля Земли. Северный полюс стрелки компаса указывает на север Канады. Следовательно, там должен находиться южный магнитный полюс Земли. Этот полюс, однако, называют Северным магнитным полюсом.

Если это будет вас затруднять, то избегайте таких сокращений, как «северный полюс», и называйте все полюсы их полными именами, т. Это избавит от путаницы. Когда же вы полностью уясните себе этот вопрос, вам, возможно, снова захочется вернуться ради экономии времени к сокращенным наименованиям. Магнитное поле Земли на значительных пространствах однородно, т. Поэтому с его помощью можно провести очень важный опыт — проверить равноправность северного и южного полюсов магнита. Положим магнит на пробку и пустим его плавать в воду. Земное магнитное поле повернет магнит в направлении N-S. Будет ли оно также перемещать его в каком-либо определенном направлении, например на север?

Если северный и южный полюсы плавающего магнита обладают равной силой хотя создаваемые ими поля противоположны по направлению , можно ожидать, что магнитное поле Земли будет притягивать их одинаково. Под действием такого притяжения магнит повернется вокруг своей оси, но не будет двигаться по поверхности воды ни на север, ни в каком-либо другом направлении.

Вот в состоянии магнита, они не только притягиваются к магниту, но и могут отталкиваться от него, если 2 магнита сближать одноименными полюсами. Все вещества в магнитном поле намагничиваются.

Диамагнетики намагничиваются против направления внешнего магнитного поля. Парамагнетики намагничиваются вдоль направления внешнего магнитного поля. Поэтому алюминий тоже намагничивается и во внешнем магнитном поле становится очень слабым магнитом при комнатной температуре. Обнаружить этот эффект в быту невозможно, фиксируется в лаборатории.

Москва, Большой Саввинский пер. II; Адрес редакции: 119435, г.

Железо это ферромагнетик. Ферромагнетики в поле магнита сами сильно намагничиваются и временно пока на них действует поле магнита сами становятся магнитами. Поэтому железо магнититься к магниту почти с такой же силой, как магнит к магниту. Для того, чтобы ферромагнетик магнитился к магниту, достаточно, чтобы у магнита было ЛЮБОЕ магнитное поле, даже однородное. А парамагнетики в поле магнита практически не магнитятся.

Основные сведения о постоянных магнитах — описание свойств

Почему постоянный магнит притягивает железо? У железа и похожих на него металлов есть особенная черта — связь между соседними атомами такова, что они чувствуют магнитное поле скоординированно. Почему магнит притягивает металл? Магниты привлекают любые металлы, которые сделаны из железа или металлов с железом в них. Узнайте, почему магнит притягивает железо. Краткое объяснение, почему магнит притягивает железо. Блог магазина Магнитов на Коломенской. И не только железо. В новом выпуске программы обратимся к учебнику физики и выясним, почему магнит обладает свойством притягивать предметы. Поскольку мы регулярно подвергаемся воздействию магнитов, которые, как мы знаем, притягивают железо, возникает вопрос: можно ли извлечь железо из крови с помощью мощного магнита? Почему тогда магнит не все притягивает?

Являются ли магниты металлом? Правда, объясненная любителям науки

Магнит может притягивать: железо, чугун, сталь, никель. Таким образом, магниты притягивают железо благодаря своим магнитным свойствам и магнитным веществам, которые содержатся внутри магнита. Почему магнит притягивается к магниту. Магнит притягивает только железо; · Магнит может притягивать предметы на расстоянии, благодаря магнитному полю. Почему железо притягивается к магниту? Магнит может притягивать чаще всего такой металл как железо.

ПОЧЕМУ МАГНИТ ПРИТЯГИВАЕТ ЖЕЛЕЗО

Сама по себе кристаллическая решетка построена таким образом, что в условиях сильных магнитных или электрических полей железо может намагничиваться и притягиваться к другому магниту. Так что такое магнит, и почему он притягивает? В этой статье мы разберемся, что такое магнит, как он работает и почему притягивает именно железо. Особенность железа в том, что в магнитном поле внешние электроны его атомов ориентируются определенным образом. А правда, почему кусок железа или ферромагнетика притягивается к магниту? Это объясняет, почему некоторые магниты притягивают предметы с большей силой, чем другие. Поля двух магнитов вблизи могут взаимодействовать между собой, и это взаимодействие проявляется как притяжение или отталкивание магнитов.

«Что такое магнит и почему он притягивает железо?» Учёные ответы на детские вопросы...

Если вы решите самостоятельно провести подобный эксперимент, мы советуем вам изолировать магниты от прямого нагрева, в противном случае вас ждет неудача. Москва, Большой Саввинский пер. II; Адрес редакции: 119435, г.

В статике конструкция стабильна, а вот если у магнита есть сила — тогда яблоко придет в движение. При подведении магнита к яблоку мы конструкция пришла в движение.

Но вместо того, чтобы приблизиться, магнит начал отталкивать яблоко. Причина, как ни странно в составе фрукта — наряду с железом в незначительном количестве в яблоке содержится много влаги, являющейся диамагнитным веществом.

Обычная сталь такого защитного покрытия не имеет, поэтому насыщенный физиологический раствор активизирует процесс окисления с образованием окиси железа светло-красного цвета. Другой способ отличить оцинкованную сталь от неоцинкованной основан на разных магнитных свойствах металлов. Цинк, например, немагнитен, поэтому приложив к неокрашенной поверхности заготовки обычный магнит, можно установить, имеется ли в её составе цинк или нет. Если поверхность заготовки уже окрашена термостойкой краской, магнит не поможет. Необходимо проводить лабораторные испытания. Наибольшую точность даст тестирование на электронный парамагнитный резонанс ЭПР.

ЭПР показывает содержание молекул материала на осциллографе, поэтому оцинкованный прокат будет иметь высокое содержание цинка на внешней поверхности и его наличие во внутренних слоях. При окраске никакого цинка в покрытии не обнаружится. Ещё один метод заключается в микрофотографировании отшлифованного поперечного сечения образца. При цинковании в структуре чётко заметны три интерметаллических слоя, отсутствующие в обычных сталях. В завершение приведём и экзотический, способ — нужно просто… лизнуть стальную поверхность. Оцинкованная сталь, в отличие от обычной, имеет меловой привкус, причём очень отчётливый. Оцинковка или нержавейка: разница в цене окупается в процессе эксплуатации Сделать заказ можно по телефону Наши специалисты с радостью вам помогут Оцинкованная и нержавеющая сталь обладают общими свойствами коррозионной стойкости и устойчивости к воздействиям окружающей среды, что обуславливает популярность применения этих видов металла в строительстве и в производственных целях. Какие металлы не магнитятся: список Ферромагнетиков, то есть металлов, которые хорошо магнитятся, в природе существует всего 9.

Это железо, кобальт, никель, их сплавы и соединения, а также шесть металлов- лантаноидов: гадолиний, тербий, диспрозий, гольмий, эрбий и тулий. Металлы, притягивающиеся только к очень сильным магнитам парамагнетики : алюминий, медь, платина, уран. Поскольку в быту не встречаются настолько большие магниты, которые бы притянули парамагнетик, а также не встречаются металлы-лантаноиды, можно смело утверждать, что все металлы, кроме железа, кобальта, никеля и их сплавов не будут притягиваться к магнитам. Итак, какие металлы не магнитятся к магниту: парамагнетики: алюминий, платина, хром, магний, вольфрам; диамагнетики: медь, золото, серебро, цинк, ртуть, кадмий, цирконий. В целом можно сказать, что черные металлы притягиваются к магниту, цветные — не притягиваются. Парамагнетики и ферромагнетики Рассмотрим вариант, когда у каждого атома вещества есть свое магнитное поле. Эти поля разнонаправлены и компенсируют друг друга. Если же рядом с таким веществом положить магнит, то поля сориентируются в одном направлении.

У вещества появится магнитное поле, положительный и отрицательный полюс. Тогда вещество притянется к магниту и само может намагнититься, то есть будет притягивать другие металлические предметы. Так, например, можно намагнитить дома стальные скрепки. У каждой появится отрицательный и положительный полюс и можно будет даже подвесить целую цепочку из скрепок на магнит. Такие вещества называют парамагнитными.

Эти две частицы отталкиваются друг от друга, если магнитные силы, определяемые их соответствующими магнитными полями между ними, нейтрализуют друг друга, указывая в разных направлениях друг от друга. Если две силы направлены в разные стороны друг к другу, магнитная сила притягивает. Магнитная сила вызвана этими движениями частиц. Вы можете использовать эти идеи, чтобы показать, как магнетизм работает с повседневными предметами. Например, если вы поместите неодимовый магнит рядом со стальной отверткой и переместите его вверх, вниз по валу, а затем удалите магнит, отвертка может сохранить в нем некоторый магнетизм. Это происходит из-за взаимодействующих магнитных полей между двумя объектами, которые создают силу притяжения, когда они нейтрализуют друг друга. Это определение «отталкивать и притягивать» справедливо во всех случаях использования магнитов и магнитных полей. Следите за тем, какие направления соответствуют отталкиванию и притяжению. Отталкивающая сила магнита Противоположности притягиваются. Чтобы объяснить, почему магниты отталкиваются друг от друга, северный конец одного магнита будет притягиваться к югу от другого магнита. Северный и северный концы двух магнитов, а также южный и южный концы двух магнитов будут отталкивать друг друга. Магнитная сила является основой электродвигателей и привлекательных магнитов для использования в медицине, промышленности и исследованиях. Чтобы понять, как работает эта сила отталкивания, и объяснить, почему магниты отталкивают друг друга и притягивают электричество, важно изучить природу магнитной силы и множество форм, которые она принимает в различных явлениях в физика. Расчет магнитных свойств Магнитная индукция поля Земли составляет 0,5Ч10—4 Тл, тогда как поле между полюсами сильного электромагнита — порядка 2 Тл и более. Магнитное поле, создаваемое какой-либо конфигурацией токов, можно вычислить, пользуясь формулой Био — Савара — Лапласа для магнитной индукции поля, создаваемого элементом тока. Расчет поля, создаваемого контурами разной формы и цилиндрическими катушками, во многих случаях весьма сложен. Ниже приводятся формулы для ряда простых случаев. Магнитная индукция в теслах поля, создаваемого длинным прямым проводом с током I ампер , на расстоянии r метров от провода равна Индукция в центре кругового витка радиуса R с током I равна в тех же единицах : Плотно намотанная катушка провода без железного сердечника называется соленоидом. Во всех случаях магнитное поле тока направлено перпендикулярно этому току, а сила, действующая на ток в магнитном поле, перпендикулярна и току, и магнитному полю. Поле намагниченного железного стержня сходно с внешним полем длинного соленоида с числом ампер-витков на единицу длины, соответствующим току в атомах на поверхности намагниченного стержня, поскольку токи внутри стержня взаимно компенсируются рис. По имени Ампера такой поверхностный ток называется амперовским. Напряженность магнитного поля Ha, создаваемая амперовским током, равна магнитному моменту единицы объема стержня M. Если в соленоид вставлен железный стержень, то кроме того, что ток соленоида создает магнитное поле H, упорядочение атомных диполей в намагниченном материале стержня создает намагниченность M. Величина c у парамагнитных материалов немного больше нуля, а у диамагнитных — немного меньше. Лишь в вакууме и в очень слабых полях величины c и m постоянны и не зависят от внешнего поля. Зависимость индукции B от H обычно нелинейна, а ее графики, т. Магнитные свойства вещества весьма сложны, и для их глубокого понимания необходим тщательный анализ строения атомов, их взаимодействий в молекулах, их столкновений в газах и их взаимного влияния в твердых телах и жидкостях; магнитные свойства жидкостей пока наименее изучены.

Почти понятно о магнетизме… тайная сила камня магнита

Последний раз редактировалось avr123. Re: Откуда берется почти бесконечная энергия в магнте? Как и с гравитацией всё так же с законами сохранения - просто потенциальная энергия меньше после притяжения магнитом железки и всё. Как и при падении железяки на пол.

Откуда берется энергия на совершение этой работы? А при падении того же шарика миллион раз? Откуда берется энергия?

А если убрать предыдущие - считай вернули энергию avr123. Причины и механизм возниконовения гравитации не известен. Она просто описана количественно и известна как факт.

Дак и я не сомневаюсь что магнит притягивает железки и могу померить параметры этого притяжения. Я то спрашиваю откуда энергия на совершение работы эти притяжением. Чтобы гравитация совершила работу предмет нужно поднять - то есть затратить энергие вначале и потом при падении гравитация выдаст туже затраченую на подъем энергию.

С пружиной тоже ясно - сжимаем - затрачиваем, расжимается - отдает энергию. А с магнитом?

Почему магнит так назвали Этот камень стали называть «камнем Магнуса» или просто «магнитом», по названию местности, где добывали железную руду холмы Магнезии в Малой Азии. Таким образом, за много веков до нашей эры было известно, что некоторые каменные породы обладают свойством притягивать куски железа. Почему металлические предметы прилипают к телу Жидкость, которая выделяется из желез, может просто «приклеивать» разные вещи, за счет чего они долго держатся на теле. То, что выделяют железы, не всегда хорошо заметно.

Жидкость может смачивать вещество, которое находится на коже, — ту же монету, тогда она может держаться. Какой магнит притягивает золото Нет, чистое золото и серебро не притягиваются к магниту. Если же все-таки притяжение наблюдается, то значит, вас случайно дезинформировали или, в худшем случае, обманули. Лишь несколько широко известных металлов обладают магнитными свойствами, включая ферромагнетики, такие как железо, никель и кобальт. Когда Размагнитится магнит В частности, редкоземельный супермагнит на основе неодима может размагнититься под действием температуры выше 80 градусов по Цельсию. Какой металл сильнее притягивается магнитом Ответ или решение1.

Металлы, восприимчивые к магниту, называют ферромагнетиками.

Немного о магнитном поле Магнитное поле появляется благодаря электронам, они двигаются вокруг атома, неся отрицательный заряд. Постоянное перемещение производит электрический ток. Движение тока производит магнитное поле, сила которого напрямую зависит от силы тока. Учитывая всю информацию выше, получаем полную связь между электричеством и магнетизмом, которые представляют такое понятие, как электромагнетизм. Однако магнитное поле получается не только движением электронов вокруг ядра, в большей степени его формирует движение атомов вокруг своей оси. Некоторые материалы имеют магнитное поле, где атомы двигаются без определенного порядка, подавляя друг друга. Если говорить о металлических предметах, то здесь атомы упорядочены в группы, которые ориентируются в одну сторону.

Благодаря возможности воздействовать на атомы, ориентируя их в одном направлении, и сложить магнитные поля, железные предметы могут намагничиваться.

А одно магнитное поле может, соединится только с одним электрическим. Это же явление можно рассматривать и с точки зрения разности потенциалов. Современные неодимовые постоянные магниты имеют огромный магнитный потенциал. Значит и на катушках необходимо создать соответствующий электрический потенциал.

Или с точки зрения двигателя внутреннего сгорания, использовать высокооктановый бензин. Но топливная смесь в двигателе может быть либо «жирной», когда много бензина и мало воздуха, либо «сухой», когда много воздуха и мало бензина. Также и ток, подаваемый на катушки тоже должен быть не «сухим» и не «жирным». В данном устройстве предпочтительно топливную смесь « подсушить». То есть на катушки следует подавать электроток малой силы и высокого напряжения.

Но сила тока зависит от напряжения, делённого на сопротивление катушки. Значит, катушка должна быть намотана тонким проводом с большим количеством витков. Это самая сложная и самая ответственная деталь данного устройства. Китайская компания два года училась делать подобные катушки индуктивности. Но они не совсем то, что нужно для полноценной работы устройства.

Катушка должна состоять из двух половин, намотанных в разные стороны. Соединив начала двух катушек в центре, мы получим одну, выходные концы которой будут в наружном слое. Это исключит перехлёст начала обмотки с концом. И исключит возможность короткого замыкания катушки. А также позволит уменьшить зазор между катушками и постоянными магнитами.

Это обстоятельство тоже имеет, немаловажную роль, поскольку взаимодействие между магнитами и катушками уменьшается по мере увеличения зазора между ними. К сожалению, найти производителей катушек именно такой конструкции пока не удалось. Но всё же это не та деталь, которую невозможно сделать. Будет спрос, будет и предложение. Основная задача конструкции данного устройства заключается в том, что бы создать кольцо из постоянных магнитов и катушек индуктивности.

С обратной стороны постоянные магниты замыкаются железной пластиной для создания подковообразной формы, что значительно усиливает индукцию магнитного поля постоянных магнитов. Это основа конструкции данного устройства. Всё остальное лишь повторяет данную основу. И магниты и катушки располагаются по диаметру ротора и статора в один или несколько рядов. Роторы и статоры также могут располагаться в один или несколько рядов.

Поскольку основа работы данного устройства это взаимодействие пары катушек и двух пар магнитов, подобных основ может быть огромное количество.

Похожие новости:

Оцените статью
Добавить комментарий