Новости нильс бор открытия

Нильс Бор в ответ на коронную фразу Эйнштейна про кости отвечал: «Не наше дело предписывать Богу, как ему следует управлять миром».

Помощь Нильса Бора

Нильс Бор, которому Фриш сообщил об этом, в первый момент потерял дар речи. Они помогают клетке двигаться к бактериям и в то же время действуют как сенсорные щупальца, которые определяют бактерию как добычу”, — говорит Мартин Бендикс, руководитель лаборатории экспериментальной биофизики Института Нильса Бора. Нильс Бор применил квантовую теорию Макса Планка к модели Резерфорда и создал свою знаменитую модель атома. В 1939 году Нильс Бор сделал открытие, изменившее мир навсегда. Томсоном, который открыл электрон в 1897 г. Правда, к тому времени Томсон начал заниматься уже другими темами, и он выказал мало интереса к диссертации Бора и содержащимся там выводам.

Не только таблица Менделеева: 6 великих открытий, сделанных во сне

А вот ядро в атоме, который построил Бор. А вот электрон... Это не первый его приезд, он был у нас в гостях в тридцать четвертом и в тридцать седьмом годах, когда страна наша еще не запускала спутников в космическое пространство и не строила крупнейших в мире ускорителей. Советская наука в те годы была вэ многом начинающей, и тем ценнее помощь, которую оказал Нильс Бор тогда своими советами, рассказами, а главное - моральной поддержкой, своей верой в наше будущее. Мы никогда не забудем, что в те нелегкие времена Бор был - и навсегда остался - нашим другом. Многие крупные советские ученые в той или иной степени могут считать себя его учениками они работали в знаменитом институте Бора в Копенгагене, в той школе теоретиков, которую прошли все выдающиеся физики нашего времени, создавшие квантовую теорию, теорию ядра и теорию атома. Нас особенно сближает с Нильсом Бором то, что сегодня он вместе с нами в Академик Петр Леонидович Капица открывает вечер. С того времени, как Бор вошел в науку, все достижения квантовой теории так или иначе связаны с его именем, вся квантовая физика прошла через его руки.

Нильс Бор - действительно патриарх современной теоретической физики. И я с удовольствием предоставляю ему слово. Бор подходит к микрофону. Он немного сутулится, отчего голова кажется упрямо наклоненной вперед. Громадный лоб перерезан у бровей морщинами. Брови, густые, широкие, придают лицу, пожалуй, немного насупленное выражение, но ощущение это сразу же пропадает, когда он улыбается, настолько обаятельна, заразительна его широкая улыбка. Петр Капица был первым из ваших соотечественников, с кем судьба свела меня в столь давние времена.

С тех пор я близко познакомился со многими выдающимися физиками вашей страны, и в первую очередь с Ландау, который работал у нас в Копенгагене. Эти слова, слова дружбы, которые идут от самого сердца, мне было легко произнести. Теперь передо мной более трудная задача говорить с физиками о физике. Я не собираюсь рассказывать сегодня о новейших достижениях современной науки. В этой аудитории есть немало людей, которые могли бы это сделать лучше, чем я. Мне просто хочется поделиться с вами некоторыми воспоминаниями. Вчера мы с сыном были в Дубне.

Я встретился там со многими замечательными физиками и видел те великолепные, могучие аппараты, с которыми они работают. А ведь пятьдесят лет назад, когда я начинал работать у Резерфорда, самый большой прибор не превышал размеров коробки от туфель. И аргументация теоретиков в то время была проста, даже, пожалуй, примитивна, и не имела ничего общего с теми сложными логическими построениями, которые обычны в сегодняшней физике. И тем, кто слушает Бора, вероятно, вспоминаются слова, сказанные академиком Капицей 25 лет назад на открытии Института физических проблем "... Колумб отправился в экспедицию, результатом которой было открытие Америки, на простой маленькой каравелле, на лодчонке с современной точки зрения. Но чтобы освоить Америку, потребовалось построить большие корабли, и это полностью себя оправдало. Мне кажется, что нужно идти по этому пути, по пути создания совершенных институтов".

По этому пути и шла все эти годы наша наука. Бор говорит дальше: - Полвека в человеческой жизни - срок немалый. Много прошло событий, и очень волнительно было все время находиться в центре современной физики. Пятьдесят лет назад мне посчастливилось присоединиться к многочисленной группе ученых из всех стран мира, работавших под вдохновляющим руководством Резерфорда. Не было ничего удивительного в том, что сразу же после окончания университета я пришел к нему в то время трудно было бы отыскать физика, незнакомого с достижениями Резерфорда и не восхищавшегося ими. Впервые я увидел Резерфорда на традиционном обеде Кавендишевской лаборатории. Он только незадолго перед этим вернулся с первого Сольвейского конгресса, где встретился с Эйнштейном и Планком, был полон самыми радостными впечатлениями, весел, и речь его, несмотря на всю торжественность момента, искрилась неподдельным юмором.

Впрочем, я должен заметить, что любовь к острому слову, к шутке, даже к розыгрышу свойственна, по-моему, всем крупным физикам нашего времени - Капица и Ландау тому хороший пример. Речь свою Резерфорд посвятил новому, тогда только что построенному прибору - камере Вильсона. Выбор темы не был случайным. Он обожал свои приборы, мог часами говорить о них, берег их. Его лаборант сказал мне как-то, что никто из физиков "так сильно не ругается из-за приборов", как Резерфорд.

Ведущим производителем в последнее десятилетие выступает Казахстан. На другие два места в топ-3 в последние годы попадали Канада, Австралия и Намибия. На четыре эти страны в совокупности приходится три четвертых всего производимого в мире урана.

В 1911 докторская диссертация по непривычной еще «электронной теории металлов», которую в легендарном Кембридже знаменитый «Джи Джи» Томсон, открывший электрон, рекомендовал по-видимому, правда, не читая к печати, только Бор отказался сократить ее вдвое. Но зато в Манчестере у великого Резерфорда пришло сначала признание его таланта, а затем и революционное открытие. Пришла мировая слава, лавина последователей, иногда выхватывавших открытие у него из-под носа, но по-настоящему сердился он только тогда, когда дело касалось чужих приоритетов. В 1917 году в военном конфликте он был на стороне своей страны и радовался, что ей вернули последнюю отнятую территорию по подписке специально для него в Копенгагене было начато строительство института теоретической физики, будущей Мекки всех теоретиков. Как всякий громкий научный принцип, принцип дополнительности породил свой социальный фантом: все объекты вообще, а объекты микромира в особенности описываются сразу двумя взаимоисключающими теориями. Тем не менее, каждому наблюдателю открыта своя часть правды: «противоположности суть дополнения», отчеканено на золотой медали, учрежденной в Дании в честь ее национального гения. Из 29 участников пятого Сольвеевского конгресса 1927г. Бор и атомная бомба После расщепления атомного ядра Бор первым угадал и тот изотоп урана, и тот еще не открытый элемент плутоний , из которых впоследствии и были изготовлены обе бомбы, «Малыш» и «Толстяк», уничтожившие Хиросиму и Нагасаки. Нильс Бор под именем Николаса Бейкера «дядюшки Ника» , доставленный в Лос-Аламос после многочисленных приключений чего стоит один только перелет из Швеции в Англию в бомбовом отсеке, из коего в случае опасности классика надлежало сбросить в море , служил консультантом Манхэттенского проекта, многим участникам которого он самолично помог спастись от Гитлера. Однако успех проекта немедленно пробудил в нем пророка: в соответствии с принципом дополнительности он принялся неутомимо убеждать сначала Рузвельта, а потом Черчилля немедленно поделиться атомными секретами со Сталиным для дальнейшего взаимного контроля. В итоге Рузвельт отправился на тот свет, а Черчилль потребовал пригрозить Бору арестом или, по крайней мере, открыть ему глаза на то, что он «находится на грани государственного преступления». Добился он и строительства исследовательского центра с тремя реакторами в самой Дании, неустанно при этом подчеркивая, что материальные выгоды от этого будут еще не скоро. Присутствие на парламентских дебатах привело его к заключению, что ученые стремятся к максимальному согласию, а политики к максимальному разногласию. В результате наибольшее количество запросов относилось не к огромным суммам на строительство, а к затратам на флагшток и конуру для сторожевого пса. Дерзость праведника Прожившему последние тридцать лет в Доме чести, предназначенном для самого почетного гражданина Дании дворец был построен для этой цели основателем пивоваренных заводов «Карлсберг» , осыпанному всеми мыслимыми наградами и почестями, судьба подарила Бору и кончину праведника: прилег и уже не встал. Случилось это 18 ноября 1962 года. Ровно через месяц после его семидесятисемилетия. Еврейская половина крови в его жилах, похоже, сказалась на его судьбе только тогда, когда, спасая его от оккупировавших Данию нацистов, подпольщики перевозили его через ночной Каттегат в нейтральную Швецию. Любопытно, что когда во время оккупации датские патриоты решили в знак протеста издать книгу о датской культуре, предисловие к ней попросили написать именно Бора. Бор долго размышлял и пришел к выводу, что одной из самых замечательных характеристик датчан является чувство уважения к другим нациям. Этот камень в нацистский огород был не менее увесист, чем пятнышко на куртке Харальда. Камень, попавший вдобавок в уже ушибленное место: еще в 1938 году на Всемирном конгрессе антропологии и этнографии в замке Эльсинор Бор не побоялся во всеуслышание провозгласить, что разные культуры дополняют друг друга!

В сентябре 1911 он прибыл в Кембридж , чтобы работать в Кавендишской лаборатории под руководством знаменитого Дж. Однако сотрудничество не сложилось: Томсона не заинтересовал молодой датчанин, с ходу указавший на ошибку в одной из его работ и к тому же плохо изъяснявшийся на английском. Впоследствии Бор так вспоминал об этом: Я был разочарован, Томсона не заинтересовало то, что его вычисления оказались неверными. В этом была и моя вина. Я недостаточно хорошо знал английский и потому не мог объясниться… Томсон был гением, который, на самом деле, указал путь всем… В целом, работать в Кембридже было очень интересно, но это было абсолютно бесполезным занятием. В 1911 Резерфорд по итогам своих опытов опубликовал планетарную модель атома. Бор активно включился в работу по этой тематике, чему способствовали многочисленные обсуждения с работавшим тогда в Манчестере известным химиком Георгом Хевеши и с самим Резерфордом. Исходной идеей было то, что свойства элементов определяются целым числом — атомным номером , в роли которого выступает заряд ядра, который может изменяться в процессах радиоактивного распада. Первым применением резерфордовской модели атома для Бора стало рассмотрение в последние месяцы своего пребывания в Англии процессов взаимодействия альфа- и бета-лучей с веществом [12]. Летом 1912 Бор вернулся в Данию. Во время свадебного путешествия в Англию и Шотландию Бор с супругой посетили Резерфорда в Манчестере. Бор передал ему свою подготовленную к печати статью «Теория торможения заряженных частиц при их прохождении через вещество» она была опубликована в начале 1913. Вместе с тем было положено начало тесной дружбе семей Боров и Резерфордов. Общение с Резерфордом оставило неизгладимый отпечаток как в научном, так и в личностном плане на дальнейшей судьбе Бора, который спустя много лет писал: Очень характерным для Резерфорда был благожелательный интерес, который он проявлял ко всем молодым физикам, с которыми ему приходилось долго или коротко иметь дело. Первые результаты содержатся в черновике, посланном Резерфорду ещё в июле 1912 и носящем название «резерфордовского меморандума» [15]. Однако решающие успехи были достигнуты в конце 1912 — начале 1913. Ключевым моментом стало знакомство в феврале 1913 с закономерностями расположения спектральных линий и общим комбинационным принципом для частот излучения атомов. Впоследствии сам Бор говорил: Как только я увидел формулу Бальмера , весь вопрос стал мне немедленно ясен. Итогом проведённой работы стали три части революционной статьи «О строении атомов и молекул» [17] , опубликованные в журнале «Philosophical Magazine» в июле, октябре и декабре 1913 и содержащие квантовую теорию водородоподобного атома. В теории Бора можно выделить два основных компонента [18] : общие утверждения постулаты о поведении атомных систем, сохраняющие своё значение и всесторонне проверенные, и конкретная модель строения атома , представляющая в наши дни лишь исторический интерес. Постулаты Бора содержат предположения о существовании стационарных состояний и об излучательных переходах между ними в соответствии с представлениями Планка о квантовании энергии вещества. Модельная теория атома Бора исходит из предположения о возможности описания движения электронов в атоме, находящемся в стационарном состоянии, на основе классической физики, на которое накладываются дополнительные квантовые условия например, квантование углового момента электрона. Теория Бора сразу же позволила обосновать испускание и поглощение излучения в сериальных спектрах водорода , а также объяснить с поправкой на приведённую массу электрона наблюдавшиеся ранее Чарлзом Пикерингом и Альфредом Фаулером водородоподобные спектры с полуцелыми квантовыми числами как принадлежащие ионизированному гелию. Блестящим успехом теории Бора стало теоретическое получение значения постоянной Ридберга [19]. Работа Бора сразу привлекла внимание физиков и стимулировала бурное развитие квантовых представлений. Его современники по достоинству оценили важный шаг, который сделал датский учёный. Так, в 1936 Резерфорд писал: Я считаю первоначальную квантовую теорию спектров, выдвинутую Бором, одной из самых революционных из всех когда-либо созданных в науке; и я не знаю другой теории, которая имела бы больший успех. Это было так, точно из-под ног ушла земля и нигде не было видно твёрдой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточным, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьём — найти главные законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это мне кажется чудом и теперь. Это наивысшая музыкальность в области мысли. Он оставался в Манчестере с осени 1914 до лета 1916. В это время он пытался распространить свою теорию на многоэлектронные атомы, однако скоро зашёл в тупик. Уже в сентябре 1914 он писал: Для систем, состоящих из более чем двух частиц, нет простого соотношения между энергией и числом обращений, и по этой причине соображения, подобные тем, которые я использовал ранее, не могут быть применены для определения «стационарных состояний» системы. Я склонен полагать, что в этой проблеме скрыты очень значительные трудности, которые могут быть преодолены лишь путём отказа от обычных представлений в ещё большей степени, чем это требовалось до сих пор, и что единственной причиной достигнутых успехов является простота рассмотренных систем. В этом проявилась ограниченность круговых орбит, рассматриваемых в его теории. Преодолеть её стало возможно лишь после того, как в начале 1916 Арнольд Зоммерфельд сформулировал обобщённые квантовые условия, ввёл три квантовых числа для орбиты электрона и объяснил тонкую структуру спектральных линий , учтя релятивистские поправки. Бор сразу же занялся коренным пересмотром своих результатов в свете этого нового подхода [24]. Дальнейшее развитие теории. Принцип соответствия 1916—1923 [ ] Летом 1916 Бор окончательно вернулся на родину и возглавил кафедру теоретической физики в Копенгагенском университете. В апреле 1917 он обратился к датским властям с просьбой о выделении финансов на строительство нового института для себя и своих сотрудников. Несмотря на большую занятость административными делами, Бор продолжал развивать свою теорию, пытаясь обобщить её на случай более сложных атомов, например, гелия. В 1918 в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия , связывающий квантовую теорию с классической физикой. Впервые идея соответствия возникла ещё в 1913 , когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона [26]. Начиная с 1918 , принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна, определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора в частности, для гармонического осциллятора ; дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений [27]. Впоследствии Бор дал чёткую формулировку принципу соответствия: …«принцип соответствия», согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних.

Нобелевские лауреаты: Нильс Бор. Физик и футболист

Помощь Нильса Бора В 1910 году Нильс Бор был удостоен степени магистра, а в мае 1911 года защитил докторскую диссертацию по классической электронной теории металлов.
Нильс Бор - любимец фортуны или патриарх квантовой физики? | Биографии | ШколаЖизни.ру Датский физик Нильс Бор 28 февраля 1913 года предложил свою теорию строения атома, в которой электрон в атоме не подчиняется законам классической физики.
Не только таблица Менделеева: 6 великих открытий, сделанных во сне | Аскона Датский физик Нильс Бор считается одной из важнейших фигур в современной физике.
Нильс Бор: молчание о главном Они помогают клетке двигаться к бактериям и в то же время действуют как сенсорные щупальца, которые определяют бактерию как добычу”, — говорит Мартин Бендикс, руководитель лаборатории экспериментальной биофизики Института Нильса Бора.
Нильс Хенрик Давид Бор Они помогают клетке двигаться к бактериям и в то же время действуют как сенсорные щупальца, которые определяют бактерию как добычу”, — говорит Мартин Бендикс, руководитель лаборатории экспериментальной биофизики Института Нильса Бора.

Исследования

  • Сообщить об опечатке
  • Поделиться
  • В оккупированной Дании
  • Кто такой Нильс Бор

Голкипер с Нобелевской премией. 12 фактов о гениальном физике Нильсе Боре

Нильс Бор: гений, который не боялся называть себя дураком · Город 812 Бор открыл структуру атома в 1913 году. Оказавшись в Манчестерском университете, Бор стал работать в лаборатории Эрнеста Резерфорда.
7 интересных фактов из биографии Нильса Бора В 1933 усилиями Нильса Бора, его брата Харальда, директора Института вакцин Торвальда Мадсена и адвоката Альберта Йоргенсена был учреждён специальный Комитет помощи учёным-беженцам[59].
7 интересных фактов из биографии Нильса Бора Нильса Бора уже на студенческой скамье считали гением, но в противоположность этому титулу карьера его развивалась удивительно гладко.
Нильс Бор: гений, который не боялся называть себя дураком 2 Вклад и открытия Нильс Бор.
#Нильс Бор С критикой этого парадокса выступил Нильс Бор, который привел свои аргументы в поддержку квантовой механики.

7 интересных фактов из биографии Нильса Бора

Эта работа стала настоящей революцией того времени. Даже годы спустя физики признавали, что исследования Бора были величайшим шагом в изучении атомов и их строения. Свой институт и «Нобель» В 1914 Резерфорд пригласил Бора пожить в Манчестере, заодно и начать преподавать математическую физику в университете. Там учёный остаётся следующие два учебных года. В это же время он продолжает исследования, на основании которых развивает свою теорию, даже пытается перенести её на многоэлектронные атомы. Но идея оказывается тупиковой. В июне 1916 Бор вернулся столицу и снова приступил к чтению лекций в университете на своей кафедре. Но работать под чьим-либо руководством Бор не хотел, поэтому обратился к правительству с просьбой выделить денег на строительство отдельного института для себя и своих единомышленников. Через четыре года состоялось торжественное открыли Института теоретической физики в наше время он носит имя Бора.

В 1918 выходит его статья «О квантовой теории линейчатых спектров», в ней он формулирует принцип соответствия и выводит взаимосвязь между квантовой теорией и классической физикой. В 1922 Бору присудили Нобелевскую премию по физике за его изучение строения атома. Все свои открытия в этой отрасли Бор озвучит на открытой лекции перед студентами в конце того де года в Стокгольме. Ещё один Эйнштейн В 1925 возникает такое понятие как «квантовая механика». В результате многолетних опытов и опровержения нескольких теорий, Бор формулирует принцип дополнительности. В его основа лежит теория о том, что микрочастица получает свои динамические характеристики в зависимости от того, во взаимосвязи с какими объектами она пребывает. Этот принцип некоторые учёные считали настолько важным, что даже предлагали всю квантовую механику называть в его честь, проведя аналогию с теорией относительности Эйнштейна. В 1930-х годах Бор чрезвычайно увлёкся темой ядерной физики.

Настолько, что весь его институт полностью изменил направление своих разработок. В 1936 году сформулировал процесс ядерной реакции, Через несколько лет он доказал, что у различных микроэлементов ядра делятся по-разному, в зависимости от того, какие нейтроны вызывают этот процесс. Вторая мировая и ядерное оружие Когда в Германии ко власти пришёл Гитлер, многие учёные бежали из страны.

Исходным пунктом в эволюции взглядов Бора стало принятие им в 1925 дуализма волна — частица. До этого Бор отказывался признавать реальность эйнштейновских квантов света фотонов , которые было трудно согласовать с принципом соответствия [37] , что вылилось в совместную с Крамерсом и Джоном Слэтером статью, в которой было сделано неожиданное предположении о несохранении энергии и импульса в индивидуальных микроскопических процессах законы сохранения принимали статистический характер. Однако эти взгляды вскоре были опровергнуты опытами Вальтера Боте и Ганса Гейгера [38]. Именно корпускулярно-волновой дуализм был положен Бором в основу интерпретации теории. Идея дополнительности, развитая в начале 1927 во время отпуска в Норвегии [39] , отражает логическое соотношение между двумя способами описания или наборами представлений, которые, хотя и исключают друг друга, оба необходимы для исчерпывающего описания положения дел. Сущность принципа неопределённости состоит в том, что не может возникнуть такой физической ситуации, в которой оба дополнительные аспекта явления проявились бы одновременно и одинаково отчётливо [40].

Иными словами, в микромире нет состояний, в которых объект имел бы одновременно точные динамические характеристики, принадлежащие двум определённым классам, взаимно исключающим друг друга, что находит выражение в соотношении неопределённостей Гейзенберга. Следует отметить, что на формирование идей Бора, как он сам признавал, повлияли философско-психологические изыскания Сёрена Кьеркегора, Харальда Гёффдинга и Уильяма Джемса [41]. Принцип дополнительности лёг в основу так называемой копенгагенской интерпретации квантовой механики [42] и анализа процесса измерения [43] характеристик микрообъектов. Согласно этой интерпретации, заимствованные из классической физики динамические характеристики микрочастицы её координата, импульс , энергия и др. Смысл и определённое значение той или иной характеристики электрона, например, его импульса, раскрываются во взаимосвязи с классическими объектами, для которых эти величины имеют определённый смысл и все одновременно могут иметь определённое значение такой классический объект условно называется измерительным прибором. Роль принципа дополнительности оказалась столь существенной, что Паули даже предлагал назвать квантовую механику «теорией дополнительности» по аналогии с теорией относительности [44]. Через месяц после конгресса в Комо, на пятом Сольвеевском конгрессе в Брюсселе , начались знаменитые дискуссии Бора и Эйнштейна об интерпретации квантовой механики [45]. Спор продолжился в 1930 на шестом конгрессе, а затем возобновился с новой силой в 1935 после появления известной работы [46] Эйнштейна, Подольского и Розена о полноте квантовой механики. Дискуссии не прекращались до самой смерти Эйнштейна [47] , порой принимая ожесточённый характер.

Впрочем, участники никогда не переставали относиться друг к другу с огромным уважением, что нашло отражение в словах Эйнштейна, написанных в 1949 : Я вижу, что я был … довольно резок, но ведь … ссорятся по-настоящему только братья или близкие друзья. Здесь его посещали знаменитости не только научного например, Резерфорд , но и политического мира королевская чета Дании, английская королева Елизавета , президенты и премьер-министры различных стран [50]. В 1934 Бор пережил тяжёлую личную трагедию. Во время плавания на яхте в проливе Каттегат штормовой волной был смыт за борт его старший сын — 19-летний Христиан; обнаружить его так и не удалось [51]. Всего у Нильса и Маргарет было шестеро детей. Один из них, Оге Бор, также стал выдающимся физиком, лауреатом Нобелевской премии 1975. В 1930-е годы Бор увлёкся ядерной тематикой , переориентировав на неё свой институт: благодаря своей известности и влиянию он сумел добиться выделения финансирования на строительство у себя в Институте новых установок — циклотрона , ускорителя по модели Кокрофта — Уолтона, ускорителя ван-де-Граафа [52]. Сам он внёс в это время существенный вклад в теорию строения ядра и ядерных реакций. В 1936 Бор, исходя из существования недавно наблюдавшихся нейтронных резонансов, сформулировал фундаментальное для ядерной физики представление о характере протекания ядерных реакций : он предположил существование так называемого составного ядра «компаунд-ядра» , то есть возбуждённого состояния ядра с временем жизни порядка времени движения нейтрона через него.

Тогда механизм реакций, не ограничивающийся лишь нейтронными реакциями, включает два этапа: 1 образование составного ядра, 2 его распад. При этом две эти стадии протекают независимо друг от друга, что обусловлено равновесным перераспределением энергии между степенями свободы компаунд-ядра. Это позволило применить статистический подход к описанию поведения ядер, что позволило вычислить сечения ряда реакций, а также интерпретировать распад составного ядра в терминах испарения частиц [53]. Однако такая простая картина имеет место лишь при больших расстояниях между резонансами уровнями ядра , то есть при малых энергиях возбуждения. Как было показано в 1939 в совместной работе Бора с Рудольфом Пайерлсом и Георгом Плачеком, при перекрытии резонансов компаунд-ядра равновесие в системе не успевает установится и две стадии реакции перестают быть независимыми, то есть характер распада промежуточного ядра определяется процессом его формирования. Развитие теории в этом направлении привело к созданию в 1953 Виктором Вайскопфом, Германом Фешбахом и К. Портером так называемой «оптической модели ядра», описывающей ядерные реакции в широком диапазоне энергий [54]. Одновременно с представлением о составном ядре Бор совместно с Ф. Калькаром предложил рассматривать коллективные движения частиц в ядрах, противопоставив их картине независимых нуклонов.

Такие колебательные моды жидкокапельного типа находят отражение в спектроскопических данных в частности, в мультипольной структуре ядерного излучения. Идеи о поляризуемости и деформациях ядер были положены в основу обобщённой коллективной модели ядра, развитой в начале 1950 -х годов Оге Бором, Беном Моттельсоном и Джеймсом Рейнуотером [55]. Велик вклад Бора в объяснение механизма деления ядер, при котором происходит освобождение огромных количеств энергии. Деление было экспериментально обнаружено в конце 1938 Отто Ганом и Фрицем Штрассманом и верно истолковано Лизе Мейтнер и Отто Фришем во время рождественских каникул. Бор узнал об их идеях от Фриша, работавшего тогда в Копенгагене , перед самым отъездом в США в январе 1939 [56]. В Принстоне совместно с Джоном Уилером он развил количественную теорию деления ядер, основываясь на модели составного ядра и представлениях о критической деформации ядра, ведущей к его неустойчивости и распаду. Для некоторых ядер эта критическая величина может быть равна нулю, что выражается в распаде ядра при сколь угодно малых деформациях [57]. Теория позволила получить зависимость сечения деления от энергии, совпадающую с экспериментальной. Кроме того, Бору удалось показать, что деление ядер урана-235 вызывается «медленными» низкоэнергетичными нейтронами, а урана-238 — быстрыми [58].

Противостояние нацизму. Борьба против атомной угрозы 1940—1950 [ ] После прихода к власти в Германии нацистов Бор принял активное участие в устройстве судьбы многих учёных-эмигрантов, которые переехали в Копенгаген. В 1933 усилиями Нильса Бора, его брата Харальда, директора Института вакцин Торвальда Мадсена и адвоката Альберта Йоргенсена был учреждён специальный Комитет помощи учёным-беженцам [59]. После оккупации Дании в апреле 1940 года возникла реальная опасность ареста Бора в связи с его полуеврейским происхождением. Тем не менее, он решил оставаться в Копенгагене, пока это будет возможно, чтобы гарантировать защиту института и своих сотрудников от посягательств оккупационных властей.

Этот принцип некоторые учёные считали настолько важным, что даже предлагали всю квантовую механику называть в его честь, проведя аналогию с теорией относительности Эйнштейна. В 1930-х годах Бор чрезвычайно увлёкся темой ядерной физики. Настолько, что весь его институт полностью изменил направление своих разработок. В 1936 году сформулировал процесс ядерной реакции, Через несколько лет он доказал, что у различных микроэлементов ядра делятся по-разному, в зависимости от того, какие нейтроны вызывают этот процесс. Вторая мировая и ядерное оружие Когда в Германии ко власти пришёл Гитлер, многие учёные бежали из страны. Вместе с братом Бор помогал им обустроиться в Копенгагене. Под угрозой оказался и сам физик, ведь его мать имела еврейские корни. Но он решил оставаться в городе до последнего и защищать свой институт. В 1941 у него состоялась встреча с Вернером Гейзенбергом, этот физик в то время сотрудничал в нацистской Германией по вопросам разработки ядерного оружия. Но Бор помогать не согласился. В 1943 они вместе с сыном бежали в США, где до конца войны жили под другими именами и разрабатывали атомную бомбу. Уже работая над проектом, он осознал опасность такого оружия, поэтому написал не одно письмо Черчиллю и Рузвельту, чтобы те с осторожностью относились к атомной энергии. Разработкой Бора заинтересовалась и другая сторона — СССР, его даже приглашали приехать туда для обмена опытом, что в США расценили как попытку шпионажа. Последние годы физик провёл, выступая с лекциями и в написании философских статей. Своё самое важное, как он считал, открытие — принцип дополнительности, он хотел применить в различных сферах: биологии, психологии и культуре. Умер в возрасте 77 лет от сердечного приступа. Прах Бора находится в Копенгагене в семейной могиле. Интересные факты Бор очень часто вступал в дискуссии с Эйнштейном. Часто они заканчивались на повышенных тонах, тем не менее оба считали друг друга близкими друзьями. С 1965 года Копенгагенский институт теоретической физики носит название «институт Нильса Бора».

Это была милая дама преклонных лет по имени Герти. Она отреагировала на меня воодушевленно. Я заверила даму, что мой материал прочитают многие фанаты физики и науки из России, и что всем им интересно будет вместе со мной немного прикоснуться к истории квантовой физики. Штатный экскурсовод деловито повела меня по коридору и по лестницам. Как оказалось, первая остановка — рабочий кабинет Нильса Бора. Классический скромный интерьер: зеленые драпированные стены и коричневая мебель. На одной из стен, при ближайшем рассмотрении — подборка коллективных фото всех сотрудников Института в разные годы. Видно и самого Бора на каждом фото, вплоть до 1962 года. Моя проводница начала рассказ с того, что денег на институт дал пивовар Карлсберг. Выяснилось, что пивовар был не просто успешный предприниматель, а фанат науки и огромнейшие деньги регулярно жертвовал ученым. При этом, сам очень любил пользоваться научными достижениями в производстве. Сейчас пивоварни Карлсберга назвали бы «инновационными». Бор стал национальной знаменитостью, как только опубликовал свою теорию и начал участвовать в дебатах по ее защите, и благодаря своему влиянию смог сделать Институт ведущим центром исследований в теоретической физике. В одной из комнат института некоторое время жил немецкий физик Вернер Гейзенберг. В середине 20-х они вместе с Бором в этом самом институте совершали революцию в физике. Именно разговоры и споры с Гейзенбергом подтолкнули Бора к формулированию принципа дополнительности, по которому, в том числе, атом может проявлять себя как частица и как волна. Роль принципа дополнительности была очень велика для физики, Паули всерьез предлагал назвать квантовую механику «теорией дополнительности» по аналогии с теорией относительности. Знаменитый парадокс кота Шредингера, кстати, появился от желания автора доказать неправоту «копенгагенской интерпретации» Бора. Спорили они на протяжении нескольких дней в ходе одной из all physics stars конференций в 1926 году. Герти рассказывает, что жена Бора была ему невероятно предана и совершенно не обиделась, когда еще в начале карьеры вместо свадебного путешествия муж повез ее в Манчестер к Резерфорду. Кстати, у Бора было 6 детей. Следующим пунктом была Аудитория.

Нильс Бор, рокфеллеровские постдоки и рождение квантовой механики

Телеграф новостей. Новости. Брат Нильса Бора, Харальд, тоже выступал на Олимпиаде, тоже в Лондоне, только в 1908 году и в качестве футболиста, а сам Нильс Бор вместе с братом защищал цвета футбольного клуба АБ Гладсаксе как вратарь). В 1910 году Нильс Бор получил звание магистра университета, через год защитил диссертацию, после чего получил докторскую степень. Нильс Хендрик Давид Бор Родился 7 октября 1885 года, Копенгаген, Дания Умер 18 ноября 1962 года, Копенгаген, Дания. Бор Нильс (1885–1962), датский физик, создатель первой квантовой теории атома, президент Датской королевской АН (с 1939). Нильс Бор устроил революцию в физике и уже в 37 получил нобелевку.

Помощь Нильса Бора

Bor_1 Нильс Бор относится к тем выдающимся людям, великим ученым, которые повлияли на судьбы мира. Книжно-иллюстративная выставка «Лауреат Нобелевской премии по физике Нильс Хенрик Давид Бор (1885–1962)». В 1955 году Нильс Бор достиг 70-летия, возраста обязательной отставки, и покинул профессорский пост, но остался главой учрежденного института и продолжал работу. Более того, благодаря этому открытию теперь астрономы смогут лучше изучить и понять эту неуловимую группу чёрных дыр средней массы. Нильс Бор неоднократно подчеркивал параллель между гносеологическими проблемами квантовой физики и теории относительности. В 1922 году за работу в области структуры атома и радиации Нильс Бор удостаивается Нобелевской премии по физике.

Нильс Бор: молчание о главном

Очень скоро этот институт стал эталоном самых важных открытий, сделанных в то время, связанных с атомом и его конформацией. За короткое время Северный институт теоретической физики стал наравне с другими университетами с более высокими традициями в этой области, такими как немецкие университеты Геттингена и Мюнхена. Копенгагенская школа 1920-е годы были очень важны для Нильса Бора, поскольку за эти годы он опубликовал два основных принципа своих теорий: принцип соответствия, опубликованный в 1923 году, и принцип дополнительности, добавленный в 1928 году. Вышеупомянутые принципы стали основой, на которой начала формироваться Копенгагенская школа квантовой механики, также называемая Копенгагенской интерпретацией. Эта школа нашла противников в лице великих ученых, таких как сам Альберт Эйнштейн, который, выступив против различных подходов, в конечном итоге признал Нильса Бора одним из лучших научных исследователей того времени. С другой стороны, в 1922 году он получил Нобелевскую премию по физике за свои эксперименты, связанные с атомной реструктуризацией, и в том же году родился его единственный сын Оге Нильс Бор, который в конце концов учился в институте, которым руководил Нильс. Позже он стал ее директором и, кроме того, в 1975 году получил Нобелевскую премию по физике.

Именно в этом контексте Бор определил делящуюся характеристику плутония. В конце того десятилетия, в 1939 году, Бор вернулся в Копенгаген и получил назначение президента Королевской датской академии наук. Вторая мировая война В 1940 году Нильс Бор был в Копенгагене, а в результате Второй мировой войны три года спустя он был вынужден бежать в Швецию вместе со своей семьей, потому что Бор имел еврейское происхождение. Из Швеции Бор отправился в Соединенные Штаты. Там он поселился и присоединился к команде разработчиков Манхэттенского проекта, который произвел первую атомную бомбу. Этот проект осуществлялся в лаборатории, расположенной в Лос-Аламосе, Нью-Мексико, и во время своего участия в этом проекте Бор сменил имя на Николаса Бейкера.

Возвращение домой и смерть В конце Второй мировой войны Бор вернулся в Копенгаген, где он снова стал директором Северного института теоретической физики и всегда выступал за применение атомной энергии с полезными целями, всегда добиваясь эффективности в различных процессах. Эта склонность объясняется тем фактом, что Бор осознавал огромный ущерб, который может быть нанесен тем, что он открыл, и в то же время он знал, что этот тип мощной энергии имеет более конструктивную полезность. Итак, с 1950-х годов Нильс Бор посвятил себя проведению конференций, посвященных мирному использованию атомной энергии. Как мы упоминали ранее, Бор не упускал из виду величину атомной энергии, поэтому, помимо защиты ее правильного использования, он также оговорил, что именно правительства должны гарантировать, что эта энергия не используется разрушительным образом. Это понятие было введено в 1951 году в манифесте, подписанном более чем сотней известных исследователей и ученых того времени. Как следствие этого действия и его предыдущей работы в пользу мирного использования атомной энергии, в 1957 году Фонд Форда наградил его премией «Атом для мира», присуждаемой личностям, которые стремились способствовать позитивному использованию этого типа энергии.

Нильс Бор умер 18 ноября 1962 года в своем родном городе Копенгагене в возрасте 77 лет. Вклады и открытия Нильса Бора Бор и Альберт Эйнштейн Модель и строение атома Атомная модель Нильса Бора считается одним из его величайших вкладов в мир физики и науки в целом. Он был первым, кто показал атом как положительно заряженное ядро, окруженное вращающимися электронами. Бору удалось открыть внутренний рабочий механизм атома: электроны могут независимо вращаться вокруг ядра. Количество электронов, присутствующих на внешней орбите ядра, определяет свойства физического элемента.

В 1903 году Бор поступил в престижный Копенгагенский университет, где помимо физики и математики активно изучал химию и астрономию. В этом университете Нильс выполнил свои первые работы по исследованию колебаний струи жидкости для более точного определения величины поверхностного натяжения воды.

Это теоретическое исследование в 1906 году было отмечено золотой медалью Датского королевского общества. В последующие несколько лет оно было дополнено экспериментальными результатами, полученными Бором в лаборатории. В 1910 году Нильс Бор был удостоен степени магистра, а в мае 1911 года защитил докторскую диссертацию по классической электронной теории металлов. В своей работе Бор убедительно доказал важную теорему классической статистической механики, согласно которой магнитный момент любой совокупности элементарных электрических зарядов, движущихся по законам классической механики в постоянном магнитном поле, в стационарном состоянии равняется нулю. В 1913 году увидела свет статья «Теория торможения заряженных частиц при их прохождении через вещество», которую Бор написал после непродолжительной, но весьма плодотворной совместной работы с Эрнестом Резерфордом в Англии. В Копенгагене Бор преподавал в университете, в то же время очень активно работая над квантовой теорией строения атома. Скорым итогом масштабной работы Бора стали три части статьи «О строении атомов и молекул», опубликованные в том же 1913 году и содержащие квантовую теорию водородоподобного атома.

Вообще, наставничество «Крокодила» так прозвали новозеландца физики стало для Бора очень важным толчком к развитию. Впоследствии Бор даже писал, что Резерфорд стал для него вторым отцом. Поработав с Резерфордом, Бор вернулся в Копенгаген — преподавать в университете и жениться. Во время свадебного путешествия молодая семья заехала в гости к Резерфордам, и с тех пор научное сотрудничество дополнилось семейной дружбой. Свою гениальную догадку Бор сделал в 1913 году, когда познакомился с формулой Бальмера, описывающей серию спектральных линий атома водорода. Бор понял: существуют орбиты, на которых электроны не теряют энергию. И таких орбит строго определенное количество, переходя с орбиты на орбиту электрон излучает или поглощает энергию, равную разнице энергий орбит, то есть — квантованно. В 1913 году увидели свет три части статьи Бора «О строении атомов и молекул», которые описывали объединенную квантовую модель атома Бора-Резерфорда. Что любопытно — статья вышла в философском журнале, Philosophical Magazine.

С той поры и началось триумфальное шествие Бора по миру физики. Достаточно вспомнить две цитаты о его теории, ставшие классическими. Это было так, точно из-под ног ушла земля и нигде не было видно твердой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточным, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьем — найти главные законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это мне кажется чудом и теперь. Это наивысшая музыкальность в области мысли». Угадали автора? Правильно, кто еще мог говорить о музыкальности мысли, как не великий Альберт Эйнштейн. Любопытно, что одним из тех, кто номинировал Бора на Нобеля в том самом 1922 году, был первый нобелевский лауреат по физике, Вильгельм Конрад Рентген.

Сам Бор тоже активно номинировал физиков на премию.

Так родился Google. И знаете, да — что если нет под рукой карандаша с блокнотом, то наутро все непременно забудешь? Вот и мне приснился такой сон, когда мне было 23 года. Вдруг проснувшись, я задумался: а что, если бы мы могли скачать весь интернет, сохранить все ссылки и… Я схватил ручку и начал писать! Иногда важно проснуться и перестать мечтать. Искусство изготовления таких мечей считалось утерянным, потому что во время «культурной революции» коммунисты сжигали книги о традиционной культуре. Часть знаний, как изготавливать такие мечи, Чэнь получил во время исследований, но многие секреты пришли к нему в снах.

Он увидел божественных существ, которые дали ему инструкции. Он неохотно рассказывает подробности, потому что, по его словам, люди всё равно не поверят ему. Перед шлифовкой он час сидит в медитации. Для изготовления меча такого рода необходим душевный и духовный настрой, считает Чэнь. Инсулин После смерти близкого друга, умершего из-за диабета в 1920 году канадский учёный Фредерик Грант Бантинг решил посвятить свою жизнь созданию лекарства от этой страшной болезни. Он начал с изучения литературы, посвященной этой проблеме.

135 лет со дня рождения Нильса Бора: лучшие приложения «МЭШ» по физике

Его дипломный проект, в котором он определял поверхностное натяжение воды по вибрации водяной струи, принес ему золотую медаль Датской королевской академии наук. Степень магистра он получил в Копенгагенском университете в 1909 г. Его докторская диссертация по теории электронов в металлах считалась мастерским теоретическим исследованием. Среди прочего в ней вскрывалась неспособность классической электродинамики объяснить магнитные явления в металлах. Это исследование помогло Бору понять на ранней стадии своей научной деятельности, что классическая теория не может полностью описать поведение электронов. Получив докторскую степень в 1911 г. Томсоном , который открыл электрон в 1897 г. Правда, к тому времени Томсон начал заниматься уже другими темами, и он выказал мало интереса к диссертации Бора и содержащимся там выводам.

Но Бор тем временем заинтересовался работой Эрнеста Резерфорда в Манчестерском университете. Резерфорд со своими коллегами изучал вопросы радиоактивности элементов и строения атома. Бор переехал в Манчестер на несколько месяцев в начале 1912 г. Он вывел много следствий из ядерной модели атома , предложенной Резерфордом, которая не получила еще широкого признания. В дискуссиях с Резерфордом и другими учеными Бор отрабатывал идеи, которые привели его к созданию своей собственной модели строения атома. Летом 1912 г. Бор вернулся в Копенгаген и стал ассистент-профессором Копенгагенского университета.

В этом же году он женился на Маргрет Норлунд. У них было шесть сыновей, один из которых, Oгe Бор, также стал известным физиком. В течение следующих двух лет Бор продолжал работать над проблемами, возникающими в связи с ядерной моделью атома. Резерфорд предположил в 1911 г. Эта модель основывалась на представлениях, находивших опытное подтверждение в физике твердого тела, но приводила к одному трудноразрешимому парадоксу. Согласно классической электродинамике, вращающийся по орбите электрон должен постоянно терять энергию, отдавая ее в виде света или другой формы электромагнитного излучения. По мере того как его энергия теряется, электрон должен приближаться по спирали к ядру и в конце концов упасть на него, что привело бы к разрушению атома.

На самом же деле атомы весьма стабильны, и, следовательно, здесь образуется брешь в классической теории. Бор испытывал особый интерес к этому очевидному парадоксу классической физики, поскольку все слишком напоминало те трудности, с которыми он столкнулся при работе над диссертацией. Возможное решение этого парадокса, как полагал он, могло лежать в квантовой теории.

Это теоретическое исследование в 1906 году было отмечено золотой медалью Датского королевского общества. В последующие несколько лет оно было дополнено экспериментальными результатами, полученными Бором в лаборатории.

В 1910 году Нильс Бор был удостоен степени магистра, а в мае 1911 года защитил докторскую диссертацию по классической электронной теории металлов. В своей работе Бор убедительно доказал важную теорему классической статистической механики, согласно которой магнитный момент любой совокупности элементарных электрических зарядов, движущихся по законам классической механики в постоянном магнитном поле, в стационарном состоянии равняется нулю. В 1913 году увидела свет статья «Теория торможения заряженных частиц при их прохождении через вещество», которую Бор написал после непродолжительной, но весьма плодотворной совместной работы с Эрнестом Резерфордом в Англии. В Копенгагене Бор преподавал в университете, в то же время очень активно работая над квантовой теорией строения атома. Скорым итогом масштабной работы Бора стали три части статьи «О строении атомов и молекул», опубликованные в том же 1913 году и содержащие квантовую теорию водородоподобного атома.

Теория Бора сразу же позволила обосновать испускание и поглощение излучения в сериальных спектрах водорода, а также объяснить наблюдавшиеся ранее водородоподобные спектры с полуцелыми квантовыми числами как принадлежащие ионизированному гелию. Блестящим успехом теории Бора стало теоретическое получение значения постоянной Ридберга.

В составе родной команде младший брат не останавливался феерить и вскоре получил приглашение в сборную страны. К этому времени он стал одним из самых популярных и узнаваемых футболистов Дании. При этом наука продолжала волновать его так же, как и спорт. Все свободное от футбола время он посвящал математике. В 1908 году Харальд в составе сборной Дании отправился на Олимпийские игры в Лондон. В финале турнира против них играли датчане, пройдясь до этого катком по сборной Франции 26:1. К сожалению для скандинавов, «золото» британцы с трудом, но оставили дома, победив соперника со счетом 2:0.

Но и этот результат стал ошеломляющим для северной страны. Дома серебряных призеров встречали, как настоящих героев, а Харальд Бор на том турнире забил свои единственные голы за сборную. Существует легенда, что во время одного из научных докладов по математике в зале оказались фанаты и, заметив за трибуной своего кумира, чуть не сорвали конференцию. Пока Харальд не поприветствовал каждого из них, порядок в зале вернуть не удалось. Квантовое строение атома, квантовая механика и много других сложных словосочетаний со словом «квантовый», при произнесении которых лицо невольно принимает серьезное выражение. Сотрудничество с Альбертом Эйнштейном и Эрнестом Резерфордом только укрепило значимость имени датского физика.

В 1888 году все столицы колоний за исключением Аделаиды отпраздновали столетие высадки первого флота как День юбилея, а к 1935 году все штаты страны праздновали 26 января как День Австралии. Герой В канадском городе Брантфорд 26 января 1961 года родился будущий хоккеист Уэйн Гретцки, которому было суждено переписать большинство рекордов североамериканского хоккея.

Талант будущей звезды хоккея проявился уже в детстве. В шестилетнем возрасте Гретцки играл с десятилетними спортсменами. В возрасте десяти лет вундеркинд, выступая в детской лиге, забросил за сезон 378 шайб и сделал 139 передач в 68 играх, что стало абсолютным рекордом. В 16 лет Гретцки уже выступал за сборную Канады на юниорском чемпионате мира, где был самым молодым участником. На следующий год он подписал контракт с профессиональной командой. В сильнейшую хоккейную лигу мира НХЛ Уэйн Гретцки попал в 1979 году и в первом же матче набрал свое первое очко за результативную передачу. В этом же сезоне он получил первый из своих девяти титулов самого полезного игрока сезона — "Харт трофи". Во втором сезоне Гретцки получил первый из своих десяти титулов лучшего бомбардира сезона — "Арт Росс трофи".

Бор, Нильс

История Нильса Бора и Института Нильса Бора — это история научной деятельности о том, чтобы сделать неизвестное известным. Нильс Бор всемирно известен как один из самых важных учёных 20-го века за его инновационное открытие структуры атомов. О роли в этой истории американских денег, датского нейтралитета, новых форм организации науки и фигуре Нильса Бора, который сумел всем этим воспользоваться. Его соплеменники очень гордились тем, что Нильс Бор сделал такой большой вклад в развитие физики. Великий физик Нильс Бор, родоначальник квантовой физики, Лауреат Нобелевской премии. По характеру чрезвычайно мягкий и интеллигентный, Нильс Бор не высказывался критично по отношению к религии.

Похожие новости:

Оцените статью
Добавить комментарий