Новости теория суперсимметрии

Чем больше мы исследуем теорию суперсимметрии, тем неотразимее она становится», — пишет специалист по физике элементарных частиц Дэн Хупер. Суперсимме́трия, или симме́трия Фе́рми — Бо́зе, — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает.

Откройте свой Мир!

Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Чем больше мы исследуем теорию суперсимметрии, тем неотразимее она становится», — пишет специалист по физике элементарных частиц Дэн Хупер. му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии.

Экзамены суперсимметричной модели вселенной 1978

Лектор рассказывает о теории суперструн, голографических чёрных дырах, столкновениях параллельных вселенных и о других интересных явлениях. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. Киральная симметрия (от греч. cheir — рука) — инвариантность уравнений квантовой теории поля относительно преобразований, перемешивающих состояния частиц как с различными. Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК.

"Теория проигрывает эксперименту": новый кризис в физике высоких энергий?

ОКО ПЛАНЕТЫ» Наука и техника» Новость дня» Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел. Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на. Возвращаясь к эпизоду "Теории большого взрыва", предлагаемым объяснением наблюдаемого в настоящее время несоответствия является суперсимметрия. С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии.

Гляжусь, как в зеркало: есть ли шансы у суперсимметрии?

Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно. Так же существуют и более классические теории, согласно которым бозон Хиггса является сложной частицей, основанной на новом типе симметрии, суперсимметрии. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Поскольку суперсимметрия является необходимым компонентом теории суперструн, любая обнаруженная суперсимметрия будет согласована с теорией суперструн.

Адронный коллайдер подтвердил теорию суперсимметрии

Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения. Существует много споров об этой теории, но суперсимметрия является одним из наиболее привлекательно возможных расширений Стандартной модели и ведущим претендентом в. Многие думают, что даже если большинство теорий суперсимметрии не подтвердились, появятся новые, которые будут включать этот принцип, но в другой концепции. Левин Б.М. Реализация суперсимметрии в атоме дальнодействия и конфайнмент, барионная асимметрия, тёмная материя/тёмная энергия. Суперсимметрия — Это статья о физической гипотезе. Об одноимённом альбоме группы «Океан Эльзы» см. статью Суперсиметрія (альбом). За пределами Стандартной модели Стандартная модель Свидетельства Проблема иерархий • Тёмная материя Проблема. Суперсимметрия, возникшая независимо в теории струн, «убила» тахион.

Суперсимметрия

Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие. Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях. Многомерное пространство Калаби-Яу В частности, суперсимметрия может укрепить теорию струн. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии.

Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику. Тем не менее проверить ее экспериментально чрезвычайно трудно. Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении.

Как разлетаются бозоны Физики думают, что мы найдем доказательства суперсимметрии? Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года.

К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной. Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн.

Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем.

Тошихидэ Маскава. Кофе — напиток «чётный», это слово не меняется при отражении в зеркале. Чай — «нечётный», при отражении слово изменилось до неузнаваемости. Конструкция, состоящая из слабо накачанного большого мяча с маленьким мячиком, который лежит в выемке наверху, симметрична относительно вертикальной оси, проходящей через центры мячей.

Ещё один пример спонтанного нарушения симметрии. Бутылка с выпуклым дном и шариком в узком горлышке — система симметричная. В статье М. Кобаяши и Т.

Маскава «СР-нарушение в теории перенормировки слабого взаимодействия» была изложена разработанная ими теория. Распад В-мезона, в котором происходит спонтанное нарушение СР-симметрии. Около полувека тому назад, задолго до появления в обиходе физиков слова «кварк», Намбу совместно с итальянским физиком Джованни Йона-Лазиньо высказали гипотезу относительно глубинных причин, управляющих «устройством» и свойствами казавшегося довольно сумбурным «зоопарка» адронов, каковых в то время было уже известно несколько десятков. Опираясь на аналогию со сверхпроводимостью, которой Намбу занимался до этого, они построили весьма своеобразную модель сильного взаимодействия этих частиц.

Её основными объектами были не хорошо известные нуклоны — протоны и нейтроны, а некие гипотетические, очень лёгкие частицы, которых в природе не оказалось роль, которую они играли в этой модели, впоследствии взяли на себя кварки ; мезонов же в теории изначально не было вообще. Но, пожалуй, самое главное, что вакуум перестал играть роль «стороннего наблюдателя» за распространением частиц, а превратился в активного участника процесса. Математически это выглядело как появление новой симметрии — так называемой киральной, которая спонтанно нарушалась, а физически, как и в случае сверхпроводимости, было проявлением того общего положения, что система фермионов с притяжением между частицами не вполне устойчива. Именно эта неустойчивость привела к образованию конденсата — когерентного состояния сильновзаимодействующих частиц, минимизирующего энергию системы, подобно тому как это делают куперовские пары в сверхпроводниках см.

Что такое спонтанное нарушение любой симметрии, поясним на примере. Всем известный буриданов осёл, стоя посередине между двумя стогами сена, долго не мог решить, к какому из них направиться. Пока дело обстоит таким образом, картина вполне симметрична. Но, в конечном счёте, он всё же должен пойти к одному из них — не умирать же ему с голоду.

Выбор совершенно случаен спонтанен , но как только осёл сделал первое телодвижение, запах вожделенной еды, исходящий от ставшего чуть ближе стога, стал немного сильнее, и, стало быть, назад он уже не пойдёт. Таким образом, не остаётся никаких шансов на дальнейшее удержание симметрии. А вот другой, менее курьёзный пример. Представим себе, что маленький теннисный мячик лежит на слабо накачанном закреплённом баскетбольном мяче, продавив ямку в его верхней точке.

Очевидно, что такая конфигурация абсолютно симметрична относительно вертикальной оси, проходящей через центры обоих мячей.

Суперсимметричная квантовая механика часто становится актуальной при изучении динамики суперсимметричных солитонов, и из-за упрощенного характера полей, которые зависят от времени а не пространства-времени , в этом подходе достигнут большой прогресс, и эта теория теперь изучается самостоятельно. Квантовая механика SUSY рассматривает пары гамильтонианов, которые находятся в определённом математическом отношении, которые называются гамильтонианами-партнерами.

А соответствующие члены потенциальной энергии, входящие в гамильтонианы, тогда известны как потенциалы-партнеры. Основная теорема показывает, что для каждого собственного состояния одного гамильтониана, его гамильтониан-партнер имеет соответствующее собственное состояние с той же энергией. Этот факт можно использовать для вывода многих свойств спектра собственных значений.

Это аналогично новому описанию SUSY, которое относилось к бозонам и фермионам. Можно представить «бозонный гамильтониан», собственными состояниями которого являются различные бозоны нашей теории. А SUSY-партнер этого гамильтониана будет «фермионным», а его собственными состояниями будут фермионы теории.

У каждого бозона будет фермионный партнер с равной энергией.

Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза.

Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ. Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она?

Сегодня мы имеем ответы на вопросы, позволяющие гораздо лучше понять происхождение Вселенной. Однако в самом начале XXI века перед нами стоят новые вопросы, ответы на которые ученые надеются получить с помощью ускорителя БАК.

СУПЕРСИММЕ́ТРИ́Я

Физики со всего мира на встрече в Копенгагене подвели итоги пари, касающегося теории суперсимметрии, пишет научно-популярное издание Quanta. Первые ставки были сделаны еще в 2000 году, когда началось строительство Большого адронного коллайдера БАК. Ученые с мировым именем поспорили, будут ли с его помощью открыты новые частицы, подтверждающие теорию суперсимметрии, согласно которой каждая частица должна иметь своего суперпартнера.

Но это явное различие не является свойством законов природы. Различие возникает из-за близости Земли, прячущей от нашего взора вращательную симметрию. Вопрос в том, что если какой-то аспект нашего мира не такой грубый, как Земля, но какой-нибудь незаметный, вроде поля Хиггса прячет от нашего взора суперсимметрию по всей Вселенной? Что тогда? Оказывается, что довольно легко получить такой же мир, как наш, где суперпартнёры известных части существуют, просто стали тяжелее — слишком тяжёлыми для того, чтобы мы обнаружили их в экспериментах. Вы видите, что нарушение суперсимметрии то, что она прячется и её нелегко обнаружить увеличило масштаб масс всех суперпартнёров так, что вся массовая шкала находится выше массы верхнего кварка. И это не так искусственно или глупо, как кажется — математика с готовностью принимает этот эффект.

Существует множество точных примеров того, как это может произойти — но их слишком много для того, чтобы мы догадались, какой из них наиболее вероятен. И это не единственная схема, способная возникнуть при нарушении суперсимметрии! Существует большое количество других возможностей, которые я буду называть вариантами суперсимметрии. Но представленный мною вариант — наиболее популярный среди теоретиков и экспериментаторов, особенно в Европе в США он менее популярен, про другие места я не знаю. Этой популярности есть веские причины; оказывается, что существует несколько независимых способов получить схему, сходную с этой. Однако популярность всегда порождает предвзятость, а нам необходимо рассматривать все возможности, не делая предположений касательно этих аргументов. Но если суперпартнёры очень массивные, не может ли получиться так, что мы не сможем произвести ни одного из них в ближайшие десятилетия или даже столетия? Не занимаемся ли мы подсчётом количества ангелов, способных уместиться на кончике иглы? Из всего вышеизложенного пока действительно следует, что такой риск существует.

Однако есть и более тонкий аргумент в пользу наличия суперсимметрии, благодаря которому у многих физиков есть надежда на то, что все эти суперпартнёры находятся в пределах досягаемости Большого адронного коллайдера. Это следует из того факта, что суперсимметрия решила бы проблему иерархии — одну из величайших загадок нашего мира. Проблема иерархии Важным свойством природы, ставящим в тупик учёных, а в их числе и меня, является свойство иерархии — огромной разницы между свойствами слабого ядерного взаимодействия и гравитации. Эту иерархию можно описать несколькими разными способами, каждый из которых упирает на одно из её свойств. Например: Масса мельчайшей возможной чёрной дыры определяет то, что известно, как планковская масса. В связи с этим существует огромная иерархия масштабов массы между слабым ядерным взаимодействием и гравитацией. Сталкиваясь с таким огромным числом, как 10 000 000 000 000 000, десять квадриллионов, физики естественным образом задают вопрос: откуда оно взялось? И у него может быть довольно интересное объяснение. Но пытаясь найти это объяснение в 1970-х, физики увидели существование серьёзной проблемы, даже парадокса, скрывающегося за этим числом.

Эта проблема, известная сейчас, как проблема иерархии, связана с размером ненулевого поля Хиггса, которое в свою очередь определяет массу частиц W и Z. Но оказывается, что из квантовой механики следует, что такой размер поля Хиггса нестабилен, это нечто вроде аналогия неполная!

Потому бозон Хиггса был бы легким, как мы его и наблюдали.

Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями.

Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми.

Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами.

И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие. Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях.

Многомерное пространство Калаби-Яу В частности, суперсимметрия может укрепить теорию струн. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику.

Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ.

Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение. Откуда они возникают, одинаковой ли природы их происхождение и, если да, то какова она? Сегодня мы имеем ответы на вопросы, позволяющие гораздо лучше понять происхождение Вселенной.

Теория суперсимметрии

  • Суперсимметрия в свете данных LHC: что делать дальше?
  • [Перевод] Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
  • Физики открыли пятую силу природы. Главное об эксперименте с мюоном g-2
  • Нобелевская премия по физике 2008 года. Нобелевская асимметрия

С теорией суперсимметрии придётся расстаться

Оно может быть либо тождественно самому предмету — например, отражение букв О или Ф, либо нет — например, отражение буквы И. В мире микрочастиц всё сложнее: там лучше говорить не о симметрии, а о чётности волновой функции, которая описывает физическую систему. Ясно, что в результате двукратного отражения ничего измениться не должно, но при каждом отражении эта функция, вообще говоря, может поменять знак на противоположный. Если этого не происходит, состояние называют чётным, в противном случае — нечётным. Возможность того, что при слабых взаимодействиях пространственная «зеркальная» чётность может изменяться, была предсказана в 1956 году американскими физиками Ли Цзундао и Янг Чженьнин, а спустя год американский физик Ву Цзяньсюн экспериментально обнаружила, что такой эффект действительно имеет место: до взаимодействия состояние может быть чётным, а после него стать нечётным, и наоборот.

Вскоре после этого советский физик Л. Ландау сформулировал гипотезу, согласно которой при любых взаимодействиях должна сохраняться комбинированная чётность — волновая функция не меняет знак при зеркальном отражении Р и одновременной замене частиц античастицами последнюю операцию называют зарядовым сопряжением и обозначают буквой С. Гипотезу назвали СР-инвариантностью. Долгое время её считали таким же незыблемым законом сохранения, как, скажем, закон сохранения энергии, которому подчиняются все процессы.

Но в 1964 году был обнаружен редкий распад долгоживущего нейтрального К-мезона, свидетельствующий, что это не так. Сахаров сразу же отметил, что именно невыполнение СР-инвариантности на ранних стадиях образования горячей Вселенной могло привести к её барионной асимметрии — преобладанию вещества над антивеществом. Тогда всё сущее, в том числе, конечно, и мы сами, порождено нарушенной симметрией. Оставалось, однако, непонятным, как нарушение СР-инвариантности «втиснуть» в рамки бытовавших в то время теоретических представлений.

Дело в том, что тогда ещё только-только была предложена американцами М. Гелл-Маном и Дж. Цвейгом систематизация упоминавшегося выше «зоопарка» адронов, основанная на представлении, что они состоят из кварков трёх типов — u, d и s и соответствующих антикварков. Но нарушению СР-инвариантности там места не было.

И тогда Кобаяши и Маскава обратили внимание на то обстоятельство, что несохранение СР-чётности можно описать весьма непринуждённо, если кроме упомянутых выше имеются как минимум ещё три кварка. Говоря точнее, если в природе существует не менее трёх поколений кварков. Их догадка блестяще подтвердилась, теперь мы знаем, что три поколения — это пары ud -, cs - и tb -кварков, которые, однако, «смешиваются» друг с другом. Последний, тяжёлый t-кварк третьего поколения, «поймали» в Национальной ускорительной лаборатории им.

Более того, выяснилось, что при распадах нейтральных B-мезонов СР-чётность нарушается намного сильнее, чем в аналогичных процессах с участием К-мезонов, о которых упоминалось выше. В заключение заметим, что во всей этой захватывающей физике микромира ещё далеко не всё понятно. По существу, пока мы не знаем самого главного: в чём причина нарушения симметрии в слабых взаимодействиях? Дальнейшее тесно связано со свойствами хиггсовского бозона, существование которого предсказывается так называемой стандартной моделью см.

Постоянный EDM в любой фундаментальной частице указывает на нарушение физики обращения времени и, следовательно, на нарушение CP-симметрии через теорему CPT. Такие эксперименты EDM также намного более масштабируемы, чем обычные ускорители частиц, и предлагают практическую альтернативу обнаружению физики, выходящей за рамки стандартной модели, поскольку эксперименты на ускорителях становятся все более дорогостоящими и сложными в обслуживании. Текущий лучший предел для EDM электрона уже достиг чувствительности, чтобы исключить так называемые «наивные» версии суперсимметричных расширений Стандартной модели. Текущий статус Отрицательные результаты экспериментов разочаровали многих физиков, которые считали суперсимметричные расширения Стандартной модели и других основанных на ней теорий наиболее многообещающими теориями для «новой» физики, выходящей за рамки Стандартной модели, и надеялись на признаки неожиданные результаты экспериментов. В частности, результат LHC кажется проблематичным для минимальной суперсимметричной стандартной модели, поскольку значение 125 ГэВ относительно велико для модели и может быть достигнуто только с помощью больших радиационных петлевых поправок от верхних скварков , которые многие теоретики считают «неестественными». В ответ на так называемый «кризис естественности» в минимальной суперсимметричной стандартной модели некоторые исследователи отказались от естественности и изначальной мотивации решать проблему иерархии естественным образом с помощью суперсимметрии, в то время как другие исследователи перешли к другим суперсимметричным моделям, таким как суперсимметрия расщепления. Третьи перешли к теории струн в результате кризиса естественности.

Бывший активный сторонник Михаил Шифман дошел до того, что призвал теоретическое сообщество искать новые идеи и признать, что суперсимметрия - неудавшаяся теория в физике элементарных частиц. Однако некоторые исследователи предположили, что этот кризис «естественности» был преждевременным, потому что различные расчеты были слишком оптимистичными относительно пределов масс, которые позволили бы суперсимметричное расширение Стандартной модели в качестве решения. Общая суперсимметрия Суперсимметрия появляется во многих связанных контекстах теоретической физики. Возможно иметь несколько суперсимметрий, а также суперсимметричные дополнительные измерения. Расширенная суперсимметрия Может существовать более одного вида преобразования суперсимметрии. Теории с более чем одним преобразованием суперсимметрии известны как расширенные суперсимметричные теории. Чем больше суперсимметрии в теории, тем более ограничены содержание поля и взаимодействия.

Обычно количество копий суперсимметрии является степенью 2 1, 2, 4, 8... В четырех измерениях спинор имеет четыре степени свободы, и поэтому минимальное количество генераторов суперсимметрии составляет четыре в четырех измерениях, а наличие восьми копий суперсимметрии означает, что существует 32 генератора суперсимметрии. Максимальное возможное количество генераторов суперсимметрии - 32.

Ученые полагают, что такого типа симметрия существовала на ранних этапах развития Вселенной, но в процессе ее старения расширения и охлаждения она нарушилась.

Свои аргументы ученые из Университета Джонса Хопкинса основывают на двух обстоятельствах. Во-первых, современные модели предполагают, что первичные черные дыры попадают в интервал масс от десяти до ста солнечных. Во-вторых, сигнал от их слияния может быть обнаружен исключительно при помощи гравитационного взаимодействия.

И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов.

Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия. Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это.

Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями.

Похожие новости:

Оцените статью
Добавить комментарий