Смотрите видео на тему «распад ложного вакума» в TikTok (тикток). Распад существовавшего тогда ложного вакуума привел к быстро расширяющемуся пространству, заполненному раскаленной материей. То есть теоретическая возможность распада ложного вакуума в истинный есть, но реально это займет астрономическое время.
Позитроны укажут на распад вакуума при столкновении тяжёлых ионов
В этом видео поговорим о космической пустоте, о распаде ложного вакуума, о том насколько такое событие вероятно, и как это может произойти. Ученые смоделировали гибель Вселенной, которую может вызвать распад ложного вакуума. На канале Kurzgesagt ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума. Ложный вакуум (метастабильный вакуум[1]) — состояние в квантовой теории поля, которое не является состоянием с глобально минимальной энергией, а соответствует её локальному минимуму. Фото из открытых источников Англо-итальянская команда учёных достигла значительного прогресса в изучении явления распада ложного вакуума. Смотрите видео на тему «распад ложного вакума» в TikTok (тикток).
Впервые получены доказательства распада ложного вакуума
изучить квазиклассический метод вычисления вероятности распада ложного вакуума с помощью отскокового решения. Но чтоб ещё и ложный вакуум, и чтобы он ещё и распадался — до такого извращения даже мы не доходили. Автор ролика рассказывает о распаде ложного вакуума, как о спонтанном процессе, который может происходить как мгновенно так и постепенно. Физики увидели распад ложного вакуума в ферромагнитных сверхтекучих жидкостях.
Вакуумный распад: конец света уже наступил?
В новой картине мира отдаленные области Вселенной разительно отличаются от того, что мы видим вокруг себя, и могут даже подчиняться иным законам физики. Новые представления основаны на теории космической инфляции. Попробуем разъяснить ее суть. Начнем с краткого обзора стандартной космологии Большого взрыва, которая была доминирующей теорией до открытия инфляции. Согласно теории Большого взрыва Вселенная началась с колоссальной катастрофы, которая разразилась около 14 миллиардов лет назад. Большой взрыв случился не в каком-то определенном месте Вселенной, а сразу везде. В то время не было звезд, галактик и даже атомов, и Вселенную заполнял очень горячий плотный и быстро расширяющийся сгусток материи и излучения. Увеличиваясь в размерах, он остывал.
Примерно три минуты спустя после Большого взрыва температура снизилась достаточно для формирования атомных ядер, а через полмиллиона лет электроны и ядра объединились в электрически нейтральные атомы и Вселенная стала прозрачна для света. Это позволяет нам сегодня регистрировать свет, испущенный огненным сгустком. Он приходит со всех направлений на небе и называется космическим фоновым излучением. Как выглядит Вселенная на очень больших расстояниях, в областях, недоступных наблюдению? Первоначально огненный сгусток был почти идеально однородным. Но крошечные неоднородности в нем все-таки были: в некоторых областях плотность была чуть выше, чем в других. Эти неоднородности росли, стягивая своей гравитацией все больше вещества из окружающего пространства, и за миллиарды лет превратились в галактики.
И лишь совсем недавно по космическим меркам на сцене появились мы, люди. В пользу теории Большого взрыва говорит множество наблюдательных данных, не оставляющих сомнений в том, что этот сценарий в основном корректен. Прежде всего мы видим, как далекие галактики разбегаются от нас с очень большими скоростями, что указывает на расширение Вселенной. Также теория Большого взрыва объясняет распространенность во Вселенной легких элементов, таких как гелий и литий. Но самой главной уликой, можно сказать, дымящимся стволом Большого взрыва, служит космическое фоновое излучение — послесвечение первичного огненного шара, до сих пор позволяющее его наблюдать и исследовать. За его изучение присуждены уже две Нобелевские премии. Итак, мы, похоже, располагаем весьма успешной теорией.
И все же она оставляет без ответа некоторые интригующие вопросы, касающиеся начального состояния Вселенной сразу после Большого взрыва. Почему Вселенная была такой горячей? Почему она стала расширяться? Почему она была такой однородной? И, наконец, что было с ней до Большого взрыва? На все эти вопросы отвечает теория инфляции, которую Алан Гут выдвинул 28 лет назад. В обыденном понимании этого слова вакуум — просто абсолютно пустое пространство.
Но для физиков, занимающихся элементарными частицами, вакуум — далеко не полное ничто, а физический объект, обладающий энергией и давлением, который может находиться в различных энергетических состояниях. Физики называют эти состояния разными вакуумами, от их характеристик зависят свойства элементарных частиц, которые могут в них существовать. Связь между частицами и вакуумом подобна связи звуковых волн с веществом, по которому они распространяются: в разных материалах скорость звука неодинакова. Мы живем в очень низкоэнергетическом вакууме, и долгое время физики считали, что энергия нашего вакуума в точности равна нулю. Однако недавно наблюдения показали, что он обладает немного отличной от нуля энергией она получила название темной энергии. Компьютерная модель вечной инфляции. Ложный вакуум желтый расширяется вдвое каждые 10-33 секунд.
В областях, где он распался синие , образовались вселенные, подобные нашей. Наряду с очень высокой энергией ложный вакуум характеризуется большим отрицательным давлением, которое называют натяжением. Это то же самое, что растянуть кусок резины: появляется натяжение — сила, направленная внутрь, которая заставляет резину сжиматься. Но самое странное свойство ложного вакуума — это его отталкивающая гравитация. Согласно общей теории относительности Эйнштейна гравитационные силы вызываются не только массой то есть энергией , но также и давлением. Положительное давление вызывает гравитационное притяжение, а отрицательное ведет к отталкиванию. В случае вакуума отталкивающее действие давления превосходит притягивающую силу, связанную с его энергией, и в сумме получается отталкивание.
И чем выше энергия вакуума, тем оно сильнее. А еще ложный вакуум нестабилен и обычно очень быстро распадается, превращаясь в низкоэнергетический вакуум. Избыток энергии идет на порождение огненного сгустка элементарных частиц. Тут важно подчеркнуть, что Алан Гут не изобретал ложный вакуум со столь странными свойствами специально для своей теории. Его существование следует из физики элементарных частиц. Гут просто предположил, что в самом начале истории Вселенной пространство находилось в состоянии ложного вакуума. Почему так случилось?
Хороший вопрос, и тут есть что сказать, но мы вернемся к этому вопросу в конце статьи. А пока предположим вслед за Гутом, что молодая Вселенная была заполнена ложным вакуумом.
Основное отличие двух этих состояний заключается в том, что истинное является минимальным значением всех энергий и практически полным отсутствием частиц и полей и как раз таки называется вакуумом, а ложное — минимальное, однако не настолько, то есть, существуют вакуумы и со значительно более низкими значениями. Суть катастрофы и заключается в распаде ложного вакуума, который, считают эксперты, начнет приближаться к состоянию истинного под воздействием сторонних сил. В этом случае материя всей Вселенной начнет разрушаться.
Гипотезы, гипотезы … В одной из гипотез из ложного вакуума может и могло? Ну а если существует Мультивселенная, в Параллельных Мирах которой одновременно существует и наше настоящее и прошлое и будущее? Какой же «здесь» конец Вселенной которой?
Судя по всему, Луна прекрасно себя чувствует, поэтому авторы работы, посвященной RHIC, были уверены, что ускоритель не представляет для нас опасности. Правда, странная материя и черные дыры были не единственными сценариями апокалипсиса.
Еще одно опасение, которое также удалось развеять путем наблюдения за высокоэнергетическими космическими лучами, заключалось в том, что столкновения частиц высоких энергий могут вызвать разрушительное для Вселенной квантовое событие под названием «распад вакуума». Эта идея основывается на гипотезе о том, что нашей Вселенной присуща некая фатальная нестабильность. Несмотря на то что такой сценарий может показаться пугающим, каким бы маловероятным он ни был, на момент ввода RHIC в эксплуатацию реальные доказательства существования такой нестабильности отсутствовали, поэтому данная возможность не рассматривалась всерьез. Однако все изменилось в 2012 году, когда с помощью ускорителя БАК был обнаружен бозон Хиггса. Состояние Вселенной Вернейший способ заставить специалиста по физике элементарных частиц поморщиться — это назвать бозон Хиггса «частицей бога», как он известен широкой публике.
Недовольство ученых по поводу этого высокопарного прозвища вызвано не только смешением науки и религии хотя некоторых именно это раздражает больше всего. Дело в том, что название «частица бога» ужасно неточное и, надо сказать, довольно дерзкое. Это не отменяет огромной важности бозона Хиггса для Стандартной модели физики элементарных частиц. Можно даже утверждать, что именно он является ключом к объединению всего остального. Однако центральную роль в работе физики элементарных частиц и в природе космоса играет поле Хиггса, а не частица.
Если коротко, поле Хиггса представляет собой пронизывающее все пространство энергетическое поле, при взаимодействии с которым другие частицы обретают массу. Бозон Хиггса имеет такое же отношение к полю Хиггса, как фотон, переносчик электромагнитного взаимодействия и света , к электромагнитному полю, — это локализованное «возбуждение» чего-то, что пронизывает обширное пространство. Более длинная версия этой истории имеет отношение к электрослабой теории, которая объединяет слабое взаимодействие с электричеством и магнетизмом, а также к разделению этих сил вследствие так называемого спонтанного нарушения симметрии. Здесь я вынуждена совершить над собой героическое усилие и вместо подробного описания квантовой теории поля ограничиться обсуждением нескольких ключевых вопросов. Однако имейте в виду, что если вы решите изучить математику, стоящую за всем этим, вы увидите, что все намного круче.
Физика работает по-разному в зависимости от уровня энергии. Например, электромагнетизм и слабое взаимодействие проявляются как совершенно независимые феномены на тех уровнях энергии, с которыми мы имеем дело в повседневной жизни, однако в ранней Вселенной, для которой были характерны очень высокие уровни энергии, эти силы представляли собой аспекты одного и того же явления. Поле Хиггса играло важную роль во время этого переходного периода. Когда условия изменились, то же произошло и с законами физики. Во многом именно для этого мы и создаем ускорители частиц: чтобы воссоздать в небольшом пространстве внутри детекторов экстремальные условия, характерные для начальных стадий развития Вселенной, с помощью которых мы могли бы лучше понять основополагающие физические принципы, сводящие всё воедино.
Основная идея заключается в существовании некой всеобъемлющей математической теории, описывающей взаимодействия частиц при всех возможных условиях, и последовательное проведение их столкновений позволяет нам получить более полное представление об этой всеобъемлющей структуре. В качестве аналогии можно привести воду. На самом фундаментальном уровне она представляет собой набор молекул, состоящих из определенным образом связанных атомов водорода и кислорода. Но в повседневной жизни мы воспринимаем воду в качестве однородной бесцветной жидкости, кристаллического твердого вещества, а в особенно тяжелые времена — в качестве удушающего влажного тумана, который заставляет вас мечтать об одежде, сшитой из полотенец. Изучая поведение воды в этих различных состояниях, мы можем сделать выводы о том, что она на самом деле собой представляет, даже если у нас под рукой нет мощных микроскопов, позволяющих рассмотреть отдельные атомы.
Например, форма снежинки может многое рассказать нам о форме молекул, если мы посмотрим, как они организуются в кристаллы. То, как вода испаряется, кое-что говорит нам о связях, которые удерживают молекулы вместе. Если бы мы имели дело с водой лишь в одном из ее агрегатных состояний, мы не смогли бы составить о ней полного впечатления. Точно так же наше представление о взаимодействиях субатомных частиц меняется в зависимости от уровня энергии или температуры во время эксперимента, варьирование которых позволяет нам лучше понять, что с ними на самом деле происходит. В физике элементарных частиц нас интересует, как частицы взаимодействуют друг с другом и чем обусловлены их фундаментальные свойства, такие как масса.
Характерная особенность любой частицы, обладающей массой, состоит в том, что она не может ускориться без применения силы и не способна достичь скорости света. На самых ранних этапах существования Вселенной поле Хиггса подверглось изменению, в результате которого электрослабое взаимодействие разделилось на электромагнетизм и слабое ядерное взаимодействие, и некоторые частицы правда, не фотон и не глюон получили возможность взаимодействовать с самим полем Хиггса. Интенсивность этого взаимодействия определяет массу частицы. Фотон продолжает путешествовать в пространстве со скоростью света, а частицы, обладающие массой, движутся тем медленнее, чем более сильное воздействие они испытывают со стороны поля Хиггса. Сравнивать поведение частиц в условиях ранней Вселенной с их текущим поведением все равно что сравнивать собственное взаимодействие с паром и жидкой водой.
Представьте, что пар — это поле Хиггса, то есть энергетическое поле, присутствующее в каждой точке пространства. А теперь представьте, что в какой-то момент поле Хиггса претерпело изменение, подобное конденсации пара в жидкую воду. Если вы привыкли иметь дело лишь с влажным воздухом, то пребывание в бассейне с водой станет для вас совершенно новым опытом. В результате внезапного изменения поля Хиггса сами законы физики как бы приобрели совершенно иную форму. Внезапно частицы, которые до этого могли беспрепятственно перемещаться в пространстве со скоростью света, замедлились под действием поля Хиггса, то есть обрели массу.
Этот процесс получил название «нарушение электрослабой симметрии». Пугливая симметрия Симметрия — это тонкое, абстрактное понятие, чрезвычайно трудно объяснимое без уравнений, но настолько важное для физики, что я не могу просто отмахнуться от него. Симметрия имеет ключевое значение как для описания существующих, так и для разработки новых теорий природы. Если в ходе размышлений о мире вы привыкли использовать управляющие им математические уравнения, вас, вероятно, не удивит идея описания теорий в терминах симметрий, которым они подчиняются. В противном случае все это может показаться вам сущей тарабарщиной.
Итак, давайте сделаем небольшой экскурс в эту тему, поскольку симметрия представляет собой нечто невероятно красивое, и как только вы узнаете о ней подробнее, вы начнете замечать ее повсюду. Симметрия не сводится к зеркальному отражению чего бы то ни было. В физике огромную роль играют закономерности и то, как они позволяют нам получить более глубокое понимание некоторой основополагающей структуры. Возьмем, к примеру, периодическую таблицу элементов. Почему элементы организованы в строки и столбцы?
Если вы изучали химию, вы знаете, что в столбцах сгруппированы элементы, имеющие общие свойства. Например, благородные газы, перечисленные в крайнем правом столбце, не склонны к участию в химических реакциях, тогда как находящиеся рядом с ними галогены отличаются высокой химической активностью. Эти закономерности обнаружились еще до того, как таблица была заполнена. На самом деле ее создатель Дмитрий Менделеев даже оставил пробелы для еще не открытых элементов, которые, как он знал, должны существовать, исходя из выявленных им закономерностей. Закономерности в периодической таблице позволили теоретически обосновать заполнение электронных орбиталей, что привело к открытиям, имеющим отношение к фундаментальной природе субатомных частиц.
Разработка теорий всегда начиналась с выявления закономерностей в результатах наблюдений, после чего ученые приступали к поиску скрытых свойств, способных объяснить наблюдаемое явление. Все мы постоянно это делаем, даже если не отдаем себе отчета. Понаблюдав за дорожным движением в течение дня, вы можете сделать выводы о стандартном рабочем графике. По выцветшим местам ковра вы можете судить о том, какие части комнаты получают больше всего солнечного света а также о том, как Земля ориентирована относительно Солнца. В случае с физикой элементарных частиц использование симметрии во многом напоминает создание периодических таблиц, но для более мелких компонентов природы.
Сходство между частицами, например, в плане заряда, массы или спина, может многое рассказать нам об особенностях их формирования и связях с фундаментальными взаимодействиями. Организация частиц с учетом их сходства позволяет физикам выявлять симметрии, которые могут оказаться основополагающими для целых теорий. Иногда эти закономерности легче всего представить математически. Если вы обнаружите, что в уравнении, описывающем некий физический процесс, можно поменять местами несколько переменных, не повлияв на описываемое явление, значит, вы обнаружили математическую симметрию. И это, вероятно, может кое-что рассказать вам о лежащих в основе данного явления частицах или полях.
Основанный на симметрии способ рассмотрения частиц и их взаимодействий получил такое распространение в физике, что мы часто используем обозначения математических симметрий в качестве названий самих теорий. Например, электромагнетизм часто называют и 1 — теорией, поскольку некоторые из его математических аспектов имеют тот же тип симметрии, что и окружность сокращением «U 1 » обозначается математическая группа поворотов окружности. Нарушение симметрии — это событие, в результате которого условия внезапно изменяются таким образом, что теория, описывающая взаимодействия частиц, приобретает другую, менее симметричную структуру. После этого уже нельзя будет делать перестановки в уравнениях, а нарушение симметрии отразится и в физическом мире в виде изменения поведения частиц. Некоторые используемые физиками симметрии являются абстрактными и могут быть выражены лишь математически, однако среди них есть и вполне привычные.
О вращательной симметрии речь идет тогда, когда нечто выглядит одинаково при повороте на некоторый угол например, окружность или пятиконечная звезда. Трансляционная симметрия означает, что нечто выглядит одинаково при сдвиге в сторону например, длинный забор, сдвинутый на расстояние одной планки, или длинная прямая линия, смещенная на несколько сантиметров. Нарушение симметрии предполагает такое изменение ситуации, в результате которого симметрия перестает работать. Бокал обладает идеальной симметрией вращения до тех пор, пока где-то на его кромке не появится след от губной помады. Забор обладает трансляционной симметрией до тех пор, пока не сломается одна из его планок.
Даже на званом обеде может произойти нарушение симметрии, особенно после подачи спиртных напитков. В начале банкета, пока вы терпеливо ждете в окружении множества столовых приборов и небольших тарелок с хлебом, вы находитесь в ситуации, которой свойственна вращательная симметрия. Как только кто-то из ваших соседей потянется за куском хлеба, симметрия нарушится, и все остальные смогут последовать его примеру. Если бы два человека одновременно потянулись к тарелкам с хлебом, находящимся на противоположной от них стороне стола, физики назвали бы такую ситуацию топологическим дефектом. В данном конкретном случае речь идет о доменной стенке, которая, если начнет доминировать во Вселенной, может привести к Большому сжатию.
Вот почему я всегда жду, пока другие возьмут хлеб, прежде чем потянуться к тарелке. С какой бы симметрией мы как физики ни работали, она будет отражена в описывающих взаимодействия уравнениях. Существуют способы кодирования вращательной, зеркальной и трансляционной симметрии, гарантирующие, что физика останется неизменной, как бы вы ни вращали, ни отражали и ни перемещали изучаемую систему.
Распад вакуума
Переход между ложным вакуумом и истинным затруднен из-за высокого энергетического барьера, однако может происходить квантовомеханическое туннелирование из одного состояния в другое. Точнее, есть бесконечный ложный вакуум, который расширяется с бесконечно огромной скоростью, и в нем возникают зоны распада, где формируются вселенные, как пузырьки углекислоты в открытой бутылке газировки. Ученые смоделировали гибель Вселенной, которую может вызвать распад ложного вакуума. СМИ заполонили тревожные сообщения: мол, физики устроили распад ложного вакуума — явление, способное уничтожить Вселенную. Уже примерно неделю замечаю в СМИ новости про физиков, которые «увидели распад ложного вакуума».
Позитроны укажут на распад вакуума при столкновении тяжёлых ионов
Представленное Kurzgesagt видео посвящено второй ситуации. В этом случае материя Вселенной будет разрушена, однако, по оценкам ученых, это займет слишком много времени, чтобы угрожать существованию человеческой цивилизации.
Вокруг этого вопроса проводилось множество опытов, которые должны помочь космологам проверить множество теорий, связанных с формированием Вселенной. В частности, данная работа позволит в дальнейшем изучать роль квантовых флуктуаций. Исследователи смогли определить, каким образом формировались фазовые переходы в ранней Вселенной, среди которых процесс распада «ложного вакуума». Примечательно, утверждают в университете, что ученые занимаются изучением тайн наиболее горячей и плотной материи мироздания.
В этом случае материя Вселенной будет разрушена, однако, по оценкам ученых, это займет слишком много времени, чтобы угрожать существованию человеческой цивилизации.
Компьютерное моделирование совпало с экспериментальными результатами, что по мнению ученых доказывает наблюдение распада ложного вакуума в истинный. Физики отмечают, что предложенный ими метод позволит подробнее изучить распад ложного вакуума квантовых состояний. Кстати, наш вакуум вполне вероятно тоже является ложным.
Ученые получают доказательства распада ложного вакуума
Переход между ложным вакуумом и истинным затруднен из-за высокого энергетического барьера, однако может происходить квантовомеханическое туннелирование из одного состояния в другое. В результате в ложном вакууме создаются небольшие пузырьки истинного вакуума. Материалы по теме: Игрушка дьяволаНовая частица из коллайдера грозит уничтожить всю физику2 ноября 2018 На Большом адронном коллайдере открыли новую форму материи. Почему ученые не понимают, с чем они столкнулись?
Для детей старше 16 лет. Адрес электронной почты редакции: tsi udmtv.
Переход между ложным вакуумом и истинным затруднен из-за высокого энергетического барьера, однако может происходить квантовомеханическое туннелирование из одного состояния в другое. В результате в ложном вакууме создаются небольшие пузырьки истинного вакуума. Материалы по теме: Игрушка дьяволаНовая частица из коллайдера грозит уничтожить всю физику2 ноября 2018 На Большом адронном коллайдере открыли новую форму материи. Почему ученые не понимают, с чем они столкнулись?
Если толщина стенок намного меньше радиуса пузыря, основной вклад в вероятность его рождения вносит поверхностная, а не объемная энергия. Определение вероятности при этом сводится к вычислению показателя экспоненты. Приближение толстой стенки гораздо реже используется в физически интересных теориях. И понятно почему: в этом случае вероятность образования пузырьков новой фазы оказывается экспоненциально подавленной — ложный вакуум практически неотличим от истинного. Вероятность туннелирования зависит от квантовых поправок в потенциал Хиггса, в частности от вклада тяжелых частиц. В настоящее время самой тяжелой элементарной частицей считается топ-кварк — его масса превышает 173 гигаэлектронвольт. Именно поэтому открытия новых тяжелых частиц так важны для космологических моделей — это может повлиять на прогнозы стабильности наблюдаемого мира. Особая роль в распаде вакуума у гравитации — кривизны пространства-времени. В частности, микроскопические черные дыры, которые могут возникать при столкновениях частиц высоких энергий, в сотни раз повышают вероятность рождения в их окрестностях пузырей с истинным вакуумом. Динамика космологических пузырей еще сложнее, если внутри первоначальной Вселенной формируется несколько пузырей — расширяясь и сталкиваясь друг с другом, они создают новый мир с истинным вакуумом. Сегодня неизвестно, в каком состоянии находится Вселенная.
Вакуумный распад: конец света уже наступил?
Недавно некоторые СМИ сообщили, что ученые впервые наблюдали распад ложного вакуума. Поскольку ложный вакуум нестабилен, он в итоге распадется, порождая огненный сгусток, и на этом инфляция заканчивается. Недавно некоторые СМИ сообщили, что ученые впервые наблюдали распад ложного вакуума. Многие российские СМИ новости вроде «Физики увидели распад ложного вакуума».