is tracked by us since February, 2018. Over the time it has been ranked as high as 398 797 in the world, while most of its traffic comes from Russian Federation, where it reached as high as 11 653 position. receives about 100% of its total traffic. All this time it was owned by. Добро пожаловать в электронную информационно-образовательную среду СПбГЛТУ. © 2024, RUTUBE. Ресурсы и возможности электронной информационно-образовательной среды (ЭИОС) университета. один из крупнейших научных центров России в области современной энергетики и теплофизики. Мы рады приветствовать Вас на образовательном портале "Электронная информационно-образовательная среда ФГБОУ ВО Омский ГАУ (ОмГАУ-Moodle)"!
Информационное пространство "Технологии информационного общества"
филиал ОИВТ РАН. Информационно-образовательная среда. Информационно-образовательная среда. Find 1184 researchers and browse 9 departments, publications, full-texts, contact details and general information related to Joint Institute for Nuclear Research | Dubna, Russia | jinr ОИЯИ. 50-летию Объединенного института высоких температур РАН]: сборник статей Издательство: ОИВТ РАН, 2010 г. ISBN отсутствует. Объединенный институт высоких температур Российской академии наук (ОИВТ РАН). Метод и устройство пиролитической переработки отходов целлюлозно-бумажного производства в высококачественный синтез-газ.
Электронная информационная образовательная среда ОрИПС
По информации пресс-службы вуза, система iDO ТГУ, адаптированная под требования российского высшего образования, обеспечивает планирование, организацию, аналитику электронного обучения и предусматривает оказание техподдержки. Установка учебная ОИВТ-7 «Низкоуровневый контроллер LAN (ethernet)». один из крупнейших научных центров России в области современной энергетики и теплофизики. 8. Линден, И. Л. Формирование коллекций электронных документов в. Электронная информационно-образовательная среда университета.
Новости сайта
филиал Федерального государственного бюджетного образовательного учреждения высшего образования «Сибирский государственный университет водного транспорта». Положение об электронной информационно-образовательной среде в ФГБУ НМИЦ ГБ ольца Минздрава России. Компания «Т-Платформы» интегрировала готовое решение «под ключ» на базе оборудования кластера IBM eServer Cluster 1350 для Объединенного института высоких температур Российской академии наук (ОИВТ РАН).
Омский институт водного транспорта провел ярмарку вакансий
Совокупная стоимость проекта оценивается в 15 млрд рублей, сообщил в среду ТАСС научный руководитель института, академик РАН Сергей Алексеенко. Команда ученых из Объединенного института высоких температур РАН, Московского института электроники и математики НИУ ВШЭ и Московского физико-технического института решила разработать новое решение. 6. Доступ к электронному расписанию. › Информация о компании. Институт новых энергетических проблем Объединенного института высоких температур РАН (ИНЭП ОИВТ РАН).
ОИВТ инсталлировал решение на базе IBM Сluster 1350
Hydrogen-oxygen steam generator 100K Рис. Экспериментальные результаты огневых испытаний парогенератора 25М Fig. В отличие от модели 10М в опытах с парогенератором модели 25М использованы как струйно-струйные смесительные элементы, так и соосно-струйные специальной конструкции и распределенный впрыск воды два каскада , что позволило разработать конструктивные решения, обеспечивающие высокую полноту сгорания топлива и уменьшение влияния эффектов закалки состава. Исследования с различными типами смесительных элементов 4 варианта позволили разработать технические решения, обеспечивающие как тепловую устойчивость элементов конструкции, так и высокую полноту сгорания в длительных опытах. Время выхода на номинальный режим из холодного состояния для этой установки составило менее 10 с. Короткие времена выхода на режим водородных парогенераторов и турбоустановок делают их весьма перспективными для покрытия остропиковых нагрузок в системах энергообеспечения и создания резервных и аварийных источников энергии для АЭС и ТЭС. Учитывая необходимость создания и введения в эксплуатацию к 2030 г.
Поэтому выход на рынок при обеспечении необходимого финансирования ОКР и успешном завершении работ можно прогнозировать на 20-е годы текущего столетия, а организацию опытно-промышленного мелкосерийного производства - на уровне 2014-2015 гг. Металлогидридные технологии водородного аккумулирования энергии в автономных системах энергообеспечения Одной из основных трудностей в создании энергетических установок для решения задач энергообеспечения автономных потребителей теплом и электроэнергией за счет возобновляемых энергоресурсов является несогласованность графиков подвода и потребления энергии. Неравномерный характер режимов работы ветровых и солнечных энергоустановок требует создания системы аккумулирования энергии, позволяющей удовлетворять нужды потребителя по необходимому ему графику нагрузки. Одним из перспективных путей решения этой задачи является использование водородных систем аккумулирования [51-53]. В этом случае водород производится электролизом воды за счет электроэнергии от ВИЭ, аккумулируется в системе хранения и используется для производства электроэнергии по необходимому потребителю графику в топливных элементах или других энергоустановках например, дизельгенераторах. При использовании в автономных системах низкотемпературных топливных элементов может оказаться необходимой доочистка водорода.
Среди разрабатываемых новых технологий и устройств очистки и хранения водорода для автономной энергетики наиболее экономически приемлемыми и безопасными могут стать устройства и системы, основанные на использовании обратимых металлогидридов - интерметаллических соединений ИМС , способных избирательно и обратимо поглощать водород [15, 54, 55]. При этом основная масса водорода в системе находится в связанном твердофазном состоянии, что обеспечивает повышенную безопасность при эксплуатации. Это позволяет обеспечить проведение процессов поглощения и выделения водорода за счет имеющихся в системе энергообеспечения ресурсов горячей и холодной воды и осуществить безмашинное компримирование газообразного водорода за счет использования низкопотенциального тепла. По низшей теплоте сгорания водорода плотность аккумулированной энергии составляет более 2,5 МВт-ч в 1 м3 среды хранения. Для стационарных автономных систем энергообеспечения компактность устройств, простота эксплуатации и безопасность часто имеют более важное значение, чем их вес. Поэтому металлогидридные системы очистки и хранения водорода на основе низкотемпературных гидридов весьма перспективны для создания систем аккумулирования энергии для стационарных энергоустановок, в том числе на основе ВИЭ.
В связи с большим тепловым эффектом сорбции-десорбции металлогидридный аккумулятор водорода является одновременно и аккумулятором тепловой энергии, что позволяет наиболее рационально организовать систему теплообеспече-ния потребителей, утилизации тепловых потерь и аккумулирования тепловой энергии. Это может оказаться дополнительным преимуществом таких систем для условий России [53]. Создание металлогидридной системы хранения и очистки водорода, интегрированной с энергоустановкой, позволяет повысить КПД и ресурс энергоустановок с ТПТЭ и использовать водород с примесями в качестве исходного топлива. Период окупаемости этой системы определяется различием стоимостей технического и особо чистого водорода и составляет при непрерывной работе менее года. При этом потребление тепла в процессах десорбции водорода и мощность охлаждения при сорбции составляет около 1,5 кВт т , что в 1,5 раза меньше тепловых потерь в мембранно-электродном блоке. Это дает принципиальную возможность регенерации тепловых потерь и повышения полного КПД энергоустановки с ТПТЭ при использовании низкотемпературных металлогидридов.
Создание эффективных автономных энергоустановок с интегрированными системами аккумулирования водорода и тепловой энергии является весьма сложной задачей в связи с наличием нелинейных связей между потоками энергии и массы в их отдельных элементах. Для таких систем необходима оптимизация как схемы автономной энергоустановки в целом, так и режимов работы ее агрегатов, исходя из графиков электрической и тепловой нагрузки конкретных потребителей. Понятно, что результатом оптимизации будет изменение как температурных уровней отвода подвода тепла от отдельных агрегатов, так и самих значений отводимых подводимых тепловых потоков.
Пары фреона вращают уже другого типа турбину - фреоновую. По словам Алексеенко, на сегодняшний день в России нет ни одной станции, работающей по такой технологии. Еще одна задача проекта - развить технологии извлечения полезных веществ из геотермальных рассолов - горячей воды из источника, которая содержит различные вещества с высокой концентрацией до 700 граммов на литр.
Основная идея - получать литий, который является особо ценным компонентом и в России не добывается. Также планируется существенно расширить сферу применения геотермальных тепловых насосов - устройств для переноса тепловой энергии от низкопотенциального источника с низкой температурой к потребителю, нуждающемуся в теплоносителе с более высокой температурой. Есть и более амбициозные планы - научиться использовать глубинное тепло Земли - тепло сухих пород с температурой до 350 градусов Цельсия на глубинах до 10 км, запасы которого практически неисчерпаемы.
Houpt, S. D: Appl. Fluids 60 177 Rakhimov, R. V Selivonin, A. V Lazukin, I. Moralev, S. Moralev, V. Sherbakova, I. Selivonin, V. Bityurin, and M.
Как отмечается в сообщении вуза, в мероприятии приняли участие представители 10 организаций внутреннего водного транспорта России. В ходе ярмарки выпускники института смогли встретиться и лично задать вопросы представителям работодателей, обсудить нюансы трудоустройства и получить информацию о требованиях и условиях работы.
Программа выставки
- Российские ученые представили новое решение для моделирования движения микрочастиц в потоке плазмы
- ОИВТ-СГУВТ.РФ проводит День открытых дверей в дистанционном формате. (2021-01-20)
- Электронная информационно-образовательная среда ОИВТ (филиал) ФГБОУ ВО "СГУВТ"
- У нас выступали
Eios.oivt-sguwt.ru
Главная » События » Томский госуниверситет стал правообладателем среды электронного обучения iDO Томский госуниверситет стал правообладателем среды электронного обучения iDO 24. Компании: По информации пресс-службы вуза, система iDO ТГУ, адаптированная под требования российского высшего образования, обеспечивает планирование, организацию, аналитику электронного обучения и предусматривает оказание техподдержки. Кроме того, интегрированные в систему модули помогают лучше понимать ожидания студентов и преподавателей вуза.
Поскольку Администрация Сайта осуществляет обработку персональных данных Пользователя в целях исполнения заключенного договора между Администрацией Сайта и Пользователем на оказание Услуг, в силу положений законодательства о персональных данных согласие Пользователя на обработку его персональных данных не требуется. Выбранные Пользователем логин и пароль являются необходимой и достаточной информацией для доступа Пользователя на Сайт. Пользователь не имеет права передавать свои логин и пароль третьим лицам, несет полную ответственность за их сохранность, самостоятельно выбирая способ их хранения. Если Пользователем не доказано обратное, любые действия, совершенные с использованием его логина и пароля, считаются совершенными соответствующим Пользователем. Пользователь как обладатель информации, размещенной на собственной персональной странице, осознает, что за исключением случаев, установленных настоящими Правилами и действующим законодательством Российской Федерации, Администрация Сайта не принимает участие в формировании и использовании содержания и контроле доступа других пользователей к персональной странице Пользователя. Размещая информацию на персональной странице, в том числе свои персональные данные, Пользователь осознает и соглашается с тем, что указанная информация может быть доступна другим пользователям сети Интернет с учетом особенностей архитектуры и функционала Сайта. Обязанности Пользователя unoi. Пользователю при использовании Сайта запрещается: 5.
Пользователь несет личную ответственность за любую информацию, которую размещает на Сайте, сообщает другим Пользователям, а также за любые взаимодействия с другими Пользователями, осуществляемые на свой риск. В случае несогласия Пользователя с настоящим Соглашением или его обновлениями, Пользователь обязан отказаться от его использования, проинформировав об этом Администрацию Сайта в установленном порядке. Условия об интеллектуальных правах 6. Исключительные права на Контент, размещенный на Сайте. Все объекты, размещенные на Сайте, являются объектами исключительных прав Администрации, Пользователей Сайта и других правообладателей. Кроме случаев, установленных настоящим Соглашением, а также действующим законодательством Российской Федерации, никакой Контент не может быть скопирован воспроизведен , переработан, распространен, опубликован, скачан, передан, продан или иным способом использован целиком или по частям без предварительного разрешения правообладателя, которое он выражает путем регистрации на Сайте и принятия условий настоящего Пользовательского соглашения. Пользователь, размещая на Сайте принадлежащий ему на законных основаниях Контент, предоставляет другим пользователям неисключительное право на его использование в соответствии с заключаемыми между Пользователями и Администрацией Сайта договорами, текущим пользовательским соглашением. Путем размещения на Сайте контента, содержание которого по своему смыслу отвечает критериям Разработок, Пользователь передает права на воспроизведение и использование в указанном далее объеме данного контента Администрации Сайта на условиях простой неисключительной лицензии. Вознаграждением за передачу Пользователем права использования Разработок является предоставление права использования и воспроизведения Разработок, размещаемых другими Пользователями, на безвозмездной основе. Пользователь предоставляет также Администрации Сайта неисключительное право использовать на безвозмездной основе размещенный на Сайте и принадлежащий ему на законных основаниях Контент в целях обеспечения Администрацией Сайта функционирования Сайта в объеме, определяемом функционалом и архитектурой Сайта.
Указанное неисключительное право предоставляется на срок размещения Контента на Сайте. Администрация Сайта вправе передавать права, указанные в настоящем пункте через партнеров Администрации Сайта. Пользователь, получивший на безвозмездной основе контент, содержание которого по своему смыслу отвечает критериям Разработок, имеет право использовать данный контент исключительно в личных информационно-ознакомительных целях. Пользователь, получивший контент, содержание которого по своему смыслу отвечает критериям Разработок, не имеет права воспроизводить его с целью распространения и передачи третьим лицам. Пользователю, для получения дополнительных прав на использование контента необходимо заключить лицензионный договор с Правообладателем или Администрацией Сайта. Ответственность за нарушение исключительных прав. Пользователь несет личную ответственность за любой Контент или иную информацию, которые он загружает на сайт или иным образом доводит до всеобщего сведения публикует на Сайте или с его помощью. Пользователь не имеет права загружать, передавать или публиковать Контент на Сайте, если он не обладает соответствующими правами на совершение таких действий, приобретенными или переданными ему в соответствии с законодательством Российской Федерации. Функционирование unoi.
На выставке "Нева-2023" Морской технический университет представил программный продукт и экосистему его внедрения, методического и кадрового обеспечения, технического сопровождения, поддержки и развития. Система разработана Морским техническим университетом как интегратором в партнерстве с такими компаниями как "Бизнес технологии", "Аскон".
Институт дополнительного образования. Деканат ИВТ. Речное училище Уфа. Волжский государственный университет водного транспорта Уфа. Уфимский Речной колледж. Речное училище Якутск. Речной колледж Якутск. Якутск речное училище Новосибирск. Самарский госуниверситет исторический Факультет преподаватели. Темы семинаров для преподавателей учебных центров. Темы конференций по ресурсному проекту. Кабинет ресурсного центра. Темы семинаров для педагога видеостудии. Сибирский институт информационных технологий. Сибит Омск институт. Сибирский институт бизнеса Омск. Студенты курсанты. Курсанты школьники. Курсовка на форме курсанта. Цифровая среда в школе. ЦОС В школе. Цифровая образовательная среда баннер. Оборудование в рамках проекта цифровая образовательная среда. Лихоборы учебный центр РЖД. Щербинка РЖД учебный центр. Учебный центр РЖД Новосибирск. Услуги в режиме «он-лайн». Морское училище Омск. Оператор электронно вычислительных машин и вычислительных машин. Профессия оператор электронно-вычислительных и вычислительных машин. Профессия оператор ЭВМ. Производство компьютеров. Институт математики и информационных технологий Волгу. Институт математики и информационных технологий Омск. Имит ОМГУ. Институт математики Уфа. Ершова «основы информатики и вычислительной техники». Основы информатики и вычислительной техники учебник Ершов. Основы информатики и вычислительной техники 1985. Первый учебник информатики. Информационная образовательная среда. Электронная информационная образовательная среда. Информационно-образовательная среда школы. Информационная среда образовательного учреждения. Омские курсанты. Командно инженерный Факультет ва МТО. МБОУ лицей Новомосковск. Образование учителя. Обучение учителей. Цифровое образование. Каспийский институт морского и речного транспорта. Институт водного транспорта Астрахань.
Программа выставки
- Томский госуниверситет стал правообладателем среды электронного обучения iDO
- ОИВТ-СГУВТ.РФ проводит День открытых дверей в дистанционном формате. (2021-01-20)
- Электронная информационно-образовательная среда
- Материалы партнера
Личный кабинет :
- Доклад студентки ИМО признан лучшим на Школе по информационным технологиям в ОИЯИ
- Лаборатория 21.3 ОИВТ РАН - Публикации
- Омский институт водного транспорта провел ярмарку вакансий
- Новости организации
- ОИВТ России Академии наук Москва - адрес, контакты, отзывы, время работы, вакансии
- Оивт электронная образовательная среда