Армия России захватила опорный пункт ВСУ: новости СВО на вечер 16 декабря. Физики показали, что операции над квантовыми системами, в которых не генерируется дополнительная квантовая запутанность вдобавок к уже имеющейся в системе, в общем случае являются необратимыми. Новости дня от , интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. Квантовая физика называется разделом теоретической физики, в котором изучаются квантово-механические и квантово-силовые системы, взаимодействия и законы их движения. В 1990–2013 годах занимался экспериментальной физикой в университете Инсбрука и Венском университете. В 2004–2013 годах возглавлял Институт квантовой оптики и квантовой информации (IQOQI) Австрийской академии наук.
Форма успешно отправлена!
- Квантовые технологии — последние и свежие новости сегодня и за 2024 год на | Известия
- В Китае создан 504-кубитный чип для квантового суперкомпьютера. На подходе 1000-кубитный
- квантовая физика — последние новости сегодня | Аргументы и Факты
- Новости квантовой физики
- Рекорд Китая
Квантовые технологии изменят мир. Новости квантовых компаний.
Одно из зеркал детектора LIGO. Это позволяет понять контринтуитивные законы квантовой механики, но это не приближает нас к детектированию квантовых явлений на макроуровне. Свой вариант натурного эксперимента по фиксации квантовой неопределённости в больших объектах предложили учёные из Университетского колледжа Лондона UCL , Университета Саутгемптона в Великобритании и Института Бозе в Индии. Это два тоннеля по 4 км, соединённых под прямым углом буквой Г. По тоннелям многократно с отражением курсирует луч лазера, который способен фиксировать искажения пространства-времени при прохождении через детектор гравитационной волны. Эту же систему можно использовать для выявления квантовой неопределённости с макрообъектами без строгих ограничений по массе и энергии, считают учёные.
В каждом из тоннелей можно подвесить зеркала на концах маятников или мишени, заслоняющие основные зеркала датчика и запускать в них по паре вспышек лазера с заданным интервалом. Если квантовая неопределённость в нашем большом мире есть, то первый импульс нарушит движение маятника — в этом проявится так называемый эффект наблюдателя, а второй импульс зафиксирует отклонение от расчётной траектории. С математической точки зрения эксперимент должен подтвердить или опровергнуть соблюдение двух условий неравенства Леггетта-Гарга. Оно должно выполняться для всех условий классического мира. Если при взаимодействии с 10-кг зеркалами одно из этих условий не выполнится, значит, объект проявит свойства квантовой неопределённости.
С точки зрения математики это будет означать, что вы в данный момент с большой вероятностью сидите на стуле перед монитором, но также с бесконечно малой но отнюдь не нулевой вероятностью можете находиться на Луне, Марсе или в галактике Андромеда. Главное, что для доказательства подобной возможности не придётся рисковать жизнью кошки, хотя сам по себе эксперимент с зеркалами в установке LIGO потребует нетривиального оборудования и условий. Статья об исследовании опубликована в журнале Physical Review Letters. Также она доступна на сайте arxiv. Такие батареи будут работать вне привычной причинно-следственной логики, и обещают превзойти классические химические элементы при накоплении электрической энергии и даже тепла.
Источник изображений: Chen et al. CC-BY-ND Многим наверняка известно, что при покупке некоторых недорогих аккумуляторов китайского производства логику тоже можно смело отключать. Но учёные из Токийского университета и Пекинского исследовательского центра вычислительных наук по-настоящему заинтересовались возможностью квантовых явлений в аккумуляторах. Интересно, что проблемой занялись специалисты в сфере информационных технологий, а не материаловеды. И немудрено, затронутая проблематика тесно связана с квантовой природой информации или, по крайней мере, в значительной степени её касается.
По мнению учёных, квантовые аккумуляторы могут найти применение в различных портативных устройствах с низким энергопотреблением, особенно когда возможностей для подзарядки недостаточно. На это были нацелены первые опыты, и они увенчались успехом. Одно из открытых преимуществ квантовых батарей заключается в том, что они должны быть невероятно эффективными, но это зависит от способа их зарядки. Нас особенно интересует то, как квантовые частицы могут нарушать одно из наших самых фундаментальных ощущений — восприятие времени». Учёные провели серию экспериментов со способами зарядки квантовой батареи с использованием оптических устройств, таких как лазеры, линзы и зеркала.
Представленная выше схема лабораторной установки была далека от чего-либо, напоминающего привычный аккумулятор. В конечном итоге удалось добиться зарядки батареи способом, который потребовал проявления квантового эффекта вне повседневной логики. Заряд проходил в состоянии квантовой суперпозиции, когда условно два зарядных устройства одновременно заряжали один аккумулятор. В обычной жизни нужно было заряжать аккумулятор сначала одним, затем подключать другое зарядное устройство, а первое отключать. Опыт показал, что с учётом квантовых явлений обе зарядки могут работать одновременно.
Более того, эксперимент подтвердил явную абсурдность процесса. Оказалось, что маломощное зарядное устройство быстрее и эффективнее заряжает аккумулятор, чем более мощное. Феномен неопределенного причинно-следственного порядка или ICO, который исследовала команда, может найти применение не только для зарядки нового поколения маломощных устройств. Лежащие в их основе принципы, включая раскрытый здесь эффект обратного взаимодействия, могут улучшить выполнение других задач, связанных с термодинамикой или процессами, которые включают передачу тепла. Одним из многообещающих примеров являются солнечные панели, где тепловые эффекты могут снизить их эффективность, но вместо этого можно использовать ICO, чтобы смягчить этот негативный эффект и привести к повышению эффективности.
Это произошло в Лаборатории холодного атома NASA Cold Atom Lab на борту Международной космической станции и стало ещё одним шагом на пути внедрения в космосе квантовых технологий, доступных в настоящее время только на Земле. Принцип охлаждения атомов с помощью лазеров. На МКС лаборатория попала в 2018 году и с тех пор учёные на Земле — прибор управляется дистанционно — провели с её помощью множество экспериментов. В частности, установка помогла создавать квантовый газ — конденсат Бозе-Эйнштейна, который в условиях микрогравитации вёл себя достаточно интересно. Но недавно учёные NASA заявили, что им удалось создать в камере лаборатории конденсат Бозе-Эйнштейна из смеси двух атомов: калия и рубидия.
А где есть смесь различных химических веществ, там появляются реакции. Фактически учёные создали основу для проведения в космосе экспериментов по квантовой химии, что раньше было возможно только в земных условиях на очень сложных и громоздких установках. Кроме того, перенос квантовой химии в космос — в условия микрогравитации — позволяют изучать квантовые явления с недоступной на Земле точностью для целого ряда экспериментов. Наконец, это путь к появлению в космосе приборов, опирающихся на квантовые явления. От этого выиграет связь, навигация и многое другое, что ещё предстоит открыть.
Если в обычных металлах возникала сверхпроводимость и мгновенно исчезала на какой-то чёткой температурной отметке, то сопротивление странных металлов при изменении температуры менялось линейно. Этому не было внятного объяснения, пока это недавно не сделали физики из США. Как минимум, учёные обосновали ряд характерных свойств «странных металлов». Стройная теория может помочь ответить на вопросы о достижении сверхпроводимости при высоких температурах и помочь в разработке квантовых компьютеров. Квантовая механика стала тем инструментом, который помог разобраться в вопросе.
Новая теория опирается на два ключевых свойства странных металлов. Во-первых, электроны в таких металлах могут запутываться друг с другом — переходить в абсолютно идентичные квантовые состояния — и оставаться в таком состоянии даже при удалении на значительные расстояния друг от друга. Во-вторых, странные металлы имеют неоднородное, похожее на лоскутное, расположение атомов. Неравномерность атомной структуры странного металла означает, что запутанность электронов зависит от того, в каком месте материала она произошла. Такое разнообразие вносит хаотичность в импульс электронов при их движении через материал и взаимодействии друг с другом.
Вместо того чтобы течь вместе, электроны сталкиваются друг с другом во всех направлениях, что приводит к электрическому сопротивлению. Поскольку электроны сталкиваются тем чаще, чем горячее материал, электрическое сопротивление растёт вместе с температурой, что и наблюдается на практике. Там где у обычных металлов происходит скачок при переходе от сверхпроводимости к резкому увеличению сопротивления, странные металлы продолжают пропускать ток с плавным увеличением сопротивления току. Ключевым в новой теории стало то, что физики объединили два явления — запутанность и неоднородность, что раньше не рассматривалось для одного материала, а по отдельности это не приводит к странному поведению металлов. Тем самым учёные предлагают механизм по коррекции условий сверхпроводимости в странных металлах.
Искусственно созданные неоднородности могут воспроизвести сверхпроводимость в нужном месте с заданными целями, что может найти применение, например, в квантовых вычислителях. Когда вы можете на что-то влиять, это способно привести к желаемому результату.
И в этом нам должны помочь квантовые компьютеры. В каком-то смысле таким квантовым компьютером является сама мать-природа. Сейчас мы используем компьютеры, работающие на бинарном коде. Но природа работает иначе. Она, в отличие от цифрового разума, мыслит не нулями и не единицами. У нее — квантовый разум. Этот разум понимает атомы, электроны и фотоны.
Именно из них слагается язык вселенной. И именно это и будет следующим большим прорывом в науке. Би-би-си: Следует ли ожидать этого большого скачка только в физике, или он распространится и на другие науки, например, на медицину? Давайте попробуем это лекарство. А оно сработает? Мы не знаем. Ладно, давайте попробуем другое. А оно поможет? Мы опять не знаем.
Хорошо, тогда давайте попробуем третье. Многие чудодейственные лекарства были найдены случайно. Однако если применить к медицине квантовую теорию, то исследования будут вестись на молекулярном уровне. Вы сможете увидеть и понять, как работает каждая отдельная молекула. После этого вы начнете заполнять пробелы в имеющихся знаниях и создавать новые лекарства буквально с нуля. Означает ли это, что химики просто останутся без работы, потому что они нам больше не будут нужны? Означает ли это, что всю работу будут выполнять квантовые компьютеры? Вовсе нет. Химики будущего будут применять квантовую теорию для понимания химических реакций.
Биологи будущего будут пользоваться квантовой теорией для более глубокого понимания ДНК. Но врачи и ученые, которые занимались только химией и только биологией, останутся без работы. Поскольку будущее будет квантово-механическим, и создавать лекарства мы будем именно на основе квантовой механики. Би-би-си: Означает ли это, что мы станем бессмертными? Что тогда и рака не будет?
Подобные разработки ведутся, например, в Google и IBM, однако многие такие проекты требуют использования криостатов — резервуаров с жидким азотом или сжатым гелием, внутри которых квантовые процессоры охлаждаются до температуры ниже минус 270 градусов по Цельсию.
Столь низкая температура нужна для сохранения эффекта сверхпроводимости, который необходим для работы квантовых компьютеров. Результаты исследования опубликованы сегодня в престижном научном журнале Nature Materials. Разработки Алексея Кавокина и его коллег связаны с созданием поляритонной платформы для квантовых вычислений. Одно из главных ее преимуществ — возможность проводить квантовые вычисления при комнатной температуре. Поляритонный лазер, работающий на открытом Алексеем Кавокиным и его коллегами принципе бозе-эйнштейновской конденсации экситонных поляритонов при комнатной температуре, позволяет создавать кубиты — базовые элементы квантовых компьютеров. Кубиты реализуются методом лазерного облучения искусственных полупроводниковых структур — микрорезонаторов.
В новом исследовании ученым удалось впервые экспериментально наблюдать, как в самом тонком в мире полупроводнике — тончайшем слое кристалла диселенида молибдена MoSe2 толщиной всего в один атом — формируется конденсат Бозе — Эйнштейна, то есть десятки тысяч квантов «жидкого света», точное имя которых — экситонные поляритоны.
Квантовая механика говорит, что гравитация - это поле, как электрическое, магнитное, и его переносит квант, единица гравитационного воздействия. Которого никто не видел. Взять ту же теорию струн.
Но профессор Оппенгейм решил ударить в самое сердце. Имя этому сердцу неопределенность. Гравитация Эйнштейна заранее задана и понятна. Она не меняется просто так.
Гравитация квантовой теории непредсказуема и постоянно меняется. Оппенгейм говорит: а что, если пространство-время не есть кисель холодный, устоявшийся. А — кисель на конфорке, и его постоянно варят. Пространство-время слегка колеблется.
Создается квантовая неопределенность там, где Эйнштейн видел статику. Это в самом деле решило бы все. Уравнения квантовой механики, в которых — одни вероятности, теперь можно применять и в теории относительности. Мир Эйнштейна сохранен, но он стал немного зыбким.
Не пострадала и квантовая механика. Это и есть квантовая гравитация. Можно ли это проверить? Да легко.
Вес всего на свете должен немного колебаться. Оппенгейм уже поспорил с другими учеными, профессором Карло Ровелли и доктором Джеффом Пенингтоном, что так и будет. Причем взрывной профессор сделал ставку 5000 к одному. Так уверен в победе.
Точный опыт теперь будут делать. Например, все слышали, что эталон килограмма хранится в Париже, в Международном бюро мер и весов, но им фактически не пользуются. Это скорее исторический раритет и символ.
Последние новости:
- Эфир существует! Российские ученые совершили прорыв в фундаментальной физике
- Нобелевка по физике за изучение квантовой запутанности — что это значит
- Долгожданный прорыв: квантовые вычисления стали более надежными - Телеканал "Наука"
- Все материалы
- Восторг и ужас Вселенной: Как квантовая физика перевернула мир и почему она наводит жуть
- Будь в курсе последних новостей из мира гаджетов и технологий
Новости по теме: квантовая физика
Представьте, что отпраздновать Всемирный день квантовой науки собрались все великие ученые, которые приложили руку к созданию квантовой физики. Квантовая физика (рассказывает физик Дмитрий Бочаров и др.) Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. Принципы квантовой физики, ставящие в тупик ученых: парадоксальная физика и ее главные загадки.
Квантовая физика о Боге, душе и Вселенной
Новости по тегу квантовая физика, страница 1 из 2 | Хроники жизни. Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. |
Восторг и ужас Вселенной: Как квантовая физика перевернула мир и почему она наводит жуть | Миром станут править квантовые компьютеры", – заявил физик, популяризатор науки и футуролог Мичио Каку. |
Новости - RW Space | В частности, физикам из МГТУ удалось за 2023 год создать прототип квантового процессора на базе сверхпроводников и разные компоненты квантовых устройств. В данном обзоре новостей представлены последние открытия в физике и астрофизике. |
Долгожданный прорыв: квантовые вычисления стали более надежными - Телеканал "Наука" | Уже лет пять как в сети ходят новости о прорывах в квантовых вычислениях. |
Экспериментаторы надеются зафиксировать колебания массы атомов
Новости и события Физики предложили новый способ безыгольных инъекций Ученые Центра фотоники и двумерных материалов МФТИ с коллегами представили инновационный способ безыгольных инъекций. Новости. Фото дня. Хроники жизни. Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода. Нобелевскую премию по физике в 2022 году за «эксперименты с запутанными фотонами, установление нарушения неравенства Белла и новаторскую квантовую информатику» получили Ален Аспект (Франция), Джон Клаузер (США) и Антон Цайлингер (Австрия).
Экспериментаторы надеются зафиксировать колебания массы атомов
Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций Роскомнадзор. Отдельные публикации могут содержать информацию, не предназначенную для пользователей до 16 лет. Интернет-журнал Новая Наука каждый день сообщает о последних открытиях и достижениях в области науки и новых технологий.
Это открытие было сделано с помощью релятивистского коллайдера тяжелых ионов RHIC. Когда ионы сталкиваются или пролетают мимо друг друга, их взаимодействие обнаруживает внутреннюю работу атомов, которой управляют законы квантовой механики. Команда BNL изучала ионы золота, движущиеся почти со скоростью света. Их окружали облака фотонов, и когда они пролетали мимо рядом, фотоны взаимодействовали с глюонами, другим типом частиц, которые скрепляют атомные ядра.
В результате такого взаимодействия образовались две новых частицы — пионы — с противоположными зарядами. Детектор RHIC смог измерить некоторые из их свойств: скорость и угол встречи, из которых позже ученые с беспрецедентной точностью вывели размер, форму и расположение глюонов в ядре атомов. В прошлом физики уже пытались рассмотреть ядра атомов во всех подробностях, но результаты всегда были туманные.
Перепечатка материалов без согласования допустима при наличии активной ссылки на страницу-источник. Направляя нам электронное письмо или заполняя любую регистрационную форму на сайте, Вы подтверждаете факт ознакомления и безоговорочного согласия с принятой у нас Политикой конфиденциальности.
Что это за наука? Квантовая физика — это раздел физики, который изучает поведение элементарных частиц на микроуровне, используя квантовую механику. Этот раздел физики изменил наше понимание о мире и привел к созданию множества технологий, которые сегодня широко используются в науке, медицине и технике.
История квантовой физики началась в начале XX века, когда ученые столкнулись с проблемами, которые не могли объяснить классические физические модели. Например, появление фотоэффекта и странные спектры излучения атомов не укладывались в рамки классической физики. Именно в этот период начались первые исследования в области квантовой механики.
Квантовая механика описывает поведение частиц на микроуровне с помощью волновой функции, которая предсказывает вероятность нахождения частицы в определенном состоянии.
Квантовые технологии
Физика - Поиск - новости науки и техники | Ученые впервые обнаружили эффекты, предсказанные квантовой гравитацией — одной из физических теорий, призванной объединить квантовую механику с общей теорией относительности Эйнштейна. |
Квантовые технологии изменят мир. Новости квантовых компаний. | Запутанность, причудливое квантовое явление, связывает две частицы таким образом, что это не поддается классической физике. Изменения в одной из них мгновенно влияют на другую, независимо от расстояния. |
квантовая физика: самые последние новости и статьи — Профиль. Страница 1 | Или построить новые методы долгосрочной защиты информации на основе квантовой и постквантовой криптографии, которые будут устойчивы к широкому классу атак, поскольку их надёжность сводится к фундаментальным законам физики. |
#квантовая физика
Понятия об абсолютной «объективной реальности, существующей независимо от нашего сознания», о трехмерном евклидовом пространстве и равномерно текущем времени настолько глубоко укоренились в сознании, что мы не замечаем их. А главное, отказываемся замечать, что принципы квантовой физики применимы лишь в некоторых рутинных ситуациях и для объяснения устройства Вселенной оказываются попросту неверны. Это была революция, которую наше сознание не приняло. Со снисходительностью мы повторяем: «все относительно», «время и пространство едины», — всегда держа в уме, что это допущение, научная абстракция, имеющая мало общего с нашей привычной устойчивой действительностью. На самом же деле как раз наши представления слабо соотносятся с действительностью — удивительной и невероятной. Она быстро развивалась и далеко продвинулась в объяснении Вселенной. Но объяснения эти настолько сложны для восприятия, что до сих пор мало кто может осознать их хотя бы в общих чертах. Это является одной из проблем квантовой физики в целом.
Математика, как и музыка, предмет крайне абстрактный, и над адекватным выражением смысла, к примеру, свертывания функций или многомерных рядов Фурье ученые бьются до сих пор. Язык математики строг, но мало соотносится с нашим непосредственным восприятием. В действительности пространство и время нераздельны и образуют единый четырехмерный континуум. Представить его вряд ли возможно, ведь мы привыкли иметь дело только с тремя измерениями. Волна или частица До конца XIX века атомы считались неделимыми «элементами». Открытие радиации позволило Резерфорду проникнуть под «оболочку» атома и сформулировать планетарную теорию его строения: основная масса атома сосредоточена в ядре. Положительный заряд ядра компенсируется отрицательно заряженными электронами, размеры которых настолько малы, что их массой можно пренебречь.
Электроны вращаются вокруг ядра по орбитам, подобно вращению планет вокруг Солнца. Эта теория квантовой физики весьма красивая, но она имеет ряд парадоксов. Во-вторых, в природе атомы сталкиваются миллионы раз в секунду, что ничуть не вредит им — чем объяснить удивительную прочность всей системы? Говоря словами одного из «отцов» квантовой механики Гейзенберга, «никакая планетная система, которая подчиняется законам механики Ньютона, никогда после столкновения с другой подобной системой не возвратится в свое исходное состояние». Кроме того, размеры ядра, в котором собрана практически вся масса, в сравнении с целым атомом чрезвычайно малы. Можно сказать, что атом — пустота, в которой с бешеной скоростью вращаются электроны. При этом такой «пустой» атом предстает как весьма твердая частица.
Объяснение этому явлению выходит за рамки классического понимания. На самом деле на субатомном уровне скорость частицы возрастает тем больше, чем больше ограничивается пространство, в котором она движется. Так что чем ближе электрон притягивается к ядру, тем быстрее он движется и тем больше отталкивается от него. Скорость движения настолько велика, что «со стороны» атом «выглядит твердым», как выглядят диском лопасти вращающегося вентилятора. Впервые подобная «дуэль» состоялась между Ньютоном и Гюйгенсом, которые пытались объяснить свойства света. Ньютон утверждал, что это поток частиц, Гюйгенс считал свет волной. В рамках классической физики примирить их позиции невозможно.
Ведь для нее волна — это передающееся возбуждение частиц среды, понятие, применимое лишь для множества объектов. Ни одна из свободных частиц не может перемещаться по волнообразной траектории.
Поэтому элементарную частицу следует воспринимать как вероятностную динамическую функцию, как взаимодействия, связанные с непрерывным превращением энергии. Это дает неожиданный ответ на вопрос, насколько элементарны элементарные частицы, можно ли разделить их на «еще более простые» блоки.
Если разогнать две частицы в ускорителе, и затем столкнуть, мы получим не две, а три частицы, причем совершенно одинаковые. Третья просто возникнет из энергии их столкновения — таким образом, они и разделятся, и не разделятся одновременно! Для того чтобы сказать что-то о ней, нам придется «вырвать» ее из первоначальных взаимодействий и, подготовив, подвергнуть другому взаимодействию — измерению. Так что мы меряем в итоге?
И насколько правомерны наши измерения вообще, если наше вмешательство меняет взаимодействия, в которых участвует частица, — а значит, меняет и ее саму? Правомернее было бы называть его «участником» или «наблюдателем». Отсюда и название явления, о котором мы будем говорить дальше — «Эффект наблюдателя» или «Парадокс наблюдателя» в квантовой физике. Стоит ему выбрать способ, каким он будет проводить измерения, и в зависимости от этого реализуются возможные свойства частицы.
Стоит сменить наблюдающую систему, и свойства наблюдаемого объекта также изменятся — парадокс квантовой физики. Этот важный момент раскрывает глубинное единство всех вещей и явлений. Сами частицы, непрерывно переходя одна в другую и в иные формы энергии, не имеют постоянных или точных характеристик — эти характеристики зависят от способа, каким мы решили их видеть. Если понадобится измерить одно свойство частицы, другое непременно изменится.
Такое ограничение не связано с несовершенством приборов или другими вполне исправимыми вещами. Это характеристика действительности. Попробуйте точно измерить положение частицы, и вы ничего не сможете сказать о направлении и скорости ее движения — просто потому, что у нее их не будет. Опишите точно движение частицы — вы не найдете ее в пространстве.
Так современная физика ставит перед нами проблемы уже совершенно метафизического свойства. Место или импульс, энергия или время Мы уже говорили, что разговор о субатомных частицах нельзя вести в привычных нам точных терминах, в квантовом мире нам остается лишь вероятность — это, можно сказать, один из принципов квантовой физики. Это, конечно, не та вероятность, о которой говорят, делая ставки на скачках, а фундаментальное свойство элементарных частиц. Они не то чтобы существуют, но скорее — могут существовать.
Они не то чтобы обладают характеристиками, а скорее — могут ими обладать. Научно выражаясь, частица является динамической вероятностной схемой, и все ее свойства находятся в постоянном подвижном равновесии, балансируют, как Инь и Ян на древнем китайском символе тайцзи. Недаром нобелевский лауреат Нильс Бор, возведенный в дворянское звание, для своего герба выбрал именно этот знак и девиз: «Противоположности дополняют друг друга». Математически распределение вероятности представляет собой неравномерные волновые колебания.
Чем больше амплитуда волны в определенном месте, тем выше вероятность существования частицы в нем. При этом длина ее непостоянна — расстояния между соседними гребнями неодинаковы, и чем выше амплитуда волны, тем сильнее разница между ними. В то время как амплитуда соответствует положению частицы в пространстве, длина волны связана с импульсом частицы, то есть с направлением и скоростью ее движения. Чем больше амплитуда чем точнее можно локализовать частицу в пространстве , тем более неопределенной становится длина волны тем меньше можно сказать об импульсе частицы.
Если мы сможем установить положение частицы с предельной точностью, у нее вообще не будет никакого определенного импульса.
Кубиты могут создаваться разными способами. В этом исследовании — из сверхпроводящих цепей, охлаждаемых до температур в 100 раз ниже, чем температура открытого космоса. Каждый кубит может представлять единицу, ноль, или, как ни странно, и единицу, и ноль одновременно.
Этот «квантовый параллелизм» позволяет квантовым компьютерам выполнять вычисления на несколько порядков быстрее, чем способны классические суперкомпьютеры. Однако квантовые системы хрупки. Эффективную работу квантовых компьютеров останавливает явление декогеренции — информация, хранящаяся в кубитах, быстро теряет свои свойства в результате взаимодействия с окружающей средой. Квантовые вычисления идут с помощью частиц.
На самом же деле как раз наши представления слабо соотносятся с действительностью — удивительной и невероятной. Она быстро развивалась и далеко продвинулась в объяснении Вселенной. Но объяснения эти настолько сложны для восприятия, что до сих пор мало кто может осознать их хотя бы в общих чертах. Это является одной из проблем квантовой физики в целом. Математика, как и музыка, предмет крайне абстрактный, и над адекватным выражением смысла, к примеру, свертывания функций или многомерных рядов Фурье ученые бьются до сих пор. Язык математики строг, но мало соотносится с нашим непосредственным восприятием. В действительности пространство и время нераздельны и образуют единый четырехмерный континуум. Представить его вряд ли возможно, ведь мы привыкли иметь дело только с тремя измерениями. Волна или частица До конца XIX века атомы считались неделимыми «элементами». Открытие радиации позволило Резерфорду проникнуть под «оболочку» атома и сформулировать планетарную теорию его строения: основная масса атома сосредоточена в ядре.
Положительный заряд ядра компенсируется отрицательно заряженными электронами, размеры которых настолько малы, что их массой можно пренебречь. Электроны вращаются вокруг ядра по орбитам, подобно вращению планет вокруг Солнца. Эта теория квантовой физики весьма красивая, но она имеет ряд парадоксов. Во-вторых, в природе атомы сталкиваются миллионы раз в секунду, что ничуть не вредит им — чем объяснить удивительную прочность всей системы? Говоря словами одного из «отцов» квантовой механики Гейзенберга, «никакая планетная система, которая подчиняется законам механики Ньютона, никогда после столкновения с другой подобной системой не возвратится в свое исходное состояние». Кроме того, размеры ядра, в котором собрана практически вся масса, в сравнении с целым атомом чрезвычайно малы. Можно сказать, что атом — пустота, в которой с бешеной скоростью вращаются электроны. При этом такой «пустой» атом предстает как весьма твердая частица. Объяснение этому явлению выходит за рамки классического понимания. На самом деле на субатомном уровне скорость частицы возрастает тем больше, чем больше ограничивается пространство, в котором она движется.
Так что чем ближе электрон притягивается к ядру, тем быстрее он движется и тем больше отталкивается от него. Скорость движения настолько велика, что «со стороны» атом «выглядит твердым», как выглядят диском лопасти вращающегося вентилятора. Впервые подобная «дуэль» состоялась между Ньютоном и Гюйгенсом, которые пытались объяснить свойства света. Ньютон утверждал, что это поток частиц, Гюйгенс считал свет волной. В рамках классической физики примирить их позиции невозможно. Ведь для нее волна — это передающееся возбуждение частиц среды, понятие, применимое лишь для множества объектов. Ни одна из свободных частиц не может перемещаться по волнообразной траектории. Но вот в глубоком вакууме движется электрон, и его перемещения описываются законами движения волн. Что здесь возбуждается, если нет никакой среды? Квантовая физика предлагает соломоново решение: свет является одновременно и частицей, и волной.
Строение ядра и ядерные частицы Постепенно становилось все более ясно: вращение электронов по орбитам вокруг ядра атома совершенно не похоже на вращение планет вокруг звезды.
Планетарная теория. Волна или частица
- Самая точная мера в истории приближает нас к знанию истинной массы «призрачной» частицы
- Новые квазичастицы – спинароны
- Что такое кубиты?
- Навигация по записям
В МФТИ назвали главный прорыв года в квантовой физике
Отличная новость! Физики нашли элементарную частицу, "размазанную" на 735 километров. Ученые из MIT выяснили, что нейтрино могут находиться в состоянии квантовой суперпозиции, находясь одновременно в двух разных. В частности, физикам из МГТУ удалось за 2023 год создать прототип квантового процессора на базе сверхпроводников и разные компоненты квантовых устройств. В данном обзоре новостей представлены последние открытия в физике и астрофизике. Квантовая физика называется разделом теоретической физики, в котором изучаются квантово-механические и квантово-силовые системы, взаимодействия и законы их движения. Одним из самых ярких открытий является новость о том, что команда National Institute of Standards and Technology (NIST) представила новое устройство, которое может стать переломным моментом в разработке квантовых компьютеров.
Новости физики в Интернете
Читайте последние новости высоких технологий, науки и техники. Перепечатка материалов без согласования допустима при наличии активной ссылки на страницу-источник. Направляя нам электронное письмо или заполняя любую регистрационную форму на сайте, Вы подтверждаете факт ознакомления и безоговорочного согласия с принятой у нас Политикой конфиденциальности.
Также Аспе сделал шаг к практическому использованию спутанных состояний. В частности, его группа первой продемонстрировала эффект, который сейчас у многих на слуху — «квантовую телепортацию». Схемы экспериментов Дж.
Клаузера, А. Аспе и А. Цайлингера по измерению поляризации двух спутанных фотонов в паре. В прошлом году Нобелевский комитет решил сделать акцент на исследованиях, так или иначе затрагивающих изменения климата и возможные глобальные угрозы — часть премии была вручена за междисциплинарные исследования хаотических систем основной математический объект этого поля науки — странный аттрактор, обозначающий крайне хаотичную систему с непредсказуемым поведением — таким, например, как система вихрей в атмосфере, непосредственно определяющая прогноз погоды на следующие несколько недель. Предыдущие два года подряд 2019 и 2020 годы внимание Комитета привлекли космические темы — премии были вручены соответственно за экзопланеты и чёрные дыры , то есть два класса модных сегодня астрономических объектов.
Подробнее о проблематике, удостоившейся внимания Нобелевского комитета в предыдущие годы, можно прочитать в статьях по ссылкам выше. Каждый год за некоторое время перед объявлением победителей агентство Clarivate составляет рейтинг «потенциальных нобелевских лауреатов». Рейтинг основывается на наукометрических показателях, в частности, на цитируемости тех или иных исследований. Собственно, агентство ведёт одну из признанных мировых баз научных журналов WoS, или Web of Science, — публикации в одном из журналов в этой базе часто являются формальным требованием для измерения «производительности» научных сотрудников во многих странах.
Что такое пространство и время? На эти и многие другие вопросы постарались ответить в ходе научной сессии «Фундаментальная важность Канта для физики XXI века» на Международном Кантовском конгрессе в Калининграде.
Канта» С одноименным докладом выступил доктор Эккарт Штайн из Германии. Он отметил, что философия великого мыслителя не играла большой роли в физике XX века. Более того, существовало противопоставление постулатов Эйнштейна и Канта. Многие ученые утверждают, что взгляды знаменитого физика вместе с копенгагенской квантовой теорией фактически отменили труды философа. В чем суть научного противостояния? Эйнштейн говорил, что такие понятия, как правда и красота, независимы от человека и существуют как бы отдельно от него.
В то же время мы можем осознать лишь то, что видим. Это коррелирует с теорией относительности. Та же гравитация для Эйнштейна являлась искривлением пространства и времени.
Что интересно, о существовании "кота" можно узнать только если открыть оба "ящика" — в противном случае наблюдатель увидит набор не связанных друг с другом фотонов. Используя данную "клетку", физики смогли создать чрезвычайно больших котов Шредингера, состоявших в общей сложности из более 80 фотонов. Это приближает нас к реализации макроскопической версии эксперимента, в которой мы смогли бы видеть "кота" невооруженным глазом. С ее помощью физики смогут понять, почему мы не видим проявлений "странностей" квантовой механики в повседневной жизни. По словам Шоелкопфа, их "кот" в первую очередь будет интересен физикам, занимающимся разработкой квантовых компьютеров, так как его клетка является одновременно и ячейкой квантовой памяти с пока рекордным сроком работы, и прибором для коррекции ошибок при квантовых вычислениях.