Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов. Они предложили гипотезу "мира РНК", которая предполагает, что возникновение жизни на Земле произошло путем усложнения РНК-молекул и их преобразования в молекулы ДНК и белки. (Различные аспекты гипотезы мира РНК и подтверждающие ее данные основательно рассмотрены в одноименной книге, вышедшей в 2010 г. в 4-м издании: Atkins et al., 2010.). и, возможно, единственной - формой жизни до появления первой ДНК- клетки. В обзоре рассматривается развитие исследований необычных свойств РНК, интенсивно начавшиеся в самом начале 80-ых годов XX века, что привело к формированию концепции «Мир РНК».
Японские ученые впервые доказали способность РНК эволюционировать
гипотеза, с которой срослась проблема внезапного (для учёных особенно) возникновения жизни на совсем молодой, не оформившейся, подвергающейся. и, возможно, единственной - формой жизни до появления первой ДНК- клетки. Мир РНК утверждает, что когда РНК сформировалась на Земле, она начала размножаться, а затем породила такие молекулы, как ДНК. В новом прорыве, который может кардинально изменить наше понимание происхождения жизни на Земле, исследователи из Брукхейвенской национальной лаборатории обнаружили свидетельства гипотезы РНК-мира. Новости по тэгу. Открытия, показывающие способность молекул РНК самовоспроизводиться, а также выполнять ферментативные функции, привели к возникновению гипотезы мира РНК.
Ученые обнаружили новые доказательства теории РНК-мира
С самого начала гипотеза «мира РНК» привлекала ученых изящным решением проблемы «курицы и яйца» (или «феникса и огня»), вынесенной в эпиграф этой статьи. ELife: обнаружено случайное возникновение самовоспроизводящихся молекул Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили об обнаружении новых доказательств гипотезы РНК-мира. Согласно гипотезе мира РНК, на заре жизни за Земле молекулы РНК были как носителями наследственной информации, так и ферментами (рибозимами). Летающие лисы. Подписаться. Гипотеза РНК-мира для ЕГЭ по биологии. Показать больше.
Учеными из США найдены новые доказательства РНК-мира
Но долгое время было неясно, как такая молекула может появиться из предшественников, которые не могут проявлять каталитической активности. Специалисты обнаружили, что рибозим, который помогает расщеплять другие молекулы, может появиться спонтанно, потому что для обеспечения его работы необходимы только несколько классических оснований. Но и тут оставалась проблема, как именно это свойство сохранилось во время биохимической эволюции. Чтобы в этом разобраться, ученые разработали модель, которая имитирует случайные разрывы в простых молекулах РНК без ферментативной активности.
Также не исключено, что РНК-жизнь была не первой , но оказалась наиболее успешной. Тем не менее гипотеза мира РНК в настоящее время доминирует в науке, хотя и в ней есть немало пробелов. Один из них — объяснение возникновения полимеразных рибозимов синтезирующих РНК на матрице РНК , которые обладают достаточной процессивностью способностью присоединять последовательные мономеры без высвобождения получающегося полимера. Существующие попытки их создания in vitro особым успехом не увенчивались из-за низкой аффинности таких рибозимов к матрице. Петер Унрау Peter Unrau и Разван Кожокару Razvan Cojocaru из Университета Саймона Фрейзера предположили, что РНК-полимеразный рибозим может частично гибридизироваться со специфичным праймером , который напоминает бактериальный сигма-фактор инициации транскрипции, обеспечивающий связывание РНК-полимеразы с промоторами определенных генов. Такой аналог скользящего зажима в открытой конфигурации мог бы находить матричную одноцепочечную РНК и после ее фиксации отделять праймер от сайта его связывания с рибозимом, переводя зажим в закрытую форму и обеспечивая процессивность.
Чтобы проверить свою гипотезу, авторы работы оттолкнулись от известного РНК-полимеразного рибозима B6. В исходную молекулу внесли изменения, добавив к ней праймер-связывающий сайт, вставляя случайные последовательности до получения 1013 вариантов биомолекулы и удалив лишнюю последовательность из дополнительного домена. Полученный пул молекул подвергли 30 циклам направленной селекции, отсеивающей неспецифичные к матрицам варианты и выделяющей работоспособные зажимы и высокую процессивность. Путем дальнейшей эволюции в пробирке под действием различных мутагенов исследователи получили функциональный РНК-полимеразный рибозим с зажимом clamping polymerase, CP. В ряде экспериментов он успешно определял промоторы заданных РНК-матриц, связывался с ними и эффективно производил их копии подобно тому, как работают ДНК-зависимые РНК-полимеразы прокариот. Полученные результаты подразумевают, что схожие рибозимы на ранних стадиях развития жизни могли приобрести столь же сложные биологические свойства», — пояснил Унрау. Ранее исследователям уже удавалось использовать «эволюцию в пробирке» для синтеза РНК-полимеразных рибозимов, но не обладающих зажимом и ограниченных по точности синтеза. Также различные научные коллективы показали, что синтезу нуклеотидов при возникновении жизни способствовала цикличная смена влажности, а подходящей подложкой для синтеза из них РНК могла служить глина. Олег Лищук Нашли опечатку?
Побелевшие от горя Мария Пази Февральский ветер шуршит по иглам дугласовых пихт. С одной из колючих веток разноголосый дрозд с любопытством оглядывает сонный городок в штате Вашингтон. Дремать ему, впрочем, осталось недолго — на берегу реки найдено тело школьницы Лоры Палмер. В первом сезоне «Твин Пикса», пока агент Дейл Купер объедается вишневыми пирогами, отец убитой Лоры, юрист Лиланд Палмер, мечется по грани между горем и безумием. Наутро второго сезона он проснется белым как полярная лисица. Поседевший за ночь Лиланд обретет спокойствие причудливого характера: будет петь и танцевать, иногда срываясь на истерический хохот. Считается, что из-за сильного эмоционального потрясения, вроде того, что пережил Лиланд, можно резко растерять пигмент кожи и волос — меланин — и поседеть. Синдром, при котором волосы стремительно белеют, называют синдромом Марии-Антуанетты. Согласно легенде, перед казнью сверженная королева Франции тоже поседела за ночь.
Ей, как и Лиланду, было о чем понервничать. В историях и легендах внезапно поседевшие люди встречаются часто, а на страницах медицинских журналов — редко. К тому же эти клинические отчеты не всегда точны, а местами больше похожи на выдумки, чем на научные наблюдения. Один из немногих научных обзоров середины XX века едва набрал с полсотни случаев с 1827 года. Авторы исследования посвежее, 2013 года, отмечают, что из 196 случаев, описанных с 1800 года по настоящее время, лишь 44 были подтвержденными — то есть ученые и врачи лично наблюдали быстрое поседение. В остальных случаях авторы поверили на слово или пациенту, или коллегам. Десятилетиями туман из мифов позволял феномену нервной седины ускользать от исследователей. Но с 2010-х скепсис в отношении клинических случаев прошлого постепенно сменился живым научным интересом и исследованиями нервной седины у мышек в контролируемых лабораторных условиях. Сейчас мы знаем и про людей, что седина от стресса — не выдумка культуры.
Пусть без преувеличений и не обошлось. Как можно поседеть от стресса? И раз уж это не сказки, чем опасна нервная седина? Седина — это нормально Нормой считается появление седых волос после 30 лет. Как ни крути, если у вас есть волосы, возрастного, то есть физиологического, поседения вам не избежать. Волосы состоят из двух частей. Снаружи, над поверхностью кожи, виден стержень волоса — тонкая, гибкая нить из неживых, ороговевших эпителиальных клеток, кератиноцитов.
Это открытие представляет важный шаг в понимании того, как жизнь могла зародиться из примитивных химических систем на ранних этапах существования Земли и как она эволюционировала к более сложным формам, включающим каталитическую активность. Комментарии закрыты.
Источник фото: Фото редакции Однако было установлено, что рибозим, способный расщеплять другие молекулы, может возникнуть спонтанно благодаря нескольким консервативным элементам. Чтобы понять, как эта функция сохранилась в процессе эволюции, исследователи разработали модель, имитирующую случайные разрывы в простых молекулах РНК. В результате образовывались короткие цепочки, которые действовали как затравки для синтеза более длинных молекул. Этот механизм приводил к образованию большого количества копий разрушенного полимера.
Японские ученые впервые доказали способность РНК эволюционировать
Но окончательно гипотеза мира РНК смогла сформироваться лишь после открытия в 1981 году рибосомальной РНК из ресничного простейшего Tetrahymena, которая способна к автосплайсингу. Гипотеза мира РНК — Структура рибозима — молекулы РНК, выполняющей функцию катализа Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации. Эта работа подрывает так называемую «гипотезу мира РНК», которая утверждает, что РНК сформировала основу биосферы Земли задолго до того, как появились ДНК и другие молекулы, важные для жизни, хотя доказательств этого было недостаточно. Альтернативная гипотеза называется гипотезой первичного майонеза и говорит о том, что липиды, то есть вещества, образующие мембраны, были с самого начала и окружали молекулы РНК. В конце концов, был написан сценарий «Мир РНК», согласно которому сначала якобы образовалась РНК, содержащая информацию о белке, а затем и сам белок. В 1964 г. Темин выдвинул гипотезу о существовании вирусспецифичного фермента, способного синтезировать на РНК-матрице комплементарную ДНК.
Установлено, как первые формы жизни, возможно, упаковывали РНК
В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК. Из-за этого появлялось множество копий разрушенного полимера. Ученые сравнили такое явление с регенерацией червей, которых разрезают на сегменты. Ранее ученые выяснили, что социальный статус влияет на активность генов и передается от матери к детям.
В основе их теории лежат 20 «нагрузочных» молекул, аминоацил-тРНК-синтетазы. Эти каталитические ферменты позволяют РНК связываться с определёнными аминокислотами в соответствии с правилами генетического кода.
Предыдущие исследования показали, что 20 ферментов можно поровну разделить на две группы по 10 штук на основе их структуры и последовательностей. Два этих класса ферментов обладают определёнными последовательностями, кодирующими взаимоисключающие аминокислоты — то есть, эти ферменты должны были появиться из дополняющих цепочек одного древнего гена. Картер, Уиллс и их коллеги обнаружили, что в таком случае РНК кодировала пептиды при помощи набора всего из двух правил или, иначе говоря, использовала два типа аминокислот. Получившиеся пептиды поддерживали те же самые правила, что управляют процессом передачи, благодаря чему возникает ключевая для этой теории петля обратной связи. РНК-пептидный мир Жизнь могла появиться из взаимодействия РНК и пептидов, работавших в качестве первого генетического кода.
Самоподдерживающаяся петля реакций создавала бы ферменты, выбирая всего из двух типов аминокислот вместо 20 типов, имеющихся в современных белках. В недавних работах Картер и Уиллс показывают, что их мир пептидов-РНК решает проблемы с пробелами в истории происхождения жизни, которые неспособна объяснить только одна РНК. Конечно, модель Картера-Уиллса начинается с генетического кода, существование которого предполагает сложные химические реакции, куда входят такие молекулы, как транспортная РНК и нагрузочные ферменты. Исследователи утверждают, что в предшествовавших предложенному ими сценарию событиях участвовало взаимодействие РНК и пептидов. Однако это предположение оставляет много открытых вопросов о том, как началась такая химия и как она выглядела.
Для ответов на эти вопросы существует множество теорий, выходящих далеко за рамки мира РНК. Некоторые учёные даже применяют подход, противоположный подходу Картера и Уиллса: они считают что самые ранние этапы развития жизни не обязательно должны напоминать ту химию, которая существует сегодня. Дорон Ланцет , исследователь генома из Вайзмановского научного института в Израиле, предлагает альтернативную теорию, базирующуюся на сборке липидов, катализирующих вход и выход различных молекул.
Исследование специалистов из США преподносит новые доказательства в поддержку гипотезы «РНК-мира» — существования жизни до появления белков и ДНК, в виде рибонуклеиновых кислот.
Им удалось получить в лаборатории особую молекулу РНК, запускающую воспроизводство других РНК и появление у них мутаций. Авторы описывают фермент РНК, способный создавать точные копии других функциональных нитей РНК, позволяя со временем возникать новым вариантам этой молекулы. Это значит, что самые ранние формы эволюции могли возникнуть на молекулярном уровне в РНК. Кроме того, это открытие приближает ученых к воспроизводству в лабораторных условиях процесса репликации молекул РНК и непосредственной проверки верности гипотезы «РНК-мира».
Молекулы РНК, как и ДНК, состоят из нуклеотидных последовательностей, но могут также выступать в роли белков, как ферменты для проведения реакций.
Оказалось, что короткие цепочки РНК, действуя как праймеры, могут приводить к образованию большого количества копий разрушенного полимера, аналогично процессу регенерации червей. Добавление спонтанно образованных рибозимов к полимерным цепочкам также оказало влияние на процесс самовоспроизводства этих структур. Источник фото: Фото редакции Репликация полимера осуществлялась через циклическое изменение температуры между горячей и холодной фазами, что напоминает циклы день-ночь.
Ученые нашли новое потенциальное объяснение возникновению жизни на Земле
Все живые предметы состоят из клеток Идея Луизи проста, и с ней трудно спорить. Каким образом вы собрались создавать рабочую метаболическую систему или самовоспроизводящуюся РНК, каждый из которых опирается на наличие большого количества химических веществ в одном месте, если вы сначала не сделаете контейнер, который удерживает все молекулы вместе. Если вы с этим согласны, есть только один способ, с которого могла начаться жизнь. Каким-то образом, в жаре и буре ранней Земли, неколько сырых материалов сложились в грубые клетки, или «протоклетки». Осталось только повторить это в лаборатории: создать простую живую клетку. Идеи Луизи можно проследить аж до Александра Опарина и рассвета науки о происхождении жизни в СССР, которых мы обсудили в первой части. Опарин подчеркнул тот факт, что некоторые химические вещества образуют сгустки — коацерваты — которые могут держать другие вещества внутри. Он предположил, что коацерваты были первыми протоклетками.
Любое жирное или маслянистое вещество будет образовывать сгустки или пленки в воде. Эти химические вещества известны в общем как липиды. Соответственно, гипотезу о том, что с них начала жизнь, назвали «липидным миром». Но просто сформировать сгустки недостаточно. Они должны быть стабильными, уметь делиться на «дочерние» сгустки и хоть немного контролировать, что проходит внутрь и выходи наружу — и все это без сложных белков, которые используют современные клетки для этих задач. Появилась задача собрать такие протоклетки из всего необходимого материала. Несмотря на множество попыток за много лет, Луизи так и не сделал ничего хоть мало-мальски убедительного.
И тогда, в 1994 году, он осмелился сделать дерзкое предположение. Он предположил, что первые протоклетки должны были содержать РНК. Более того, эта РНК должна была уметь воспроизводиться внутри протоклетки. Как-то клетка все же появилась И вот, его гипотеза стала очень сложной и отошла от чистого подхода «сперва компартментализация». Но у Луизи были веские доводы. Клетка с внешними стенками, но без внутренностей, мало что может. Возможно, она могла бы делиться на дочерние клетки, но не передавала бы никакой информации о себе потомству.
Она могла начать развиваться и становиться более сложной только при наличии некоторых генов. Вскоре эта идея обрела сильного сторонника в лице Джека Шостака, работу которого на тему «мира РНК» мы изучили в третьей части. Луизи был членом лагеря «сперва компартментализация», Шостак поддерживал «сперва генетику», и много лет они не встречались с глазу на глаз. Почти вся жизнь одноклеточная «Мы встречались на собраниях на тему происхождения жизни и затевали эти длинные дискуссии на тему того, что было важнее и что пришло первым», вспоминает Шостак. Мы пришли к общему мнению, что для возникновения жизни важно иметь и компартментализацию, и генетическую систему». В 2001 году Шостак и Луизи изложили свое видение этого единого подхода. В работе, опубликованной в Natire, они заявили, что должно быть возможность создать простую живую клетку с нуля, разместив реплицирующуюся РНК в обычной капле жира.
Очень скоро Шостак решил полностью посвятить себя ей. Рассудив, что «мы не можем излагать эту теорию, ничем ее не подкрепив», он решил начать экспериментировать с протоклетками. Спустя два года Шостак и двое его коллег объявили о большом успехе. Везикулы — это простые контейнеры, состоящие из липидов Они экспериментировали с везикулами: сферическими каплями с двумя слоями жирных кислот на внешней стороне и центральным жидким ядром. Пытаясь найти способ ускорить создание везикул, они добавили малые частички глины под названием монтмориллонит. Везикулы начали формироваться в 100 раз быстрее. Поверхность глины выступили катализатором, как некий фермент.
Более того, везикулы могли поглощать как частицы монтморрилонита, так и цепи РНК с поверхности глины. Теперь эти протоклетки уже содержали гены и катализатор, и все из одной простой добавки. Решение добавить монтмориллонит было принято не просто так. За несколько десятилетий много работ предположили, что монтмориллонит и подобные ему глины могли иметь важное значение для происхождения жизни. Кусок монтмориллонита Монтмориллонит — это обычная глина. В настоящее время она используется для самых разных дел, из нее даже кошачий наполнитель делают. Образуется она, когда вулканический пепел расщепляется погодой.
Поскольку ранняя Земля изобиловала вулканами, кажется вероятным, что на ней было и много монтмориллонита. Еще в 1986 году химик Джеймс Феррис показал, что монтмориллонит выступает катализатором, который помогает формироваться органическим молекулам. Позже он обнаружил, что глина также ускоряет формирование малых РНК. Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий. И тогда Феррис предположил, что эта невзрачная глина могла быть местом зарождения жизни. Шостак принял эту идею и включил ее в работу, используя монтмориллонит для строительства своих протоклеток.
Годом спустя Шостак обнаружил, что его протоклетки могут расти сами по себе. Чем больше молекул РНК оказывалось в протоклетке, тем выше было давление на наружную стенку. Похоже, желудок протоклетки был забит и она была готова сходить по-большому. Чтобы компенсировать это, протоклетка приняла больше жирных кислот и включила их в стенки, благодаря чему раздулась еще больше и ослабила напряжение. Что важно, она взяла жирные кислоты из других протоклеток, в которых было меньше РНК, заставив их сократиться. Будто бы протоклетки соперничали и та, у которой было больше РНК, побеждала. Но если протоклетки могут расти, может они и делиться могут?
Сможет ли протоклетка Шостака воспроизвести себя? Клетки делятся на два Первые эксперименты Шостака показали, что способ деления протоклеток действительно есть. Если сжать ее в небольшом отверстии и вытянуть в трубочку, протоклетка разрывается, формируя «дочерние» протоклетки. Эта идея была неплохой, потому что в ней не участвовал никакой клеточный механизм: просто давление. Но такое решение было не самым лучшим, поскольку протоклетки теряли часть содержимого в этом процессе. Это также означало, что первые клетки могли делиться лишь проталкиваясь через крошечные отверстия. Существует множество способов заставить везикулы делиться.
Например, можно добавить сильный поток воды. Осталось только заставить протоклетки делиться и не терять кишки. В 2009 году Шостак и его студент Тинг Чжу нашли решение. Они сделали немного более сложные протоклетки с наружными стенками в несколько слоев, напоминающие слои лука. Несмотря на такую сложность, эти протоклетки все еще было просто создать. Когда Чжу кормил их жирными кислотами, протоклетки росли и меняли форму, вытягиваясь в длинные канатоподобные цепочки. После того, как протоклетка становилась достаточно длинной, легкой приложенной силы достаточно, чтобы разбить ее на десятки мелких дочерних протоклеток.
Более того, протоклетки могли повторять цикл постоянно, дочерние протоклетки росли и делились. Эту часть проблему, похоже, решили. В последующих экспериментах Чжу и Шостак нашли еще больше способов заставить протоклетки делиться. Но все равно протоклеткам многого недоставало. Чтобы показать, что его протоклетки могли быть первой жизнью на Земле, Шостаку нужно было заставить РНК внутри них воспроизводиться. В будущем мир ожидает спад рождаемости. Что это значит для человечества?
Это было нелегко, поскольку, несмотря на десятилетия попыток — изложенных в третьей части, — никто так и не смог заставить РНК самовоспроизводиться. Эта же проблема загнала Шостака в угол в ходе его первых работ над «миром РНК», и никому другому не удалось ее решить. Поэтому он вернулся и перечитал работу Лесли Оргела, который так долго работал над гипотезой РНК-мира. В этих пыльных бумагах обнаружились ценные подсказки. Оргел провел много времени с 1970-х по 1980-е, изучая копирование цепей РНК. Первая клетка должна была вмещать химию жизни По сути все просто. Возьмите одну цепь РНК и набор свободных нуклеотидов.
Затем, используя эти нуклеотиды, соберите вторую цепь РНК, комплементарную первой. Сделав это дважды, вы получите копию оригинальной «CGC», только окольным путем. Оргел обнаружил, что при определенных обстоятельствах цепи РНК могут копироваться таким образом без какой-либо помощи ферментов. Возможно, именно так первая жизнь создала копии своих генов. К 1987 году Оргел мог взять цепь РНК длиной в 14 нуклеотидов и создать дополняющие цепи длиной тоже в 14 нуклеотидов. Больше ему сделать не удалось, но этого было достаточно, чтобы заинтриговать Шостака. Его ученица Катажина Адамала попыталась запустить такую реакцию в протоклетках.
Они обнаружили, что для работы такой реакции нужен магний. Но магний уничтожил протоклетки. Впрочем было и простое решение: цитрат, который почти идентичен лимонной кислоте и который присутствует во всех живых клетках. В исследовании, опубликованном в 2013 году, они добавили цитрат и обнаружили, что тот обволок магний, защищая протоклетки и позволяя шаблону продолжать копироваться. Другими словами, им удалось сделать то, что Луизи предлагал в 1994 году. Протоклетки Шостака могут жить в сильном тепле Всего за десять лет исследований команде Шостака удалось совершить невероятное. Они создали протоклетки, которые сохраняют свои гены, при этом забирая полезные молекулы снаружи.
Эти протоклетки могут расти и делиться и даже соперничать между собой. РНК может воспроизводиться внутри них. С какой стороны ни посмотри, они были похожи на первую жизнь. Как собаки понимают человеческий язык? Еще они были весьма устойчивыми. В 2008 году группа Шостака обнаружила, что эти протоклетки могут переживать нагрев до 100 градусов по Цельсию, температуры, которая уничтожает большинство современных клеток. Следовательно, эти протоклетки были похожи на первую жизнь, которая должна была переживать сильное тепло от постоянных ударов метеоритов.
Тем не менее, на первый взгляд, подход Шостака идет вразрез с 40 годами исследований происхождения жизни. Вместо того чтобы озадачиться «сперва воспроизводством» или «сперва компартментализацией», он решил делать оба дела сразу. Молекулы жизни ведут себя крайне сложно Это открывает путь к новому подходу к поиску происхождения жизни — единому, объединенному, унифицированному подходу. Он должен охватить все функции первой жизни сразу и одновременно. Эта гипотеза «сперва всё» уже насобирала достаточно свидетельств и может решить все проблемы существующих идей. Часть шестая: великое объединение На протяжении второй половины 20-го века исследователи происхождения жизни работали каждые в своем лагере. Каждая группа настаивала на собственной версии развития событий и старалась уничтожить конкурирующие гипотезы.
Такой подход был безусловно успешным, о чем свидетельствуют предыдущие главы, но каждая перспективная идея о происхождении жизни в конечном счете наталкивалась на серьезную проблему. Так что некоторые исследователи сейчас пытаются найти более единый подход. Несколько лет назад эта идея получила мощный толчок, благодаря результату, поддерживающему устоявшуюся теорию «мира РНК». К 2009 году у сторонников мира РНК была большая проблема. Они не могли сделать нуклеотиды, строительные блоки РНК, как если бы это происходило в условиях ранней Земли. Это и привело людей к мысли, что первая жизнь вовсе не была построена на РНК, как мы выяснили в третьей части. Земля — единственное место, где есть жизнь.
Пока Джон Сазерленд думал об этой проблеме с 1980-х. Большинство научно-исследовательских институтов заставляют своих сотрудников постоянно генерировать новые работы, но LMB нет. Поэтому Сазерленд мог хорошенько обдумать, почему сделать нуклеотид РНК так сложно, и провел годы, разрабатывая альтернативный подход. Его решение привело его к совершенно новой идее о происхождении жизни: все ключевые компоненты жизни могли сформироваться одновременно. Каждый нуклеотид РНК состоит из сахара, основания и фосфата. Но заставить сахар и основание соединиться оказалось невозможно. Молекулы просто не той формы.
Поэтому Сазерленд начал пробовать совершенно другие вещества. В конечном счете его команда пришла к пяти простым молекулам, включая другой сахар и цианамид, родственный цианиду. Эти химические вещества пропустили через цепочку реакций и в конечном итоге сделали два из четырех нуклеотидов РНК, не делая отдельные сахара или основания. Это был ослепительный успех, который сделал Сазерленду имя. Многие наблюдатели интерпретировали эти результаты как еще одно доказательство в пользу мира РНК. Но сам Сазерленд так не считал. Но Сазерленд говорит, что это безнадежно оптимистично.
Он считает, что РНК принимала важное участие, но на ней все клином не сходилось. Вместо этого он вдохновился одной из последних работ Шостака, которая как мы выяснили в пятой части совмещала РНК-мир «сперва воспроизводства» с идеями «сперва компартментализации» Пьера Луиджи Луизи. Сазерленд пошел еще дальше. Его подход представлял собой «сперва всё». Он хотел, чтобы цельная клетка собралась сама по себе с нуля. К этому его привела странная деталь в его синтезе нуклеотидов, которая сначала казалась случайной. Жизни нужна жирная смесь веществ Последним шагом в процессе Сазерленда было забросить фосфат в нуклеотид.
Однако он выяснил, что лучше всего было включать фосфат в смесь с самого начала, поскольку он ускорял первые реакции. Казалось, что включение фосфата до того, как он понадобится на самом деле, было слегка «грязноватым» действием, но Сазерленд выяснил, что этот хаос — это хорошо. И так он задумался о том, насколько беспорядочными должны быть смеси. Во времена ранней Земли должны были существовать десятки или сотни химических веществ, плавающих вместе. Рецепт шлама? Но беспорядок может быть важным условием. Смеси, которые Стэнли Миллер приготовил в 1950-х годах, о которых мы говорили в первой части, были куда грязнее сазерлендовых.
Они включали биологические молекулы, но Сазерленд говорит, что они «были в небольших количествах и сопровождались огромным количеством других, не биологических соединений». Что происходит с человеком после переедания? Сазерленд считал, что подход Миллера был недостаточно хорош. Он был слишком грязным, поэтому хорошие химические вещества просто терялись в смеси. Поэтому Сазерленд вознамерился найти «химию Златовласки»: не слишком грязную, чтобы стать бесполезной, но и не слишком простую, чтобы быть ограниченной в возможностях. Получить достаточно сложную смесь — и все компоненты жизни смогут сформироваться одновременно и найти друг друга. Другими словами, четыре миллиарда лет назад на Земле был пруд.
Он существовал годами, пока в нем не собрались нужные химические вещества. Затем, возможно, за какие-нибудь пару минут появилась первая клетка. Горстки химвеществ недостаточно для жизни Это может показаться совершенно неправдоподобным, словно заявления средневековых алхимиков. Но у Сазерленда только прибавляется доказательств. В 2009 году он показал, что та же химия, которая позволила собрать два его нуклеотида РНК, также может создавать многие другие молекулы жизни. Очевидным следующим шагом было сделать больше нуклеотидов РНК. Пока этого сделать не удалось, но в 2010 году он собрал тесно связанные молекулы, которые потенциально могут превратиться в нуклеотиды.
Точно так же, в 2013 году он сделал прекурсоры аминокислот. На этот раз ему пришлось добавить цианид меди, чтобы заставить реакцию протекать. Связанные с цианидом химические вещества оказались общей темой, и в 2015 году Сазерленд сделал с ними еще больше. Он показал, что в том же горшке с химическими веществами могут появиться и прекурсоры липидов, молекул, из которых состоят стенки клеток. Все эти реакции полагались на ультрафиолетовый свет, включали серу и медь как катализатор. Жизни нужен настоящий рог изобилия химвеществ «Все строительные блоки вышли из общего ядра химических реакций», говорит Шостак. Если Сазерленд прав, то весь наш подход к происхождению жизни за последние 40 лет был в корне неверным.
С тех пор, как стала очевидной сложность клетки, ученые начали работать с предположением, что первые клетки должны были собираться постепенно, по частям. Вслед за предложением Лесли Оргела о том, что сначала появилась РНК, ученые пытались «поставить одно перед другим, а потом как-то получить порядок», говорит Сазерленд. Но он думает, что лучше всего — сделать все и сразу. Шостак теперь подозревает, что большинство попыток сделать молекулы жизни и собрать их в живые клетки провалились по одной причине: эксперименты были слишком чистыми. На каких животных охотились собаки 1000 лет назад? Ученые использовали несколько химических веществ, которые были им интересны, и оставляли все прочие, которые тоже, вероятно, присутствовали на ранней Земле. Но работа Сазерленда показала, что добавляя больше химических вещей в смесь, можно создать больше сложных явлений.
Шостак и сам столкнулся с этим в 2005 году, когда пытался разместить фермент РНК в своих протоклетках. Ферменту нужен был магний, который уничтожал мембраны протоклеток. Решение оказалось на удивление простым. Вместо того чтобы делать везикулы из одной только жирной кислоты, их сделали из смеси обоих веществ. Новые, «грязные» везикулы справлялись с магнием и могли размещать работающие ферменты РНК. Более того, Шостак говорит, что первые гены тоже могли включать беспорядок. В 2012 году Шостак показал, что такая смесь может собираться в «мозаику» молекул, которая выглядит и ведет себя почти как чистая РНК.
Мы не знаем, существовали они на Земле или нет, но если да, то первые организмы вполне могли использовать и их. Это уже был не «мир РНК», а «мир вперемешку». Урок этих исследований в том, что сделать первую клетку может быть было не так сложно, как кажется. Да, клетки — сложные машины. Но оказывается, что они продолжают работать, хоть и не так хорошо, если их слепить небрежно, как снежок. Кажется, что такие неуклюжие клетки не имели шансов выжить на ранней Земле. Но у них практически не было конкуренции, им не угрожали никакие хищники, поэтому во многих отношениях жизни было проще, чем сейчас.
В юности Землю постоянно бомбардировали метеориты Однако существует одна проблема, которую не смогли решить Сазерленд или Шостак, и это серьезная проблема. Первый организм должен был иметь какой-то метаболизм, обмен веществ. С самого начала жизнь должна была получать энергию, либо умереть. В этом Сазерленд согласен с Майком Расселлом, Биллом Мартином и другими сторонниками теорий «сперва метаболизм» из четвертой части. Даже если Мартин и Расселл ошибаются на тему того, что жизнь началась у глубоководных источников, многие элементы их теории почти наверняка верны.
Похожая на оригами, складывающаяся РНК в целом напоминала по поведению белки. Белки тоже в основном представляют длинные цепи — только из аминокислот, а не нуклеотидов — и это позволяет им создавать сложные структуры.
Это ключ к самой удивительной способности белков. Некоторые из них могут ускорять, или «катализировать», химические реакции. Такие белки известны как ферменты. Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового. Множество ферментов можно найти у вас в кишках, где они разбивают сложные молекулы из пищи на простые типа сахаров, которые могут использовать ваши клетки. Без ферментов жить было бы невозможно.
Лесли Оргел и Фрэнсис Крик начали кое-что подозревать. Если РНК может складываться как белок, возможно, она может и образовывать ферменты? Если бы это было правдой, то РНК могла бы быть оригинальной — и универсальной — живой молекулой, хранящей информацию, как это делает сейчас ДНК, и катализирующей реакции, как это делают некоторые белки. Это была прекрасная идея, но за десять лет она не получила никаких доказательств. Томас Чех, 2007 год Томас Чех родился и вырос в штате Айова. Еще ребенком он был очарован горными породами и минералами. И уже в младших классах средней школы он заглядывал в местный университет и стучался в двери геологов с просьбой показать модели минеральных структур.
Однако, в конце концов, он стал биохимиком и сосредоточился на РНК. В начале 1980-х годов Чех и его коллеги по Университету Колорадо в Боулдере изучали одноклеточный организм Tetrahymena thermophila. Часть ее клеточного механизма включает цепи РНК. Чех обнаружил, что отдельный сегмент РНК каким-то образом оказался отделен от остальных, словно его вырезали ножницами. Когда ученые убрали все ферменты и другие молекулы, которые могли выступать молекулярными ножницами, РНК продолжала выделываться. Так они нашли первый фермент РНК: короткий участок РНК, который способен вырезать себя из длинной цепи, частью которой является. Результаты работы Чех опубликовал в 1982 году.
В следующем году другая группа ученых обнаружила второй фермент РНК, «рибозим» сокращение от «рибонуклеиновая кислота» и «энзим», он же фермент. Обнаружение двух ферментов РНК одного за другим указывало на то, что их должно быть много больше. И так идея начала жизни с РНК начала выглядеть солидно. Как грудной имплантат сохранил жизнь женщины Однако имя этой идее дал Уолтер Гилберт из Гарвардского университета в Кембридже, штат Массачусетс. Как физик, восхищающийся молекулярной биологией, Гилберт также стал одним из первых сторонников секвенирования генома человека. Первая стадия эволюции, утверждал Гилберт, состояла из «молекул РНК, выполняющих каталитическую деятельность, необходимую для сборки самих себя в бульон нуклеотидов». Наконец, они нашли способ создавать белки и белковые ферменты, которые оказались настолько полезными, что в значительной степени вытеснили версии РНК и дали начало жизни, которую мы имеем.
Вместо того, чтобы полагаться на одновременное образование десятков биологических молекул из первичного бульона, «одна за всех» молекула могла сделать всю работу. В 2000 году гипотеза «мира РНК» получила колоссальную порцию подтверждающих доказательств. Рибосома делает белки Томас Стейц провели 30 лет, изучая структуры молекул в живых клетках. В 1990-е годы он посвятил себя самой серьезной задаче: выяснить структуру рибосомы. Рибосома есть в каждой живой клетке. Эта огромная молекула считывает инструкции в РНК и выстраивает аминокислоты, чтобы сделать белки. Рибосомы в ваших клетках построили большую часть вашего тела.
Было известно, что рибосома содержит РНК. Но в 2000 году команда Стейца произвела подробное изображение структуры рибосомы, которое показало, что РНК была каталитическим ядром рибосомы. Это было важно, так как рибосома фундаментально важна для жизни и при этом очень древняя. Но с тех пор ученые начали сомневаться. С самого начала у идеи «мира РНК» было две проблемы. Могла ли РНК действительно выполнять все функции жизни сама по себе? Могла ли она образоваться на ранней Земле?
Прошло 30 лет с тех пор, как Гилберт заложил фундамент для «мира РНК», и мы до сих пор не нашли твердых доказательств, что РНК может выполнять все, что от нее требует теория. Это маленькая умелая молекула, но она может не уметь всего. Как он-лайн вечеринки меняют нашу жизнь. Личный опыт Ясно было одно. Если жизнь началась с молекулы РНК, РНК должна была быть способна делать копии себя: она должна была быть самовоспроизводящейся, самореплицирующейся. Но ни одна из известных РНК не может самовоспроизводиться. Как и ДНК.
Поэтому в конце 1980-х годов несколько ученых начали весьма донкихотские поиски. Они задумали создать самовоспроизводящуюся РНК самостоятельно. Джек Шостак Джек Шостак из Гарвардской школы медицины был одним из первых, кто принял в этом участие. В детстве он был так очарован химией, что завел лабораторию в подвале своего дома. Пренебрегая собственной безопасностью, однажды он даже устроил взрыв, после которого в потолке застряла стеклянная трубка. В начале 1980-х годов Шостак помог показать, как гены защищают себя от процесса старения. Это довольно раннее исследование в конечном итоге принесло ему часть Нобелевской премии.
Однако очень скоро он восхитился ферментами РНК Чеха. Шостак решил улучшить открытие, произведя новые ферменты РНК в лаборатории. Его команда создала набор случайных последовательностей и проверила, обладает ли хоть одна из них каталитическими способностями. Затем они брали эти последовательности, переделывали и снова проверяли. Спустя 10 раундов таких действий Шостак произвел фермент РНК, который ускорял протекание реакции в семь миллионов раз. Он показал, что ферменты РНК могут быть по-настоящему мощными. Но их фермент не мог копировать себя, даже чуточку.
Шостак оказался в тупике. Возможно, жизнь началась не с РНК Следующий крупный шаг осуществил в 2001 году бывший студент Шостака Дэвид Бартель из Массачусетского технологического института в Кембридже. Другими словами, он добавлял не случайные нуклеотиды: он правильно копировал последовательность. Пока это был еще не саморепликатор, но уже что-то похожее. Была надежда, что несколько настроек позволят ему построить цепь длиной в 189 нуклеотидов — как и он сам. Лучшее, что удалось сделать, принадлежало Филиппу Холлигеру в 2011 году из Лаборатории молекулярной биологии в Кембридже. Его команда создала модифицированный R18 под названием tC19Z, который копировал последовательности до 95 нуклеотидов длиной.
В 2009 году они создали фермент РНК, который размножается косвенно. Их фермент объединяет два коротких кусочка РНК для создания второго фермента. Затем объединяет другие два кусочка РНК, чтобы воссоздать исходный фермент. При наличии сырья этот простой цикл можно продолжать до бесконечности. Но ферменты работали только тогда, когда им давали правильные цепочки РНК, которые приходилось делать Джойсу и Линкольну. Для многих ученых, которые скептически относятся к «миру РНК», отсутствие самовоспроизводящейся РНК является фатальной проблемой этой гипотезы. РНК, по всей видимости, просто не может взять и начать жизнь.
Также проблему усугубила неудача химиков в попытках создать РНК с нуля. Казалось бы, простая молекула по сравнению с ДНК, но сделать ее чрезвычайно трудно. Это животное остается беременным всю жизнь без перерыва Проблема лежит в сахаре и основании, которые составляют каждый нуклеотид. Можно сделать каждый из них по отдельности, но они упорно отказываются связываться. К началу 1990-х годов эта проблема стала очевидной. Многие биологи заподозрили, что гипотеза «мира РНК», несмотря на всю привлекательность, может быть не совсем верной. Вместо этого, возможно, на ранней Земле был какой-то другой тип молекулы: что-то проще, чем РНК, которая на самом деле могла собрать себя из первичного бульона и начать самовоспроизводиться.
Это была по существу сильно модифицированная версия ДНК. Он назвал новую молекулу полиамидной нуклеиновой кислотой, или ПНК. Непонятным образом с тех пор она стала известна как пептидная нуклеиновая кислота. ПНК никогда не встречали в природе. Но ведет она себя практически как ДНК. Стэнли Миллер был заинтригован. Глубоко скептически относясь к РНК-миру, он подозревал, что ПНК была куда более вероятным кандидатом на первый генетический материал.
В 2000 году он произвел несколько уверенных доказательств. К тому времени ему уже стукнуло 70 и он пережил несколько инсультов, которые могли отправить его в дом престарелых, но не сдался. Он повторил свой классический эксперимент, который мы обсуждали в первой главе, в этот раз используя метан, азот, аммиак и воду — и получил полиамидную основу ПНК. Молекула треозо-нуклеиновой кислоты Другие химики придумали собственные альтернативные нуклеиновые кислоты. Это та же ДНК, но с другим сахаром в основе. Более того, ТНК может складываться в сложные формы и даже связываться с белком. В 2005 году Эрик Меггес сделал гликолевую нуклеиновую кислоту, которая может формировать спиральные структуры.
У каждой из этих альтернативных нуклеиновых кислот есть свои сторонники. Но никаких следов их в природе не найти, поэтому если первая жизнь действительно использовала их, в какой-то момент она должна была полностью отказаться от них в пользу РНК и ДНК. Это может быть правдой, но никаких доказательств нет. В итоге к середине 2000-х годов сторонники мира РНК оказались в затруднительном положении. С одной стороны, РНК-ферменты существовали и включали одну из важнейших частей биологической инженерии, рибосому. Альтернативные нуклеиновые кислоты могли бы решить последнюю задачу, но нет никаких доказательств, что они существовали в природе. Не очень хорошо.
Очевидный вывод был таким: «мир РНК», несмотря на свою привлекательность, оказался мифом. Между тем с 1980-х годов постепенно набирала обороты другая теория. Вместо этого она началась с механизма использования энергии. Жизни нужна энергия, чтобы оставаться живой Часть четвертая: энергия протонов Во второй главе мы узнали, как ученые разделились на три школы мысли, размышляя об истоках жизни. Одна группа была убеждена, что жизнь началась с молекулы РНК, но не смогла показать, как РНК или подобные молекулы могли спонтанно образоваться на ранней Земле, а затем наделать копий самих себя. На первых порах их усилия воодушевляли, но в конечном итоге осталось только разочарование. Тем не менее другие исследователи происхождения жизни, которые двигались иными путями, пришли к кое-каким результатам.
Теория «мира РНК» опирается на простую идею: самое важное, что может сделать живой организм, это воспроизвести себя. Многие биологи с этим согласились бы. От бактерий до голубых китов, все живые существа стремятся завести потомство. Тем не менее многие исследователи происхождения жизни не считают воспроизводство чем-то фундаментальным. Перед тем как организм сможет размножаться, говорят они, он должен стать самодостаточным. Он должен поддерживать себя в живом состоянии. В конце концов, вы не сможете иметь детей, если сначала умрете.
Мы поддерживаем себя в живых, поглощая пищу; зеленые растения делают это путем извлечения энергии из солнечного света. На первый взгляд, человек, поедающий сочный стейк, сильно отличается от поросшего листвой дуба, но если разобраться, они оба нуждаются в энергии. Этот процесс называется метаболизм. Сначала вам нужно получить энергию; допустим, из богатых энергией химических веществ вроде сахара. Затем вы должны использовать эту энергию, чтобы построить что-нибудь полезное вроде клеток. Этот процесс использования энергии настолько важный, что многие исследователи считают его первым, с которого началась жизнь. Вулканическая вода горячая и богата минералами Как могли бы выглядеть эти предназначенные только для метаболизма организмы?
Одно из самых интересных предположений было выдвинуто в конце 1980-х годов Гюнтер Вахтершаузер. Он не был штатным ученым, скорее патентным юристом с небольшими познаниями в химии. Вахтершаузер предположил, что первые организмы «радикально отличались от всего, что мы знали». Они не были сделаны из клеток. Нет, вместо этого Вахтершаузер представил поток горячей воды, вытекающей из вулкана. Эта вода богата вулканическими газами вроде аммиака и содержит следы минералов из сердца вулкана. Там, где вода текла через скалы, начинали происходить химические реакции.
В частности, металлы из воды помогали простым органическим соединениям сливаться в более крупные. Поворотным моментом стало создание первого метаболического цикла. Это процесс, в котором одно химическое вещество превращается в ряд других химических веществ, пока в конце концов не будет воссоздан исходник. В процессе этого вся система накапливает энергию, которая может быть использована для перезапуска цикла — и для других вещей. Инопланетная жизнь может обитать рядом с белыми карликами Все остальное, из чего состоит современный организм — ДНК, клетки, мозги — появились позже, поверх этих химических циклов. Эти метаболические циклы вообще мало похожи на жизнь. Вахтершаузер назвал свое изобретение «прекурсорами организмов» и написал, что «едва ли их можно назвать живыми».
Но метаболические циклы вроде тех, что описал Вахтершаузер, лежат в основе всего живого. Ваши клетки — это по сути микроскопические химические заводики, постоянно перегоняющие одни вещества в другие. Метаболические циклы нельзя назвать жизнью, но они имеют основополагающее значение для нее. В течение 1980-х и 1990-х годов Вахтершаузер работал над деталями своей теории. Он изложил, какие минералы подошли бы больше всего и какие химические циклы могли иметь место. Его идеи начали привлекать сторонников. Но все это было сугубо теоретическим.
Вахтершаузеру нужно было реальное открытие, которое подкрепило бы его идеи. К счастью, его уже сделали десятью годами ранее. Источники в Тихом океане В 1977 году группа под руководством Джека Корлисса из Университета штата Орегон погрузилась на 2,5 километра в восточной части Тихого океана. Они изучали Галапагосские горячие источники в местах, где с морского дна поднимались высокие хребты. Эти хребты были вулканически активными. Корлисс обнаружил, что эти хребты были буквально усеяны горячими источниками. Горячая, обогащенная химическими веществами вода поднимается из-под морского дна и струится через отверстия в скалах.
Невероятно, но эти гидротермальные источники были густо населены странными животными. Там были огромные моллюски, мидии и кольчатые черви. Вода также была густо пропитана бактериями. Все эти организмы жили на энергии гидротермальных жерл. Открытие этих источников сделало Корлиссу имя. И заставило задуматься. В 1981 году он предположил, что подобные жерла существовали на Земле четыре миллиарда лет назад и что они стали местом происхождения жизни.
Он посвятил львиную долю своей карьеры изучению этого вопроса. У гидротермальных источников живет странная жизнь Корлисс предположил, что гидротермальные источники могли создавать коктейли химических веществ. Каждый источник, говорил он, был своего рода распылителем первичного бульона. По мере того, как горячая вода текла через скалы, тепло и давление приводили к тому, что простые органические соединения сливались в более сложные, такие как аминокислоты, нуклеотиды и сахара. Ближе к границе с океаном, где вода была не такой горячей, они начинали связываться в цепочки — формировать углеводы, белки и нуклеотиды вроде ДНК. Затем, когда вода подходила к океану и остывала еще больше, эти молекулы собирались в простые клетки. Это было интересно, теория привлекла внимание людей.
Но Стэнли Миллер, эксперимент которого мы обсуждали в первой части, не поверил. В 1988 году он писал, что глубоководные жерла были слишком горячими. Каким образом человек смог повторно заразиться коронавирусом? Хотя сильное тепло может привести к образованию химических веществ вроде аминокислот, эксперименты Миллера показали, что оно также может и уничтожить их. Основные соединения вроде сахаров «смогли бы выжить пару секунд, не больше». Более того, эти простые молекулы вряд ли связались бы в цепи, поскольку окружающая вода мгновенно их разорвала бы. На этом этапе к битве подключился геолог Майк Расселл.
Он посчитал, что теория гидротермальных источников может быть вполне верной. Более того, ему показалось, что эти источники будут идеальным домом для прекурсоров организма Вахтершаузера. Это вдохновение привело его к созданию одной из самых широко признанных теорий происхождений жизни. Геолог Майкл Расселл В карьере Расселла было много интересных вещей — он делал аспирин, разыскивая ценные минералы — и в одном замечательном происшествии 1960-х годов координировал реагирование на возможное извержения вулкана, несмотря на отсутствие подготовки. Но его больше интересовало, как менялась поверхности Земли на протяжении эпох. Эта геологическая перспектива и позволила сформироваться его идеям о происхождении жизни. В 1980-х годах он обнаружил ископаемые свидетельства менее бурного типа гидротермального источника, в котором температуры не превышали 150 градусов по Цельсию.
Эти мягкие температуры, по его словам, могли позволить молекулам жизни жить дольше, чем полагал Миллер. Более того, ископаемые остатки этих «прохладных» жерл содержали нечто странное: минерал пирит, состоящий из железа и серы, сформировался в трубочках диаметром 1 мм. Работая в лаборатории, Расселл обнаружил, что пирит также может формировать сферические капли. И предположил, что первые сложные органические молекулы могли образоваться внутри этих простых пиритовых структур. Железный пирит Примерно в это же время Вахтершаузер начал публиковать свои идеи, в основе которых был поток горячей химически обогащенной воды, протекающей через минералы. Он даже предположил, что в этом процессе участвовал пирит. Расселл сложил два плюс два.
Он предположил, что гидротермальные источники на глубине моря, достаточно холодные, чтобы позволить образоваться пиритовым структурам, приютили прекурсоры организмов Вахтершаузера. Если Расселл был прав, жизнь началась на дне моря — и сначала появился метаболизм. Расселл собрал это все в статье, опубликованной в 1993 году, 40 лет спустя после классического эксперимента Миллера. Она не вызвала такого же ажиотажа в СМИ, но была, возможно, более важной.
Лучше всего показал себя рибозим, отличающийся от ранее полученного варианта десятью точечными мутациями и обозначенный 71-89 для его получения потребовался в общей сложности 71 раунд эволюции. Затем авторы сравнили новую высокоточную РНК-полимеразу и РНК-полимеразу с низкой точностью по способности синтезировать hammerhead и проводить раунды его эволюции. Процесс был организован так же, как в эксперименте 2020 года: о качестве полимеризации говорила способность готовой РНК-структуры к саморасщеплению, соответственно, успешные молекулы hammerhead «проходили в следующий тур» и становились матрицами для синтеза новых копий.
Полимераза с низкой точностью могла поддерживать каталитические свойства субстрата лишь в течение нескольких поколений. Высокоточная полимераза не только справилась с этой задачей на протяжении восьми раундов, но и создала молекулы, превосходящие стартовый вариант по «приспособленности» интересно, что они могли хуже разрезать сами себя, но лучше копировались полимеразой. Таким образом, впервые рибозимы in vitro были использованы для репликации и эволюции других функциональных РНК. Гипотеза РНК-мира получила существенное подтверждение, кроме того, открылись возможности для новых подобных экспериментов. Источник Nikolaos Papastavrou, David P. Horning, Gerald F.
Такие белки известны как ферменты.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового. Множество ферментов можно найти у вас в кишках, где они разбивают сложные молекулы из пищи на простые типа сахаров, которые могут использовать ваши клетки. Без ферментов жить было бы невозможно. Лесли Оргел и Фрэнсис Крик начали кое-что подозревать. Если РНК может складываться как белок, возможно, она может и образовывать ферменты? Если бы это было правдой, то РНК могла бы быть оригинальной — и универсальной — живой молекулой, хранящей информацию, как это делает сейчас ДНК, и катализирующей реакции, как это делают некоторые белки.
Это была прекрасная идея, но за десять лет она не получила никаких доказательств. Томас Чех, 2007 год Томас Чех родился и вырос в штате Айова. Еще ребенком он был очарован горными породами и минералами. И уже в младших классах средней школы он заглядывал в местный университет и стучался в двери геологов с просьбой показать модели минеральных структур. Однако, в конце концов, он стал биохимиком и сосредоточился на РНК. В начале 1980-х годов Чех и его коллеги по Университету Колорадо в Боулдере изучали одноклеточный организм Tetrahymena thermophila. Часть ее клеточного механизма включает цепи РНК.
Чех обнаружил, что отдельный сегмент РНК каким-то образом оказался отделен от остальных, словно его вырезали ножницами. Когда ученые убрали все ферменты и другие молекулы, которые могли выступать молекулярными ножницами, РНК продолжала выделываться. Так они нашли первый фермент РНК: короткий участок РНК, который способен вырезать себя из длинной цепи, частью которой является. Результаты работы Чех опубликовал в 1982 году. В следующем году другая группа ученых обнаружила второй фермент РНК, «рибозим» сокращение от «рибонуклеиновая кислота» и «энзим», он же фермент. Обнаружение двух ферментов РНК одного за другим указывало на то, что их должно быть много больше. И так идея начала жизни с РНК начала выглядеть солидно.
Как грудной имплантат сохранил жизнь женщины Однако имя этой идее дал Уолтер Гилберт из Гарвардского университета в Кембридже, штат Массачусетс. Как физик, восхищающийся молекулярной биологией, Гилберт также стал одним из первых сторонников секвенирования генома человека. Первая стадия эволюции, утверждал Гилберт, состояла из «молекул РНК, выполняющих каталитическую деятельность, необходимую для сборки самих себя в бульон нуклеотидов». Наконец, они нашли способ создавать белки и белковые ферменты, которые оказались настолько полезными, что в значительной степени вытеснили версии РНК и дали начало жизни, которую мы имеем. Вместо того, чтобы полагаться на одновременное образование десятков биологических молекул из первичного бульона, «одна за всех» молекула могла сделать всю работу. В 2000 году гипотеза «мира РНК» получила колоссальную порцию подтверждающих доказательств. Рибосома делает белки Томас Стейц провели 30 лет, изучая структуры молекул в живых клетках.
В 1990-е годы он посвятил себя самой серьезной задаче: выяснить структуру рибосомы. Рибосома есть в каждой живой клетке. Эта огромная молекула считывает инструкции в РНК и выстраивает аминокислоты, чтобы сделать белки. Рибосомы в ваших клетках построили большую часть вашего тела. Было известно, что рибосома содержит РНК. Но в 2000 году команда Стейца произвела подробное изображение структуры рибосомы, которое показало, что РНК была каталитическим ядром рибосомы. Это было важно, так как рибосома фундаментально важна для жизни и при этом очень древняя.
Но с тех пор ученые начали сомневаться. С самого начала у идеи «мира РНК» было две проблемы. Могла ли РНК действительно выполнять все функции жизни сама по себе? Могла ли она образоваться на ранней Земле? Прошло 30 лет с тех пор, как Гилберт заложил фундамент для «мира РНК», и мы до сих пор не нашли твердых доказательств, что РНК может выполнять все, что от нее требует теория. Это маленькая умелая молекула, но она может не уметь всего. Как он-лайн вечеринки меняют нашу жизнь.
Личный опыт Ясно было одно. Если жизнь началась с молекулы РНК, РНК должна была быть способна делать копии себя: она должна была быть самовоспроизводящейся, самореплицирующейся. Но ни одна из известных РНК не может самовоспроизводиться. Как и ДНК. Поэтому в конце 1980-х годов несколько ученых начали весьма донкихотские поиски. Они задумали создать самовоспроизводящуюся РНК самостоятельно. Джек Шостак Джек Шостак из Гарвардской школы медицины был одним из первых, кто принял в этом участие.
В детстве он был так очарован химией, что завел лабораторию в подвале своего дома. Пренебрегая собственной безопасностью, однажды он даже устроил взрыв, после которого в потолке застряла стеклянная трубка. В начале 1980-х годов Шостак помог показать, как гены защищают себя от процесса старения. Это довольно раннее исследование в конечном итоге принесло ему часть Нобелевской премии. Однако очень скоро он восхитился ферментами РНК Чеха. Шостак решил улучшить открытие, произведя новые ферменты РНК в лаборатории. Его команда создала набор случайных последовательностей и проверила, обладает ли хоть одна из них каталитическими способностями.
Затем они брали эти последовательности, переделывали и снова проверяли. Спустя 10 раундов таких действий Шостак произвел фермент РНК, который ускорял протекание реакции в семь миллионов раз. Он показал, что ферменты РНК могут быть по-настоящему мощными. Но их фермент не мог копировать себя, даже чуточку. Шостак оказался в тупике. Возможно, жизнь началась не с РНК Следующий крупный шаг осуществил в 2001 году бывший студент Шостака Дэвид Бартель из Массачусетского технологического института в Кембридже. Другими словами, он добавлял не случайные нуклеотиды: он правильно копировал последовательность.
Пока это был еще не саморепликатор, но уже что-то похожее. Была надежда, что несколько настроек позволят ему построить цепь длиной в 189 нуклеотидов — как и он сам. Лучшее, что удалось сделать, принадлежало Филиппу Холлигеру в 2011 году из Лаборатории молекулярной биологии в Кембридже. Его команда создала модифицированный R18 под названием tC19Z, который копировал последовательности до 95 нуклеотидов длиной. В 2009 году они создали фермент РНК, который размножается косвенно. Их фермент объединяет два коротких кусочка РНК для создания второго фермента. Затем объединяет другие два кусочка РНК, чтобы воссоздать исходный фермент.
При наличии сырья этот простой цикл можно продолжать до бесконечности. Но ферменты работали только тогда, когда им давали правильные цепочки РНК, которые приходилось делать Джойсу и Линкольну. Для многих ученых, которые скептически относятся к «миру РНК», отсутствие самовоспроизводящейся РНК является фатальной проблемой этой гипотезы. РНК, по всей видимости, просто не может взять и начать жизнь. Также проблему усугубила неудача химиков в попытках создать РНК с нуля. Казалось бы, простая молекула по сравнению с ДНК, но сделать ее чрезвычайно трудно. Это животное остается беременным всю жизнь без перерыва Проблема лежит в сахаре и основании, которые составляют каждый нуклеотид.
Можно сделать каждый из них по отдельности, но они упорно отказываются связываться. К началу 1990-х годов эта проблема стала очевидной. Многие биологи заподозрили, что гипотеза «мира РНК», несмотря на всю привлекательность, может быть не совсем верной. Вместо этого, возможно, на ранней Земле был какой-то другой тип молекулы: что-то проще, чем РНК, которая на самом деле могла собрать себя из первичного бульона и начать самовоспроизводиться. Это была по существу сильно модифицированная версия ДНК. Он назвал новую молекулу полиамидной нуклеиновой кислотой, или ПНК. Непонятным образом с тех пор она стала известна как пептидная нуклеиновая кислота.
ПНК никогда не встречали в природе. Но ведет она себя практически как ДНК. Стэнли Миллер был заинтригован. Глубоко скептически относясь к РНК-миру, он подозревал, что ПНК была куда более вероятным кандидатом на первый генетический материал. В 2000 году он произвел несколько уверенных доказательств. К тому времени ему уже стукнуло 70 и он пережил несколько инсультов, которые могли отправить его в дом престарелых, но не сдался. Он повторил свой классический эксперимент, который мы обсуждали в первой главе, в этот раз используя метан, азот, аммиак и воду — и получил полиамидную основу ПНК.
Молекула треозо-нуклеиновой кислоты Другие химики придумали собственные альтернативные нуклеиновые кислоты. Это та же ДНК, но с другим сахаром в основе. Более того, ТНК может складываться в сложные формы и даже связываться с белком. В 2005 году Эрик Меггес сделал гликолевую нуклеиновую кислоту, которая может формировать спиральные структуры. У каждой из этих альтернативных нуклеиновых кислот есть свои сторонники. Но никаких следов их в природе не найти, поэтому если первая жизнь действительно использовала их, в какой-то момент она должна была полностью отказаться от них в пользу РНК и ДНК. Это может быть правдой, но никаких доказательств нет.
В итоге к середине 2000-х годов сторонники мира РНК оказались в затруднительном положении. С одной стороны, РНК-ферменты существовали и включали одну из важнейших частей биологической инженерии, рибосому. Альтернативные нуклеиновые кислоты могли бы решить последнюю задачу, но нет никаких доказательств, что они существовали в природе. Не очень хорошо. Очевидный вывод был таким: «мир РНК», несмотря на свою привлекательность, оказался мифом. Между тем с 1980-х годов постепенно набирала обороты другая теория. Вместо этого она началась с механизма использования энергии.
Жизни нужна энергия, чтобы оставаться живой Часть четвертая: энергия протонов Во второй главе мы узнали, как ученые разделились на три школы мысли, размышляя об истоках жизни. Одна группа была убеждена, что жизнь началась с молекулы РНК, но не смогла показать, как РНК или подобные молекулы могли спонтанно образоваться на ранней Земле, а затем наделать копий самих себя. На первых порах их усилия воодушевляли, но в конечном итоге осталось только разочарование. Тем не менее другие исследователи происхождения жизни, которые двигались иными путями, пришли к кое-каким результатам. Теория «мира РНК» опирается на простую идею: самое важное, что может сделать живой организм, это воспроизвести себя. Многие биологи с этим согласились бы. От бактерий до голубых китов, все живые существа стремятся завести потомство.
Тем не менее многие исследователи происхождения жизни не считают воспроизводство чем-то фундаментальным. Перед тем как организм сможет размножаться, говорят они, он должен стать самодостаточным. Он должен поддерживать себя в живом состоянии. В конце концов, вы не сможете иметь детей, если сначала умрете. Мы поддерживаем себя в живых, поглощая пищу; зеленые растения делают это путем извлечения энергии из солнечного света. На первый взгляд, человек, поедающий сочный стейк, сильно отличается от поросшего листвой дуба, но если разобраться, они оба нуждаются в энергии. Этот процесс называется метаболизм.
Сначала вам нужно получить энергию; допустим, из богатых энергией химических веществ вроде сахара. Затем вы должны использовать эту энергию, чтобы построить что-нибудь полезное вроде клеток. Этот процесс использования энергии настолько важный, что многие исследователи считают его первым, с которого началась жизнь. Вулканическая вода горячая и богата минералами Как могли бы выглядеть эти предназначенные только для метаболизма организмы? Одно из самых интересных предположений было выдвинуто в конце 1980-х годов Гюнтер Вахтершаузер. Он не был штатным ученым, скорее патентным юристом с небольшими познаниями в химии. Вахтершаузер предположил, что первые организмы «радикально отличались от всего, что мы знали».
Они не были сделаны из клеток. Нет, вместо этого Вахтершаузер представил поток горячей воды, вытекающей из вулкана. Эта вода богата вулканическими газами вроде аммиака и содержит следы минералов из сердца вулкана. Там, где вода текла через скалы, начинали происходить химические реакции. В частности, металлы из воды помогали простым органическим соединениям сливаться в более крупные. Поворотным моментом стало создание первого метаболического цикла. Это процесс, в котором одно химическое вещество превращается в ряд других химических веществ, пока в конце концов не будет воссоздан исходник.
В процессе этого вся система накапливает энергию, которая может быть использована для перезапуска цикла — и для других вещей. Инопланетная жизнь может обитать рядом с белыми карликами Все остальное, из чего состоит современный организм — ДНК, клетки, мозги — появились позже, поверх этих химических циклов. Эти метаболические циклы вообще мало похожи на жизнь. Вахтершаузер назвал свое изобретение «прекурсорами организмов» и написал, что «едва ли их можно назвать живыми». Но метаболические циклы вроде тех, что описал Вахтершаузер, лежат в основе всего живого. Ваши клетки — это по сути микроскопические химические заводики, постоянно перегоняющие одни вещества в другие. Метаболические циклы нельзя назвать жизнью, но они имеют основополагающее значение для нее.
В течение 1980-х и 1990-х годов Вахтершаузер работал над деталями своей теории. Он изложил, какие минералы подошли бы больше всего и какие химические циклы могли иметь место. Его идеи начали привлекать сторонников. Но все это было сугубо теоретическим. Вахтершаузеру нужно было реальное открытие, которое подкрепило бы его идеи. К счастью, его уже сделали десятью годами ранее. Источники в Тихом океане В 1977 году группа под руководством Джека Корлисса из Университета штата Орегон погрузилась на 2,5 километра в восточной части Тихого океана.
Они изучали Галапагосские горячие источники в местах, где с морского дна поднимались высокие хребты. Эти хребты были вулканически активными. Корлисс обнаружил, что эти хребты были буквально усеяны горячими источниками. Горячая, обогащенная химическими веществами вода поднимается из-под морского дна и струится через отверстия в скалах. Невероятно, но эти гидротермальные источники были густо населены странными животными. Там были огромные моллюски, мидии и кольчатые черви. Вода также была густо пропитана бактериями.
Все эти организмы жили на энергии гидротермальных жерл. Открытие этих источников сделало Корлиссу имя. И заставило задуматься. В 1981 году он предположил, что подобные жерла существовали на Земле четыре миллиарда лет назад и что они стали местом происхождения жизни. Он посвятил львиную долю своей карьеры изучению этого вопроса. У гидротермальных источников живет странная жизнь Корлисс предположил, что гидротермальные источники могли создавать коктейли химических веществ. Каждый источник, говорил он, был своего рода распылителем первичного бульона.
По мере того, как горячая вода текла через скалы, тепло и давление приводили к тому, что простые органические соединения сливались в более сложные, такие как аминокислоты, нуклеотиды и сахара. Ближе к границе с океаном, где вода была не такой горячей, они начинали связываться в цепочки — формировать углеводы, белки и нуклеотиды вроде ДНК. Затем, когда вода подходила к океану и остывала еще больше, эти молекулы собирались в простые клетки. Это было интересно, теория привлекла внимание людей. Но Стэнли Миллер, эксперимент которого мы обсуждали в первой части, не поверил. В 1988 году он писал, что глубоководные жерла были слишком горячими. Каким образом человек смог повторно заразиться коронавирусом?
Хотя сильное тепло может привести к образованию химических веществ вроде аминокислот, эксперименты Миллера показали, что оно также может и уничтожить их. Основные соединения вроде сахаров «смогли бы выжить пару секунд, не больше». Более того, эти простые молекулы вряд ли связались бы в цепи, поскольку окружающая вода мгновенно их разорвала бы. На этом этапе к битве подключился геолог Майк Расселл. Он посчитал, что теория гидротермальных источников может быть вполне верной. Более того, ему показалось, что эти источники будут идеальным домом для прекурсоров организма Вахтершаузера. Это вдохновение привело его к созданию одной из самых широко признанных теорий происхождений жизни.
Геолог Майкл Расселл В карьере Расселла было много интересных вещей — он делал аспирин, разыскивая ценные минералы — и в одном замечательном происшествии 1960-х годов координировал реагирование на возможное извержения вулкана, несмотря на отсутствие подготовки. Но его больше интересовало, как менялась поверхности Земли на протяжении эпох. Эта геологическая перспектива и позволила сформироваться его идеям о происхождении жизни. В 1980-х годах он обнаружил ископаемые свидетельства менее бурного типа гидротермального источника, в котором температуры не превышали 150 градусов по Цельсию. Эти мягкие температуры, по его словам, могли позволить молекулам жизни жить дольше, чем полагал Миллер. Более того, ископаемые остатки этих «прохладных» жерл содержали нечто странное: минерал пирит, состоящий из железа и серы, сформировался в трубочках диаметром 1 мм. Работая в лаборатории, Расселл обнаружил, что пирит также может формировать сферические капли.
И предположил, что первые сложные органические молекулы могли образоваться внутри этих простых пиритовых структур. Железный пирит Примерно в это же время Вахтершаузер начал публиковать свои идеи, в основе которых был поток горячей химически обогащенной воды, протекающей через минералы. Он даже предположил, что в этом процессе участвовал пирит. Расселл сложил два плюс два. Он предположил, что гидротермальные источники на глубине моря, достаточно холодные, чтобы позволить образоваться пиритовым структурам, приютили прекурсоры организмов Вахтершаузера. Если Расселл был прав, жизнь началась на дне моря — и сначала появился метаболизм. Расселл собрал это все в статье, опубликованной в 1993 году, 40 лет спустя после классического эксперимента Миллера.
Она не вызвала такого же ажиотажа в СМИ, но была, возможно, более важной. Расселл объединил две, казалось бы, отдельные идеи — метаболические циклы Вахтершаузера и гидротермальные источники Корлисса — в нечто по-настоящему убедительное. Расселл даже предложил объяснение того, как первые организмы получали свою энергию. То есть он понял, как мог бы работать их метаболизм. Его идея опиралась на работу одного из забытых гениев современной науки.
Ученые нашли новые доказательства РНК-мира
РНК является весьма сложной молекулой, и вероятность её внезапного возникновения из отдельных атомов или фрагментов крайне низка. Действительно, сложно себе представить, как могли соединиться вместе азотистое основание, рибоза и фосфат, образовав нуклеотид. Однако Санчез, Оргел, Паунер и Сазердэнд показали возможность синтеза пиримидинов из молекул, вероятно, имевшихся в пребиотических условиях Земли [3]. Также важно понять, каким образом осуществлялась полимеризация первых нуклеотидов в полимерные цепочки. Относительна недавно была обнаружена важная роль различных минералов и ионов металлов в катализе при образовании биополимеров [4].
Более того, монтмориллонит способен образовывать везикулы из простых жирных кислот [4]. Таким образом, этот минерал, с одной стороны, способствует полимеризации нуклеотидов, а с другой — образованию мембранных структур. Гипотетически, существует множество вариантов соединения рибонуклеотидов друг с другом через различные атомы рибозы. Зачастую каталитической активностью обладают лишь длинные цепочки РНК.
Это один из основных объектов критики теории РНК-мира, ибо случайное возникновение длинных последовательностей, способных выполнять биохимическую работу, весьма маловероятно. Одна из лучших рибозимных репликаз, созданных на сегодня, способна реплицировать до 95 нуклеотидов [6] , однако сама она при этом имеет длину в 190 нуклеотидов см. Длина этой последовательности слишком велика для спонтанного возникновения в пребиотических условиях. Исследования in vitro показывают, что для выделения молекул, способных к катализу, требуется около 1013—1014 молекул РНК [2] — довольно много для того, чтобы столь длинный рибозим мог появиться в готовом виде.
Однако открытие коротких рибозимов ставит под сомнение идею того, что для появления РНК-катлизаторов требуются астрономические количества молекул. В самом деле, получены полирибонуклеотиды c активными дуплексами, способными к самовырезанию, имеющие длину лишь 7 остатков [2]. Более того, были получены данные, что даже рибозим, урезанный всего лишь до пяти нуклеотидов, сохранял свои ферментативные способности [2]. Но каталитическая активность у минирибозимов значительно ниже, чем у их более длинных «собратьев».
Из этого следует, что короткие рибозимы могли быть эволюционными предшественниками длинных. Рибозимные репликазы Для того, чтобы в мире РНК полирибонуклеотиды могли размножаться, должны были существовать рибозимные аналоги белковых полимераз. В современных живых организмах рибозимы с таким видом активности не обнаружены, однако подобные молекулы были созданы искусственно. Молекулярные биологи из Великобритании обратили внимание на ранее известный рибозим R18, обладающий полимеразной активностью [6].
Он и стал объектом эксперимента: путём искусственной эволюции и разумного планирования из исходного рибозима были получены четыре новые молекулы с улучшенными каталитическими свойствами [7]. Дело в том, что исходный рибозим R18 обозначен на картинке буквой А был способен реплицировать лишь фрагменты РНК длиной до 20 нуклеотидов. Также им могла быть реплицирована далеко не каждая последовательность РНК, а лишь узкий круг определённых матриц [7]. Учёные пошли двумя путями: в одной серии экспериментов они пытались увеличить число оснований РНК, реплицируемых рибозимом.
В результате были получены четыре новых рибозима с улучшенными свойствами. Один из них — рибозим С19, который учёные смогли усовершенствовать далее. Так был получен ещё более эффективный рибозим tC19 на рисунке под буквой С. В другой серии экспериментов учёные смогли получить рибозим, чья полимеразная активность не так сильно зависела от нуклеотидной последовательности РНК-матриц [7].
В результате, полезные свойства рибозимов tC19 и Z удалось объединить в одном, названном tC19Z. Данный рибозим способен копировать как довольно широкий круг матриц, так и достаточно длинные последовательности [7]. Интроны, способные вырезаться самостоятельно, были обнаружены в тирозиновой тРНК таких сложных организмов, как человек и цветковое двудольное растение Arabidopsis thaliana. Эти 12-ти и 20-ти нуклеотидные участки в клетке вырезаются путём сплайсинга с участием белков, однако этот интрон показал способность вырезать самого себя и без участия ферментов.
РНК-переключатели Ограниченная каталитическая способность рибозимов часто становится ещё одним хлипким краеугольным камнем теории мира РНК. Критики теории считают, что тот минимум химических реакций, который необходим для осуществления метаболизма в мире РНК, не может быть обеспечен одними лишь рибозимами. Подавляющее большинство РНК-катализаторов катализируют лишь разрыв и создание фософодиэфирных связей между нуклеотидами. Кажется, что молекулы РНК со своими четырьмя весьма схожими мономерами безнадёжно проигрывают в химическом разнообразии белкам, которые имеют в своём составе 20 аминокислот, весьма различных по свойствам.
Однако не стоит забывать, что многие белковые ферменты для выполнения активной работы должны присоединить лиганды — кофакторы , — без которых ферментативная активность попросту исчезает. И здесь стоит вспомнить об РНК-перключателях или рибопереключателях англ. Что же это такое? Как известно, информация об аминокислотной последовательности белка передаётся в рибосому через мРНК.
В данном случае, помимо самого гена, транскрибируется участок впереди него, на котором и расположен рибоперключатель [8].
ДНК и РНК две основные современные формы генетического кода, лежащие в основе всей земной биологии, могли сосуществовать на нашей планете еще до того, как здесь возникла жизнь, предполагает группа ученых из Англии, Шотландии и Польши. Исследование опубликованно в журнале Nature , кратко о нем пишет Scientific American. Используя химическую систему на основе цианистого водорода, имитирующую среду ранней стадии развития Земли, исследователи создали четыре основания, своего рода «буквы» генетического алфавита. Соединенные вместе они образуют последовательности генов, которые клетки переводят в белки.
Этот механизм приводил к образованию множества копий разрушенного полимера, похожего на регенерацию червей. В другой модели способные к спонтанному образованию рибозимы, катализирующие расщепление, добавлялись к пулу полимерных цепей, которые затем разрезались при столкновении. Полимеры могли спариваться и образовывать молекулы типа рибозима, способные к саморасщеплению. Этот процесс приводил к самовоспроизводству энзимов. Репликация полимера происходила за счет циклического изменения температуры между горячей и холодной фазами, что поддерживало процесс размножения. Возможно, древние полимеры зависели от таких циклов для своего размножения.
Таким образом, эти компоненты присутствуют во всех трех сферах жизни. Для Мари-Кристин Морель «последние играют фундаментальную роль в жизни, и их старшинство не вызывает сомнений». Еще одна удивительная структура: в вирусе TYMV вирус желтой мозаики турнепса инициация трансляции вирусного генома в белок осуществляется через структуру типа тРНК, которая инициирует собственную трансляцию и фиксирует аминокислоту. Структура вируса PSTV. РНК и наследственность РНК играет роль в передаче активности генов: такой механизм называемый эпигенетикой не связан с ДНК и может служить доказательством способности РНК участвовать в « наследственности». В результате использование ДНК в качестве опоры для генетической информации позволило уменьшить количество ошибок при дублировании генов и, следовательно, увеличить их длину и, следовательно, сложность связанного с ними метаболизма. Однако не способность разрешать сложный метаболизм может составлять селективное преимущество для этого перехода, поскольку начальный переход требует установления метаболических путей, связанных с ДНК, что изначально влечет за собой затраты, которые не сразу компенсируются преимуществом, заключающимся в том, что может обеспечить более сложный метаболизм. Некоторые ученые например, вирусолог Патрик Фортерр из Института генетики и микробиологии в Орсе полагают, что именно вирусы являются «изобретателями» ДНК. Фактически известно, что некоторые современные вирусы изменяют свою ДНК, чтобы сделать ее устойчивой к нуклеазным ферментам своего хозяина путем метилирования, гидроксиметилирования и т. Можно представить, что форма маскировки для РНК-вируса заключалась в том, чтобы просто деоксигенировать рибозу, создавая предковую ДНК, образованную урацилом. На втором этапе эти вирусы заменили бы группу урацила на группу тимина, следуя тому же синтезу, что и для современной ДНК. При таком сценарии первоначально РНК-вирусы приобрели бы систему двойной трансляции: первую систему для восстановления РНК до ДНК типа рибонуклеотидредуктазы и систему обратной транскрипции. Передача микробам Также кажется, что существует небольшая гомология между ферментами, необходимыми для репликации, репарации и рекомбинации ДНК у эубактерий , архей и эукариот : их общий предок, следовательно, не имел определенного количества этих ферментов ненужных при отсутствии генома ДНК. Эти белки затем появились бы независимо в каждой основной линии возможно, в некоторых случаях из вирусных генов. Большое филогенетическое распространение Несмотря на большое структурное и функциональное разнообразие, распределение РНК позволяет заново открыть деление живых существ. Таким образом, небольшие ядрышковые РНК являются общими только у архей и эукариот, теломеразная РНК присутствует только у эукариот, в то время как прокариоты являются единственными, кто обладает тмРНК. Эффективность белка «Четвертичная» структура белка. Эти белки являются очень эффективными катализаторами, а не рибозимов. Точно так же в живом мире 20 аминокислот , но только четыре нуклеотида, поэтому белки намного разнообразнее РНК. Поэтому с эволюционной точки зрения маловероятно, чтобы белок-фермент был заменен ферментом РНК. И наоборот, если РНК появились задолго до появления белков, вполне вероятно, что они были заменены более эффективными белками.
Гипотеза РНК-мира для ЕГЭ по биологии
Появилась новая гипотеза возникновения ДНК и РНК | Новости о недвижимости, экономики и финансах в России. |
Эффективный полимеразный рибозим подкрепил гипотезу мира РНК | и, возможно, единственной - формой жизни до появления первой ДНК- клетки. |
Ученые предположили новое объяснение возникновения жизни на Земле
По-видимому, основные строительные блоки этой клеточной машины всегда — от начала жизни и до настоящего времени — были одними и теми же: это эволюционирующие и взаимодействующие белки и молекулы РНК». Источник: что и требовалось доказать Юрий ГеоргиевГуру 3931 11 лет назад Профессор Густаво справедливо опрвергает прежнее предположение, но предлагает новое еще менее убедительное и никем не доказанное..
Чтобы в этом разобраться, ученые разработали модель, которая имитирует случайные разрывы в простых молекулах РНК без ферментативной активности. В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК.
Из-за этого появлялось множество копий разрушенного полимера. Ученые сравнили такое явление с регенерацией червей, которых разрезают на сегменты.
Под клиническую картину не подходит лишь срок появления седины — с момента смерти Лоры к началу второго седого сезона проходит пара недель, а не два-три месяца, которые необходимы для манифестации заболевания. Пусть время в Твин Пиксе течет очень своенравно, но версию с telogen effluvium для Лиланда все же придется отбросить. Но вот в случае с Марией Антуанеттой на развитие седины после избыточного выпадения волос времени было более чем достаточно: между заключением в Тампль и восхождением на эшафот прошло более года. Кроме того, королеву в заточении почти никто не видел, а значит ее появление на казни поседевшей могло быть воспринято как произошедшее за одну ночь. Но у Лиланда был один недостаток: он нервничал. Вы нервничаете Помимо повышенной скорости выпадения волос стресс приводит к истощению популяции стволовых клеток, которые могли бы стать меланоцитами. Важную роль в поддержании работы волосяного фолликула играют окружающие его клетки: например жировой ткани и иммунные.
Волосяные фолликулы также оплетены чувствительными нервами и нервами вегетативной нервной системы. При этом вегетативная нервная система — одна из главных при реагировании на стресс. В современном мире нам редко приходится использовать эту реакцию в прямом смысле, тем не менее симпатическая нервная система все равно активируется. Но нервы, которые находятся в тесном контакте с волосяным фолликулом, в ситуации стресса могут случайно нарушить его работу. Часть нервных окончаний симпатической системы примыкают к области выпуклости, где обитают предшественники меланоцитов. У мышек стресс приводит к выбросу адреналина из нервных окончаний у фолликула. Из-за адреналина стволовые клетки начинают слишком активно делиться и мигрировать. В конце концов в области выпуклости ничего не остается: популяция предшественников меланоцитов полностью истощается, растущий волос некому подкрасить и появляется седина. Особенности биологии волоса, его роста и пигментации отличаются у людей и других млекопитающих: например, циклы роста у грызунов, как правило, короче и чаще, чем у человека.
Кроме того, разнится и возраст появления седины: в то время как шимпанзе и собаки отращивают седину старея, у самцов серебристоспиных горилл седина появляется после 12 лет как статусный аксессуар. Поэтому переносить результаты исследований с животных на человека следует с осторожностью. Косвенно на роль активации симпатической нервной системы в появлении седины от стресса у человека указывают случаи пациентов, у которых иссечение симпатических нервов на уровне шейного или поясничного отделов приводило к тому, что седина, наоборот, появлялась позже обычного. И если во внезапно появившейся седине виновата избыточная активация симпатической нервной системы, то поседевшие волосы — меньшая из проблем организма. Как, впрочем, было и у мистера Палмера. Седина — не то, чем кажется Если нормальная физиологическая серебристая шевелюра ассоциируется со старостью, то появление значительной седины до 30 лет считается преждевременным. Как и стрессовое внезапное поседение в любом другом возрасте. Остается вопрос: если наступает преждевременная седина — означает ли это и преждевременное старение? Эпидемиологические исследования показывают, что ранняя седина связана с повышенным риском сердечно-сосудистых заболеваний, метаболическим синдромом, остеопенией это уменьшение содержания минералов в костной ткани , болезнью Альцгеймера и даже тяжелым протеканием коронавирусной инфекции.
Причем ранняя седина ухудшает прогноз по появлению заболеваний сердца до 40 лет даже сильнее, чем лишний вес или семейный анамнез. Так что ранняя седина, кажется, идет рука об руку с несвоевременным появлением возрастных болезней: сердце шалит, кости ломаются, голова начинает работать с перебоями. Возможно, дело в том, что седина — чувствительный маркер нарушений в организме. Каждый волосяной фолликул — микроорган, который спонтанно отмирает и регенерирует раз в три-пять лет. Но в условиях стресса фолликулу сложнее самовосстанавливаться: это может быть связано с повреждением клеток свободными радикалами или хроническим воспалением. Избыточная активация симпатической нервной системы — тоже одна из возможных причин. При этом стрессовое истощение задевает не только лишь волосы. Исследования показывают, что стресс и изменения в балансе возбуждения и торможения симпатической нервной системы ускоряют старение всего организма. Стресс приводит к нарушениям в метаболизме глюкозы и жиров, увеличению рисков развития ожирения, сахарного диабета, заболеваний печени и сердечно-сосудистых заболеваний.
Седина у нервных мышек намекает, что стресс истощает популяцию стволовых клеток и делает ткани неспособными к регенерации. Наконец, избыточная активация симпатической нервной системы, из-за которой белеют волосы, вредит и мозгу. Из-за разбалансировки стрессорной оси происходит усиленный выброс норадреналина в мозге. В конечном счете это приводит к накоплению в нейронах неправильно свернутых тау-белков и гибели клеток — главных признаков болезни Альцгеймера. И пусть мы знаем наверняка, что в реальности Лиланд не мог бы поседеть за ночь, но можем с некоторой уверенностью предположить, что его нервная седина намекала на риски болезней сердца, метаболического синдрома и нейродегенерации. Особенно вероятным диагнозом кажется болезнь Альцгеймера, ведь помимо седины в клиническую картину нервно пританцовывающего героя «Твин Пикса» добавляется психоз, который часто встречается при болезни Альцгеймера и может возникать на ранней стадии нарушений умственных способностей или даже до этого симптома.
Естественный отбор мог способствовать развитию каталитической эффективности этих молекул. Модель также указывает на то, что кооперативные каталитические сети могли быть отобраны эволюцией, что привело к функциональной дифференциации олигомеров на катализаторы и субстраты. Это открытие представляет важный шаг в понимании того, как жизнь могла зародиться из примитивных химических систем на ранних этапах существования Земли и как она эволюционировала к более сложным формам, включающим каталитическую активность.