Новости почему поверхностное натяжение зависит от рода жидкости

Поверхностное натяжение зависит от рода жидкости и той среды, с которой она граничит, наличия растворённых в жидкости других веществ и от её температуры (таблица 1). Повышение температуры жидкости, добавление в неё так называемых поверхностно-активных веществ. Правильный ответ здесь, всего на вопрос ответили 1 раз: Почему поверхностное натяжение зависит от рода жидкости? Коэффициент поверхностного натяжения измеряется в Н/м. Величина σ зависит от рода жидкости, температуры, наличия при-месей.

Почему поверхностное натяжение зависит от рода воды?

Вследствие этого возникает некая направленная вглубь жидкости равнодействующая сила. Поверхностные молекулы втягиваются внутрь жидкости, с помощью действия сил межмолекулярного притяжения. Однако все молекулы, в том числе и принадлежащие пограничному слою, должны находиться в состоянии равновесия. Оно достигается за счет сокращения расстояния между молекулами в пограничном слое и ближайшими их соседями в жидкости.

Возникают эти условия потому, что на поверхности жидкости, вблизи границы, разделяющей жидкость и пар, молекулы испытывают иное молекулярное взаимодействие, чем молекулы, находящиеся внутри объема жидкости.

Силы, действующие на молекулы на поверхности и внутри жидкости. На каждую молекулу внутри жидкости действуют силы притяжения соседних молекул, окружающих ее со всех сторон см. Равнодействующая этих сил равна нулю. Равнодействующая же сил притяжения, действующих на молекулы поверхностного слоя, не равна нулю так как над поверхностью жидкости находится пар, плотность которого во много раз меньше, чем плотность жидкости и направлена внутрь жидкости.

Под действием этой силы молекулы поверхностного слоя стремятся втянуться внутрь жидкости, число молекул на поверхности уменьшается, и площадь поверхности сокращается.

Таким образом, на перекладину действуют три силы — внешняя сила и две силы поверхностного натяжения , действующие вдоль каждой поверхности пленки. Воспользовавшись вторым законом Ньютона, можем записать, что Рис.

Вычисление силы поверхностного натяжения Если под действием внешней силы перекладина переместится на расстояние , то эта внешняя сила совершит работу. Естественно, что за счет совершения этой работы площадь поверхности пленки увеличится, а значит, увеличится и поверхностная энергия, которую мы можем определить через коэффициент поверхностного натяжения:. Изменение площади, в свою очередь можно определить следующим образом: , — длина подвижной части проволочной рамки.

Учитывая это, можно записать, что работа внешней силы равна. Таким образом, коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, которая действует на единицу длины линии, ограничивающей поверхность Проявления сил поверхностного натяжения в природе Итак, мы еще раз убедились в том, что жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной. Можно показать, что при заданном объеме площадь поверхности будет минимальной у шара.

Таким образом, если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать сферическую форму. Так, например, будет вести себя вода в невесомости рис. Вода в невесомости Рис.

Мыльные пузыри Наличием сил поверхностного натяжения также можно объяснить то, почему металлическая иголка «лежит» на поверхности воды рис. Иголка, которую аккуратно положили на поверхность, деформирует ее, увеличивая тем самым площадь этой поверхности. Таким образом, возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади.

Равнодействующая сил поверхностного натяжения будет направлена вверх, и она скомпенсирует силу тяжести.

Они создают взаимодействие между собой, возникает натяжение. Жидкости стремятся принять форму, которая требует минимальной площади поверхности.

Силы поверхностного натяжения Силы поверхностного натяжения работают вдоль поверхности жидкости перпендикулярно контуру. Сокращают ее площадь. Это похоже на пленку, которая стягивает объем.

На сам объем силы не оказывают влияние.

Почему поверхностное натяжение зависит от рода

Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода воды). Почему поверхностное натяжение воды зависит от рода жидкости. Следовательно, силы поверхностного натяжения будут действовать слабее. Чем обусловлено это удивительное явление и почему величина поверхностного натяжения так сильно зависит от природы жидкости? Найди верный ответ на вопрос почему поверхностное натяжение зависит от рода жидкости по предмету Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов. Поверхностное натяжение зависит от рода жидкости и от ее температуры: с повышением температуры оно уменьшается.

Поверхностное натяжение жидкости - формулы и определение с примерами

Разные жидкости имеют разные межмолекулярные силы и, следовательно, разное поверхностное натяжение. Например, у воды поверхностное натяжение выше, чем у многих других жидкостей, из-за сильных водородных связей между молекулами. Это делает воду «сильной» жидкостью, которая может образовывать капли и позволяет насекомым, таким как стрекозы, ходить по поверхности воды.

Кроме того, ионная природа раствора может влиять на поверхностное натяжение путем изменения концентрации ионов. При увеличении концентрации ионов в растворе, взаимодействие ионов с поверхностью жидкости становится более интенсивным, что приводит к увеличению эффекта ионной природы на поверхностное натяжение. Таким образом, ионная природа раствора оказывает значительное влияние на поверхностное натяжение жидкости. Изменение концентрации ионов и их взаимодействие с молекулами на поверхности жидкости приводят к изменению свойств жидкости и ее поверхностного натяжения. Как натяжение связано с молекулярной структурой Основной фактор, определяющий поверхностное натяжение, является сила взаимодействия между молекулами внутри жидкости. Если эти силы сильны и молекулы тесно связаны друг с другом, поверхность жидкости будет более напряженной и сопротивлением к разрыву.

Молекулярная структура жидкости также может влиять на ее поверхностное натяжение через влияние положительных и отрицательных зарядов на поверхностные слои. Эти заряды вызывают электростатические силы притяжения или отталкивания между молекулами, что ведет к изменению поверхностного натяжения. Межмолекулярные силы, такие как ван-дер-Ваальсовы силы, могут также влиять на поверхностное натяжение. Если эти силы слабы и молекулы свободно двигаются, поверхностное натяжение будет ниже. С другой стороны, форма молекулярного скелета жидкости может также играть роль в определении ее поверхностного натяжения. Например, жидкости с длинными, цепкие молекулами могут образовывать сильные внутренние связи, что приводит к более высокому поверхностному натяжению. В итоге, поверхностное натяжение жидкости связано с ее молекулярной структурой и взаимодействием между молекулами. Различия в этих структурах и силах приводят к разным значениям поверхностного натяжения в разных жидкостях.

Атомная, молекулярная и деликтная теории поверхностного натяжения Атомная теория: Атомная теория поверхностного натяжения основывается на предположении о том, что поверхностное натяжение связано с взаимодействием атомов на поверхности жидкости. Атомы в жидкости находятся в постоянном движении, их положение на поверхности изменяется со временем. Это движение создает натяжение на поверхности жидкости. Атомы соединяются в молекулы, и структура поверхности определяется химическим составом жидкости. Молекулярная теория: Молекулярная теория поверхностного натяжения основывается на предположении о существовании молекулярно-кинетической энергии. Молекулы в жидкости движутся случайным образом и сталкиваются между собой. Молекулярные силы притяжения и отталкивания между молекулами влияют на поверхностное натяжение.

Коэффициент поверхностного натяжения формула. Формулу для определения коэффициента поверхностного натяжения. Как вычислить коэффициент поверхностного натяжения. Коэффициент поверхностного натяжения две формулы. Мыло и поверхностное натяжение. Поверхностное натяжение мыльной воды. Уменьшение поверхностного натяжения. Способы уменьшения поверхностного натяжения. Адсорбция от поверхностного натяжения. Поверхностное натяжение Размерность. Факторы влияющие на величину поверхностного натяжения. Поверхностное натяжение пав. Зависимость силы поверхностного натяжения от температуры. Графики поверхностного натяжения. Зависимость поверхностного натяжения от температуры формула. График зависимости поверхностного натяжения от температуры. Влияние концентрации пав на поверхностное натяжение. Зависимость поверхностного натяжения от концентрации пав. Изотерма поверхностного натяжения водного раствора пав. Зависимость поверхностного натяжения растворов пав от концентрации. Поверхностное натяжение воды схема. Сила поверхностного натяжения схема. Межфазное поверхностное натяжение. Высота подъема жидкости в капилляре. Высота подъема жидкости в капилляре зависит от. Сила поверхностного натяжения в капилляре. Пленка жидкости поверхностное натяжение. Наблюдение поверхностного натяжения жидкости. Опыт с поверхностным натяжением воды мыла. Поверхностное натяжение воды опыты. Поверхностное натяжение эксперимент. Формула коэффициента поверхностного натяжения мыльного пузыря. Давление внутри капли жидкости формула. Сила поверхностного натяжения капли формула. Коэффициент поверхностного натяжения пузыря. Высота h подъёма жидкости в капилляре выражается соотношением:. Высота подъема жидкости в капилляре формула. Высота поднятия жидкости по капилляру. Поднятие жидкости в капилляре. График зависимости поверхностного натяжения от концентрации. Зависимость коэффициента поверхностного натяжения от концентрации. Характеристика жидкого состояния вещества поверхностное натяжение. Проявление поверхностного натяжения. Причины возникновения поверхностного натяжения. График зависимости полной поверхностной энергии от температуры. Поверхность натяжения. Поверхность натяжения жидкости. Зависимость коэффициента поверхностного натяжения от давления. Зависимость поверхностного натяжения воды от температуры. Коэффициент поверхностного натяжения воды от температуры и давления. Коэффициент поверхностного натяжения воды от давления. Формула поверхностного натяжения в физике. Формула коэффициента поверхностного натяжения в физике. Сила поверхностного натяжения формула. Сила поверхностного натяжения коэффициент поверхностного натяжения.

Поверхностное натяжение. Физическая химия. Поверхностное натяжение Поверхностное натяжение видео 3 - Силы межмолекулярного взаимодействия - Химия Коэффициент поверхностного натяжения.

Поверхностное натяжение жидкости

Чем обусловлено это удивительное явление и почему величина поверхностного натяжения так сильно зависит от природы жидкости? Давайте разберемся! Природа поверхностного натяжения жидкостей На границе любой жидкости с газом или паром этой же жидкости возникает особый слой толщиной около 1 нм. В этом тончайшем поверхностном слое действуют совершенно иные силы по сравнению с остальным объемом жидкости. Молекулы внутри жидкости со всех сторон окружены такими же молекулами, и силы взаимодействия уравновешены. А на поверхности возникает нескомпенсированность сил. Из-за этого свободная поверхность стремится уменьшить свою площадь. Это видно на примере капель, которые принимают форму шариков.

По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие стягивающие эту поверхность. Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.

Например, капля жидкости в состоянии невесомости имеет сферическую форму.

Поверхностное натяжение Свойство поверхности жидкости сокращаться можно истолковать как существование сил, стремящихся сократить эту поверхность. Молекула M1 рис. В целом она действует так, что стремится сократить поверхность жидкости. После извлечения рамки из раствора мыльной пленки подвижная часть перемещается из положения 1 в положение 2. Коэффициент поверхностного натяжения зависит от природы жидкости, от температуры и от наличия примесей.

При увеличении температуры он уменьшается. Примеси в основном уменьшают некоторые увеличивают коэффициент поверхностного натяжения. Таким образом, поверхностный слой жидкости представляет собой как бы эластичную растянутую пленку, охватывающую всю жидкость и стремящуюся собрать ее в одну «каплю». Такая модель эластичная растянутая пленка позволяет определять направление сил поверхностного натяжения. Например, если пленка под действием внешних сил растягивается, то сила поверхностного натяжения будет направлена вдоль поверхности жидкости против растяжения.

Однако это состояние существенно отличается от натяжения упругой резиновой пленки. Упругая пленка растягивается за счет увеличения расстояния между частицами, при этом сила натяжения возрастает, при растяжении же жидкой пленки расстояние между частицами не меняется, а увеличение поверхности достигается в результате перехода молекул из толщи жидкости в поверхностный слой. Поэтому при увеличении поверхности жидкости сила поверхностного натяжения не изменяется она не зависит от площади поверхности. Поведение жидкости будет зависеть от того, что больше: сцепление между молекулами жидкости или сцепление молекул жидкости с молекулами твердого тела.

Гость Ответ ы на вопрос: Гость Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму.

Глава 6 Поверхностное натяжение: капли и молекулы

Для чистых жидкостей поверхностное натяжение зависит от природы жидкости и температуры, а для растворов – от природы растворителя, природы и концентрации растворенного вещества. Например, у воды поверхностное натяжение выше, чем у многих других жидкостей, из-за сильных водородных связей между молекулами. Гипотеза подтверждается, поверхностное натяжение жидкости зависит от рода жидкости, т. е. от сил притяжения между молекулами данной жидкости.

Поверхностное натяжение жидкости - формулы и определение с примерами

Значение коэффициента поверхностного натяжения зависит от вида жидкости и ее температуры, то есть с увеличением температуры жидкости коэффициент его поверхностного натяжения уменьшается и при критической температуре равен нулю. Высота подъема влаги зависит от радиуса капилляра и свойств жидкости, таких как поверхностное натяжение и вязкость. Коэффициент поверхностного натяжения зависит от рода жидкости в силу межмолекулярных взаимодействий. Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.(следовательно и от рода жидкости). Поверхностное натяжение жидкости зависит от. Причины поверхностного натяжения. Род жидкости также оказывает влияние на зависимость поверхностного натяжения от температуры.

Почему поверхностное натяжение зависит от рода жидкости: удивительные свойства поверхностного слоя

Опыт 6. Иногда на поверхности воды плавают небольшие предметы, которые, казалось бы, должны были бы потонуть, например слегка намазанные жиром иглы или лезвие бритвы, некоторые виды водяных жуков фиг. Такое впечатление, что их поддерживают какие-то необычные силы. Поверхностное натяжение. Мыльные пленки. Поверхностные свойства жидкостей удобно наблюдать на мыльных пузырях и пленках, которые «состоят только из поверхности и не имеют внутренности» и вес которых слишком мал, чтобы он мог противостоять поверхностным силам.

На фиг. Опыт 7. Мыльный пузырь на воронке сжимается, задувая пламя свечи фиг. Опыт 8. На проволочной рамке, нижний край которой подвижен, создается мыльная пленка.

Ее растягивают, спуская за нить скользящую часть шторы вниз, а затем нить отпускают фиг. Опыт 9. На квадратной проволочной рамке создают мыльную пленку. На пленку кладут шелковую нить, связанную в виде небольшой петли фиг. Затем пленку внутри петли разрывают.

Опыт 10. Опыт «оконная штора» повторяют с помощью рамки, имеющей подвижные стержни сверху и снизу фиг. Верхний стержень удерживается небольшой пружиной. Мыльная пленка создается между двумя стержнями, после чего нижний стержень двигают с помощью нити вверх и вниз. Опыт 11.

На концах Т-образной трубки выдувают два мыльных пузыря разного размера фиг. Затем конец, через который производили выдувание, закрывают, и оба пузыря остаются соединенными. Мыльные пузыри. Задача 2 Запишите ваши наблюдения о каждом из описанных опытов, а затем скажите, какие выводя можно сделать из них относительно мыльных пленок и их «поверхностного натяжения». Плоская фигура с максимальной площадью при заданном периметре есть круг.

Важное следствие из опыта 8 исключает простейшее объяснение опыта 11. Общие пояснения Что говорят эти опыты о поверхностях жидкостей? Капли, образующиеся в водопроводном кране, выглядят так, как будто они заключены в резиновый мешок. Взяв настоящую оболочку из тонкой резины, мы можем сделать большую искусственную «каплю», которая по мере того, как внутрь оболочки будет вливаться все больше воды, примет форму реальной капли; однако возрастающее натяжение резины помешает точной аналогии. Капли дождя и лужицы жидкости на столе, по-видимому, стремятся принять круглую форму, что также наводит на мысль об оболочке, которая сжимает их и противодействует силе тяжести.

Обдумав эти наблюдения, можно сделать два вывода, расплывчатых и рискованных, но заслуживающих дальнейшей проверки. Поверхности жидкостей ведут себя так, будто их удерживает эластичная оболочка, стремящаяся придать им круглую форму. Классификация и терминология Поверхностное натяжение. Все описанные явления называют «эффектами поверхностного натяжения» и говорят, что жидкость имеет поверхностное натяжение, подобное натяжению растянутой резиновой оболочки. Пока это просто удобное название, которое само по себе не может ничего доказать или объяснить.

В лучшем случае оно стимулирует обсуждение и позволяет легко определить, о чем идет речь. В худшем случае — приводит людей к неправильной мысли о том, что на поверхности существует реальная пленка, которую можно содрать с капли, как шнурку с кролика. Краевой угол. По своей форме лужицы жидкости на столе делятся на два типа. Если стол наклонить, то такие капли будут скатываться.

Эти два случая различаются по углу А угол внутри жидкости между поверхностью стола и поверхностью жидкости в месте их соприкосновения , который называют краевым углом. Тот же угол существует и на других границах раздела, например в том месте, где поверхность воды встречается со стенками стакана. Если угол А мал, жидкость смачивает твердую поверхность. Это снова только название. Выбрав этот угол и дав ему название, мы ничего не узнали и не объяснили, а лишь облегчили обсуждение[68].

Попытка построить теорию Молекулы. Примем данное химиками определение молекул как мельчайших частиц вещества, из которых построены более крупные предметы, и приведем несколько рассуждений. Хотя такие предметы, как молекулы, видимо, существуют, их в обычный микроскоп не видно впоследствии, правда, будут приведены убедительные косвенные доказательства их существования , поэтому они должны быть очень малы и многочисленны. Судя по тому, как жидкости льются, их молекулы, очевидно, легко скользят относительно друг друга. Жидкость трудно сжимается; это наводит на мысль, что молекулы в ней расположены тесно.

Другие данные, с которыми вы познакомитесь позднее, позволяют думать, что молекулы жидкости постоянно находятся в быстром движении, сталкиваясь друг с другом, подобно людям в толпе, причем с повышением температуры движение это усиливается. Действительно, поведение жидкости можно имитировать с помощью стальных шариков или зерен песка, если эти большие «молекулы» заставить непрерывно вибрировать. Молекулярные силы: притяжение и отталкивание. Рассмотрим жидкость с точки зрения такой молекулярной картины. Сразу же возникает мысль, что молекулы жидкости сопротивляются их растаскиванию в разные стороны, т, е.

Вода в наполовину полном кувшине не расширяется и не улетучивается в отличие от газа, который стремится заполнить весь сосуд и быстро улетучивается, или диффундирует. Если сосуд открыт, жидкость остается в сосуде и ее молекулы, по-видимому, притягивают друг друга. Пока мысль о притяжении является лишь смутной догадкой. Именно в поверхностном натяжении, как и в некоторых других явлениях, эта мысль находит основательное подтверждение. Тот факт, что жидкости сильно сопротивляются сжатию, говорит о сопротивлении молекул жидкости более тесному сближению; следовательно, они должны отталкивать друг друга.

Таким же образом должны вести себя и молекулы газа при очень тесном сближении[69], и молекулы твердых тел[70]. Например, молекулы указательного и большого пальца отталкиваются при сжатии — какая другая причина могла бы помешать пальцам проникнуть один в другой? Но твердые вещества тоже сопротивляются попыткам растащить их в разные стороны; молекулы этих веществ должны притягивать друг друга. Мы представляем себе, что между молекулами твердых тел действуют два типа сил: силы отталкивания, которые, как показывает опыт, действуют только на очень малых расстояниях, т. В обычном ненапряженном твердом теле каждая молекула занимает нейтральное положение, так что равнодействующая этих сил равна нулю.

При сжатии твердого тела возрастающее отталкивание между молекулами оказывает сопротивление. Молекулы в твердом теле, жидкости и газе. Молекулы сохраняют более или менее постоянное положение, но по мере нагревания тела они колеблются все больше и больше; б — в жидкостях молекулы расположены близко друг к другу, как в твердых телах, но свободно перемещаются среди своих соседей. Чем выше температура, тем быстрее движение и тем более бурно происходят столкновения молекул; в — в газах молекулы находятся далеко друг от друга и быстро движутся, время от времени сталкиваясь чем выше температура, тем быстрее они движутся. Во время столкновений молекулы должны отталкиваться, в остальное время их действие друг на друга пренебрежимо мало.

При растяжении твердого тела отталкивание уменьшается больше, чем притяжение, и снова возникает напряжение, сопротивляющееся нашим усилиям. Опыты показывают, что притяжение действует не на очень больших расстояниях, а лишь на расстоянии одного или двух диаметров молекул. Тут как будто возникает противоречие. Жидкости должны были бы хоть немного растягиваться при растяжении, на самом же деле при попытке растяжения они распадаются на части и в них образуются пузырьки пара. Однако если позаботиться о тщательном удалении растворенного воздуха, жидкость можно заставить выдержать растяжение и вести себя необычным образом.

Например, вода или ртуть держатся в верхней части барометра намного выше «высоты атмосферного столба», а сифон может работать в вакууме! Жидкости оказываются «слабыми, как вода» только в результате вредного влияния маленьких пузырьков воздуха. Молекулярное объяснение поверхностного натяжения. Итак, тот факт, что жидкости сохраняют свой объем, мы «объяснили» наличием дальнодействующих сил притяжения. Посмотрим, не смогут ли эти силы объяснить существование поверхностного натяжения.

Представим себе состояние молекулы А в середине сосуда с водой фиг. Со всех сторон ее толкают другие молекулы. Кроме того, со всех сторон ее притягивают ближайшие соседи — и равнодействующая сила притяжения равна нулю. Силы, действующие на молекулы, в жидкости. Теперь рассмотрим другую молекулу В, находящуюся на поверхности воды.

Ее тоже толкают, но не со всех сторон, и тоже притягивают, но не во всех направлениях. В области действия сил притяжения у нее есть соседи снизу и с каждой стороны, но нет соседей сверху. Равнодействующая сил притяжения направлена внутрь жидкости и уравновешивается действием столкновений снизу. Таким образом, молекула В испытывает притяжение вниз, наподобие дополнительного веса. Во внутренних областях большой круглой капли молекулы будут, подобно молекуле А, испытывать равномерное притяжение со всех сторон.

Молекулы на поверхности, подобно молекуле В, будут втягиваться внутрь. Так как такие молекулы В будут пытаться приблизиться к центру капли, поверхность будет стремиться сжаться; по существу создается впечатление, что капля имеет сжимающуюся оболочку. Очевидно, если на поверхности образуется гребень, молекулярное притяжение распрямит его, несмотря на мешающие возмущения небольшое углубление на поверхности также исчезнет, хотя это менее очевидно ; в результате притяжения молекул все неровности на поверхности будут сглаживаться фиг. Поверхностные силы в небольшой капле жидкости. Действующее на молекулы типа В притяжение соседей стремится придать массе жидкости сферическую форму.

Заметьте, что сфера имеет минимальную поверхность при заданном объеме. Если на поверхности появляются небольшие неправильности, поверхностные силы стремятся устранить их. Чтобы представить себе общую картину, сравните заполненную молекулами каплю с толпой людей, привлеченных уличной дракой. Прибывает все больше и больше заинтересованных зевак. Опоздавшие плохо видят, что происходит, они напирают на впереди стоящих — их притягивает любопытство, но они напирали бы так же, если бы их притягивали просто стоящие впереди соседи.

Как влияет это притяжение к центру на толпу в целом? Подвижная толпа стягивается в круг с минимальным внешним периметром. Круг имеет меньшую протяженность периметра, нежели любая другая фигура с той же общей площадью. Человек А, находящийся в глубине толпы, оказывается сжатым, и если ему позволяет рост, то видит, что его неприятные ощущения вызваны напирающими на него людьми, нажимающими внутрь. Он будет страдать точно тай же, если накинуть на толпу огромный пояс и затягивать его.

Натянутый пояс будет влиять на внешнюю форму толпы и на тесноту внутри нее точно так же, как и стремление людей, находящихся снаружи, пробиться к середине. Поможет ли эта аналогия[72] понять, каким образом молекулярное притяжение оказывает то же действие, что и эластичная оболочка, растянутая по всей поверхности жидкости? С молекулярной точки зрения на поверхности жидкостей существует не реальная «шкурка», как у кролика, а особый слой внешних молекул. Соотношение между поверхностными и объемными эффектами. Насекомые и поверхностное натяжение Почему эта «оболочка» превращает маленькие капли в совершенные по форме шарики вопреки действию силы тяжести и не может сделать этого с более крупными лужами?

С молекулярной точки зрения согласно нашей теории, если вам угодно это обусловлено особым поведением молекул, расположенных на поверхности. Эти силы действуют на поверхности и не связаны с основной массой жидкости. Но сила тяжести действует на всю жидкость, равным образом на ее внешние и внутренние слои. Поверхностное натяжение — это «поверхностный эффект», а вес — «объемный эффект», и их относительная важность будет изменяться в зависимости от реального размера капли или лужи. Представим себе, что поверхностные силы возрастают прямо пропорционально величине поверхности[73], тогда как вес, конечно, возрастает пропорционально объему.

Рассмотрим превращение небольшой капли в каплю, в 10 раз большую. Для простоты представим, что капли имеют вид кубиков[74]: маленького С1 фиг. Как соотносятся их поверхности? Кубические «капли». Сравнение поверхности и объема.

Каждый куб имеет шесть граней. Куб с десятикратными линейными размерами имеет в 102, или в 100 раз, большую поверхность. Как соотносятся объемы этих кубов? Они соответственно равны а3 и 10а 3, т. Объем одного куба превышает объем другого в 103, или в 1000 раз, и, следовательно, вес воды в нем будет в 1000 раз больше.

При переходе от малого кубика к большому поверхностные эффекты возрастут только в 100 раз, но действие силы тяжести возрастет в 1000 раз; таким образом, ее относительное значение увеличится в 10 раз. На самом же деле силы поверхностного натяжения растягивают каждую границу, или край, поверхности. Поэтому они возрастают пропорционально линейным размерам, т. Для очень больших объемов сила тяжести во много раз превосходит влияние поверхностного натяжения; поэтому поверхность прудов плоская, а пролитое на пол ведро воды растекается под действием силы тяжести.

Поверхностное натяжение возникает из-за сил взаимодействия молекул внутри жидкости и на ее поверхности. Молекулы вещества в жидкости притягиваются друг к другу силами взаимодействия, называемыми межмолекулярными силами. Водородные связи, дисперсионные силы и диполь-дипольные взаимодействия являются примерами таких сил.

Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.

Если силы взаимодействия между молекулами жидкости меньше сил взаимодействия между молекулами жидкости и твердого тела, жидкость смачивает поверхность твердого тела. Капля смачивающей жидкости стремится растечься по поверхности твердого тела, а вблизи стенки сосуда поверхность жидкости принимает вогнутую форму Почему жидкость поднимается в капиллярах В природе часто встречаются тела, пронизанные многочисленными мелкими капиллярами от лат. Такую структуру имеют бумага, дерево, почва, многие ткани и строительные материалы. В цилиндрических капиллярах искривленная поверхность жидкости представляет собой часть сферы, которую называют мениском. У смачивающей жидкости образуется вогнутый мениск рис. Под вогнутой поверхностью жидкость смачивает капилляр лапласово давление отрицательное и жидкость втягивается в капилляр. Так поднимаются влага и питательные вещества в стеблях растений, керосин по фитилю, влага в почве. Вследствие лапласового давления салфетки или ткань впитывают воду, брюки в дождливую погоду сильно намокают снизу и т. Под выпуклой поверхностью жидкость не смачивает капилляр лапласово давление положительное и жидкость в капилляре опускается. Чем меньше радиус капилляра, тем больше высота подъема или опускания жидкости см. Пример решения задачи Капиллярную трубку радиусом r одним концом опустили в жидкость, смачивающую внутреннюю поверхность капилляра. Чему равно лапласово давление под вогнутой поверхностью капилляра? Смачивание считайте полным. Решение: На жидкость в капилляре действуют сила тяжести и сила поверхностного натяжения направлена вертикально вверх по касательной к поверхности мениска. Ответ: Данные выводы следует запомнить! Высота подъема жидкости в капилляре прямо пропорциональна поверхностному натяжению жидкости и обратно пропорциональна плотности жидкости и радиусу капилляра:.

Почему поверхностное натяжение зависит от рода

Кривая 3 на рис. Для них поверхностное натяжение падает сначала линейно, затем по логарифмическому закону. В растворах таких соединений с увеличением концентрации до некоторой критической величины — ККМ критической концентрации мицеллообразования образуются мицеллы — агрегаты из ориентированных молекул ПАВ. Поверхностное натяжение таких растворов определяется индивидуальными молекулами ПАВ, так как мицеллы почти не снижают поверхностное натяжение раствора — кривая 4.

Водородная связь возникает из-за притяжения между водородным атомом одной молекулы и атомом кислорода, азота или фтора другой молекулы. Различия в межмолекулярных силах разных жидкостей влияют на их способность образовывать пленку на поверхности.

Вода, например, имеет особенно высокое поверхностное натяжение, потому что межмолекулярные силы, включая водородные связи, создают сильное притяжение между молекулами. Это приводит к тому, что вода образует сферическую форму на поверхности и обладает поверхностным натяжением. В других жидкостях межмолекулярные силы могут быть слабее или отличаться по характеру от тех, которые присутствуют в воде. Это может привести к различиям в их поверхностном натяжении и способности образовывать пленку на поверхности. Например, нектар и масло имеют меньшее поверхностное натяжение, чем вода, из-за более слабых межмолекулярных сил.

Связь молекулярных свойств с поверхностным натяжением Связь молекулярных свойств с поверхностным натяжением проявляется через силы взаимодействия молекул. Вода — это полярная молекула, которая образует водородные связи между соседними молекулами.

Можно привести много примеров сил поверхностного натяжения в действии из нашей будничной жизни. Под воздействием ветра на поверхности океанов, морей и озер образуется рябь, и эта рябь представляет собой волны, в которых действующая вверх сила внутреннего давления воды уравновешивается действующей вниз силой поверхностного натяжения. Две эти силы чередуются, и на воде образуется рябь, подобно тому как за счет попеременного растяжения и сжатия образуется волна в струне музыкального инструмента.

Будет жидкость собираться в «бусинки» или ровным слоем растекаться по твердой поверхности, зависит от соотношения сил межмолекулярного взаимодействия в жидкости, вызывающих поверхностное натяжение, и сил притяжения между молекулами жидкости и твердой поверхностью. В жидкой воде, например, силы поверхностного натяжения обусловлены водородными связями между молекулами см. Химические связи. Поверхность стекла водой смачивается, поскольку в стекле содержится достаточно много атомов кислорода, и вода легко образует гидрогенные связи не только с другими молекулами воды, но и с атомами кислорода.

По теоретическим оценкам это давление составляет примерно 11 тыс. Расстояние между молекулами воды можно вычислить через число Авогадро, молярную массу и плотность воды:. Поэтому сила указанная на рис.

Работа необходимая для этого равна произведению силы на межмолекулярное расстояние.

Похожие новости:

Оцените статью
Добавить комментарий