До появления космических телескопов астрономы могли наблюдать всего лишь несколько голубых сверхгигантов в ночном небе.
Ученые раскрыли секрет голубых сверхгигантов
Внутренняя часть голубого сверхгиганта, который в три раза тяжелее нашего Солнца. Ученые связывают знаменитую сверхновую 1987 года со странной голубой звездой-сверхгигантом. Анализ показал, что в большинстве случаев должны формироваться именно голубые сверхгиганты.
Ученые раскрыли секрет голубых сверхгигантов
Один из триллионов населяющих её объектов, наше Солнце , находится уже в довольно солидном возрасте. Ему 4,6 миллиарда лет. Пройдёт ещё около 5 миллиардов лет, и водород в его ядре закончится. Вроде бы колоссальные отрезки времени с одной стороны. А вроде и нет.
Всё относительно. Но не для голубого сверхгиганта. Поскольку для него это в любом случае вечность. Он умрёт задолго до того, как пройдёт даже один миллиард лет.
Время его жизни коротко. Всего лишь несколько миллионов лет. Именно столько понадобится времени, чтобы весь водород голубого сверхгиганта превратится в гелий и другие элементы. Как только синтез остановится, голубой сверхгигант станет сверхновой.
Такой же, как, например, как SN 1987A. Стандартная свеча Но чем же могут быть полезны людям голубые сверхгиганты? Астрономы очень хотят научиться измерять расстояния до космических объектов с большой точностью. Ведь чем точнее они знают эти расстояния, тем лучше могут рассчитывать постоянную Хаббла.
Это число говорит о том, как быстро расширяется Вселенная. И наука до сих пор не может точно определиться с его значением. Постоянная Хаббла интересна ещё и тем, что с её помощью можно вычислить , когда именно родилась Вселенная. И сколько именно в ней темной материи и темной энергии.
Моделируя внутреннее пространство звезд, команда предсказала, что гравитационные волны, подобные тем, которые мы видим в океане, могут разрушаться на поверхности звезд. Второй тип волны также был предсказан. Эти когерентные волны похожи на сейсмические волны на Земле, которые генерируются глубоко внутри звезды. Теперь, используя данные, собранные космическими телескопами NASA, международная группа экспертов во главе с К.
Однако же японские ученые пришли к выводу, что SN 1987A была рождена голубым сверхгигантом, что долгое время являлось большой загадкой. Ответ появился благодаря рентгеновским и гамма-наблюдениям, которые выявили в сверхновой скопления радиоактивного никеля в выбрасываемом веществе. Он был образован в ядре звезды в момента его коллапса и теперь отскакивает от космического тела со скоростью, которая превышает четыре тысячи километров в секунду. Ученые считают наиболее достоверным сценарий, при котором прародителем сверхновой является голубой сверхгигант, появившийся при слиянии двух звезд.
Фото с сайта Европейской Южной Обсерватории www. Наблюдения сверхновой SN 2005 gj позволили заглянуть в ее прошлое и установить, какой звездой она была до взрыва. Этот результат противоречит существующей теории звездной эволюции и может потребовать ее частичного пересмотра. Вспышка сверхновой — один из самых мощных взрывных процессов в природе. Она наблюдается как внезапное увеличение блеска звезды в миллиард и более раз. При вспышке сверхновая светит практически так же, как целая галактика. Если в спектре сверхновой нет линий излучения водорода, то ей присваивается тип I, а если линии есть — то тип II. Теория звездной эволюции предсказывает, что вспышка сверхновой типа II — это заключительный этап жизни массивной звезды, масса которой превышает десять солнечных. Согласно современной теории, на этом этапе происходит катастрофически быстрое сжатие ядра звезды, состоящего из атомов железа, и последующий отскок падающей на ядро внешней оболочки, в которой сохранился водород. Ударная волна, которая образуется при отскоке оболочки, нагревает ее и вызывает столь сильное увеличение блеска звезды. Чтобы взорваться как сверхновая, массивная звезда должна пройти несколько стадий, в течение которых водород в ядре звезды постепенно выгорает и превращается в гелий, затем в углерод, кислород и далее до железа. Теория звездной эволюции говорит, что в конце жизни такая звезда проходит стадию голубого сверхгиганта, затем она становится звездой Вольфа—Райе, и только потом происходит взрыв. Теория и наблюдения показывают, что различия между двумя первыми стадиями значительны. На стадии голубого сверхгиганта в ядре звезды еще горит водород, а сильный звездный ветер уносит оболочку. Продолжительность этого периода — порядка ста тысяч лет — очень мала по сравнению со временем жизни звезд. После этого горение водорода в ядре прекращается, и звезда представляет собой почти полностью обнаженное гелиевое, углеродное или азотное ядро — звезду Вольфа—Райе. Они показали, что эта последовательность может быть нарушена: голубой сверхгигант, минуя стадию звезды Вольфа—Райе, может взорваться как сверхновая, что не согласуется с существующей теорией звездной эволюции. Открытие было сделано большой командой ученых, работающих по программе Слоановского цифрового обзора неба SDSS. Буквы «gj» в названии звезды означают ее порядковый номер: первая сверхновая, открытая в 2005 году носила буквы «аа», вторая — «ab» и так далее. Согласно этому правилу, SN 2005 gj должна быть 176-й сверхновой, открытой в 2005 году.
Астрономы раскрывают секреты голубых сверхгигантов
С помощью компьютерного моделирования и анализа данных, полученных с Большого Магелланова Облака, они нашли убедительные доказательства того, что большинство голубых сверхгигантов рождаются не в одиночестве, а в результате слияния двух звезд, входящих в двойную систему. Представьте себе: две звезды, гравитационно связанные друг с другом, вращаются в космическом танце. Одна из них — гигант, уже прошедший большую часть своего жизненного пути, другая — звезда поменьше. Со временем гигант начинает раздуваться, его внешние слои приближаются к компаньону. Гравитация неумолимо стягивает их все ближе и ближе, пока, наконец, они не сливаются в одно целое. Автор: Designer Этот катаклизм, подобный столкновению титанов, высвобождает колоссальную энергию. Новообразованная звезда вспыхивает с невиданной силой, становясь голубым сверхгигантом.
RIKEN Astrophysical Big Bang LaboratoryВыброс вещества из сердца взрывающейся звезды в компьютерной модели Рентгеновские и гамма-наблюдениямя за SN 1987A показали, что в выбрасываемом ей веществе содержались большие скопления радиоактивного никеля. Предыдущие симуляции сверхновой не смогли полностью объяснить, как этот никель мог так быстро передвигаться. Исследователи смоделировали асимметричные взрывы сверхновых звезд с коллапсом ядра и сравнили их с наблюдениями SN 1987A, получив наиболее вероятный сценарий рождения сверхновой.
В слиянии участвовали красный сверхгигант и звезда главной последовательности.
Альнилам или Эпсилон Ориона — голубой гигант, постепенно сходящий с основной последовательности и расширяющийся до сверхгиганта. Его масса превышает отметку в 40 масс Солнца, а температура поверхности, по, разным оценкам, составляет от 26 до 33 тысяч Кельвинов.
Огромная температура голубых гигантов достигается за счет интенсивно протекающих в их недрах водородных термоядерных реакций. Вследствие этого, такие звезды, в прямом смысле этого слова, сгорают очень быстро. За период от 6 до 10 миллионов лет такие звезды расходуют полностью свои запасы водорода и сходят с основной последовательности.
Эволюция голубых гигантов очень интересна, однако до конца не изучена и непонята астрономами. После того, как запасы водорода в ядре такой звезды исчерпываются, она переходит в фазу голубого сверхгиганта.
Как сообщает ТАСС со ссылкой на исследователей Женевского университета, Икар относится к классу голубых сверхгигантов. Это значит, что яркость этой звезды в сотни тысяч раз превышает Солнце. Учёные уверены, что открытие Икара означает новый этап в исследовании вселенной.
Подписка на дайджест
- Астрономы раскрыли секреты голубого супергиганта
- Поиск по этому блогу
- Механизм «окрашивания» звезд
- Слияние двух звезд привело к появлению синего сверхгиганта
Ученые раскрыли секрет голубых сверхгигантов
Астрономы обнаружили Икар случайно, когда с помощью телескопа наблюдали сверхновую, произошедшую в той же галактике. Это явление происходит, когда луч света от далекого объекта попадает в гравитационное поле галактики или галактического кластера и искривляет свою траекторию. В результате объект визуально немного меняет свое расположение на небе и увеличивается в размерах. Хотя обычно такой эффект увеличивает фоновые объекты до 50 раз, астрономические тела малого размера могут быть увеличены до нескольких тысяч раз.
Ученые раскрыли уникальность звезды Ригель 4 ноября — NVL. Эксперт блога Pertichor V на платформе "Яндекс.
Дзен" прокомментировал уникальность звезды Ригель Выяснилось, что Ригель является одной из самых ярких звезд, которую можно увидеть на небосводе невооруженным глазом. Данная звезда представляет собой голубой сверхгигант, светимость которого в 120 тысяч раз превышает светимость Солнца, пишут «Ежедневные Новости Владивостока».
Так как значительную часть времени массивные звёзды пребывают в состоянии красных сверхгигантов, мы наблюдаем больше красных сверхгигантов, чем голубых, и большинство сверхновых происходит из красных сверхгигантов. Астрофизики ранее даже предполагали, что все сверхновые происходят из красных сверхгигантов, однако сверхновая SN 1987A образовалась из голубого сверхгиганта и, таким образом, это предположение оказалось неверным. Это событие также привело к пересмотру некоторых положений теории эволюции звёзд.
Ригель [ править править код ] Самый известный пример — Ригель бета Ориона , самая яркая звезда в созвездии Орион , масса которой приблизительно в 20 раз больше массы Солнца и светимость примерно в 130 000 раз выше солнечной, а значит, это одна из самых мощных звёзд в Галактике во всяком случае, самая мощная из ярчайших звёзд на небе, так как Ригель — ближайшая из звёзд с такой огромной светимостью. Древние египтяне связывали Ригель с Сахом — царём звёзд и покровителем умерших, а позже — с Осирисом. Гамма Парусов [ править править код ] Гамма Парусов — кратная звезда, ярчайшая в созвездии Паруса. Расстояние до звёзд системы оценивается в 800 световых лет. Гамма Парусов Регор — массивный голубой сверхгигант.
Имеет массу в 30 раз больше массы Солнца. Его диаметр в 8 раз больше солнечного. Светимость Регора — 10 600 солнечных светимостей.
Событие прозвали "великим затемнением".
По основной версии, самые верхние слои звезды охладились, и на них как бы сконденсировалось облако выброшенной звёздной пыли. То есть в целом это одно из проявлений пульсации. Снова дух захватило: а вдруг сейчас взорвётся? В основном думают, что всё-таки нет, это просто очередная стадия пульсации звезды, то есть в её состоянии нормальное поведение.
Но с другой стороны, есть любопытное наблюдение: за последние десятилетия эти колебания как-то уж очень участились. Раньше они длились лет по шесть, а потом стали происходить каждые 400 дней. По самым свежим данным, Бетельгейзе и вовсе принялась дышать с периодичностью меньше года. И никто не знает наверняка, когда она вспыхнет.
Может, в XXX веке. А может, завтра.
Вот-вот взорвётся: Учёные взбудоражены внезапной вспышкой Бетельгейзе
Их исследования показали, что структура этих звезд и их химический состав, включая обогащение азотом и гелием, могут быть объяснены моделями слияния двух звезд. Это открытие может стать ключом к пониманию эволюции звезд и важным шагом в исследовании Вселенной.
Галактика-хозяин всплеска видна с ребра, вспышка близка к ее ядру. Галактика характеризуется эффективным радиусом 2,45 килопарсеков, звездной массой около 109 масс Солнца, дискообразной морфологией и умеренным темпом звездообразования. В целом, галактика-хозяин GRB 221009A не является особенно необычной среди галактик-хозяев как длинных, так и коротких гамма-всплесков.
Наблюдаемое явное отсутствие какого-либо излучения сверхновой от GRB 221009A выглядит очень необычным явлением. Возможно, что в рассматриваемый период 0,5—55 дней после всплеска излучение сверхновой было небольшим или же пик ее излучения находился за пределами охватываемого диапазона длин волн.
Лювеном из Бельгии впервые увидела звезду и обнаружила, что почти все эти неуловимые гиганты на самом деле мерцают и колеблются в яркости из-за наличия волн на их поверхности. Как и предсказывалось, волны берут свое начало в глубине и открывают новые захватывающие перспективы для изучения этих звезд с помощью астеросейсмологии, — метод, аналогичный тому, как сейсмологи используют землетрясения для изучения недр Земли. Публикуя свои выводы сегодня в издании Nature Astronomy, авторы упомянули о том, что благодаря наблюдениям за этими волнами можно изучить свойства звезд, которые невозможно получить с помощью других астрономических методов.
Голубые сверхгиганты - это недавно появившиеся на главной последовательности, они имеют чрезвычайно высокую светимость, высокую скорость потери массы и, как правило, нестабильны. Многие из них становятся светящимися синими переменными LBV с эпизодами экстремальной потери массы. Голубые сверхгиганты меньшей массы продолжают расширяться, пока не станут красными сверхгигантами.
При этом они должны провести некоторое время как желтые сверхгиганты или желтые гипергиганты , но это расширение происходит всего за несколько тысяч лет, и поэтому эти звезды редки. Красные сверхгиганты с большей массой сдувают свои внешние атмосферы и снова превращаются в голубых сверхгигантов, а затем, возможно, и в звезды Вольфа — Райе. В зависимости от точной массы и состава красного сверхгиганта он может выполнить ряд синих петель, прежде чем либо взорваться как сверхновая типа II , либо окончательно сбросить достаточно внешних слоев, чтобы снова стать синим сверхгигантом, меньше светлее, чем в первый раз, но более нестабильно. Если такая звезда может пройти через желтую эволюционную пустоту, ожидается, что она станет одной из LBV с более низкой светимостью. Самые массивные голубые сверхгиганты слишком светятся, чтобы сохранять обширную атмосферу, и они никогда не расширяются в красный цвет.
Телескоп Hubble нашел самую удаленную от Земли звезду
Это голубой сверхгигант Икар, расстояние до которого исчисляется девятью миллиардами световых лет. Несмотря на свою важность для эволюции галактик, голубые сверхгиганты встречаются достаточно редко. Голубой сверхгигант. Молодые и очень горячие яркие звёзды с температурой поверхности 20 000 — 50 000 °C; одни из самых горячих, крупнейших и самых ярких объектов в изученной. V372 Ориона относится к голубым сверхгигантам (спектральный класс B9 III/IV) и орионовым переменным — типу неправильных переменных звёзд, связанных с диффузными туманностями.
Голубой сверхгигант — последняя стадия перед взрывом сверхновой?
Две из 66 антенн ALMA, над которыми висит созвездие Орион, справа видна красная звезда-сверхгигант Бетельгейзе. это недавно появившиеся из главной последовательности, они имеют чрезвычайно высокую светимость, высокую скорость потери массы и, как правило, нестабильны. Голубые сверхгиганты B-типа как минимум в 10 000 раз ярче и в 2–5 раз горячее Солнца и имеют массу от 16 до 40 раз больше массы Солнца. Однако и голубой сверхгигант тоже вполне может сгодиться в качестве стандартной свечи. Ответ на пост «Размер звезды типа "Голубой сверхгигант" по отношению к нашей Солнечной системе» Звезды, Солнечная система, Галактика, Астрономия, Вселенная, Космос, Сравнение. это недавно появившиеся из главной последовательности, они имеют чрезвычайно высокую светимость, высокую скорость потери массы и, как правило, нестабильны.
чПКФЙ ОБ УБКФ
Голубой сверхгигант под кодовым названием Icarus отмечен белой стрелочкой на правой нижней фотографии. Новорожденные звезды живут как голубые сверхгиганты на протяжении второго по продолжительности этапа жизни звезды, когда в их ядре горит гелий," объясняет Менон. О пропаже заявили астрономы Европейской южной обсерватории Голубой сверхгигант светил в миллионы раз ярче Солнца.
Ученые раскрыли секрет голубых сверхгигантов
В результате наиболее достоверным был признан сценарий, при котором прародителем сверхновой является голубой сверхгигант, образованный слиянием двух звезд. Во время этого процесса более крупная звезда могла отделить вещество от своего меньшего спутника, который вращался вовнутрь, пока не был полностью поглощен. Так образовался быстро вращающийся голубой сверхгигант. По словам ведущего автора работы Масаоми Оно, это первый случай, когда сценарий слияния двух звезд был смоделирован с учетом возможного накопления радиоактивного никеля. Моделирование точно воспроизвело ускоряющиеся скопления никеля вместе с двумя струями выброса. Ученые считают, что оно также поможет найти нейтронную звезду.
В спектральной классификации голубые гиганты занимают первую позицию как самые яркие и самые горячие звёзды во Вселенной, температура которых может доходить до 70 000 и даже до 80 000 градусов по Кельвину или Цельсию разница небольшая : Спектральные классы звёзд Не только своей температурой поражают голубые гиганты - они огромны и по своей массе: она, как правило, составляет от 10-20 до 50-60 масс Солнца, но это - только то, что мы наблюдаем, поскольку даже самые "маленькие" из них в своей молодости были гораздо, гораздо больше, и уменьшились до размеров, которые мы наблюдаем сейчас, после серий чудовищных вспышек, сдувших их собственную атмосферу в космическое пространство. Чем больше масса звезды, тем больше давление внутри неё, а, значит, и выше температура. Огромные температуры голубых гигантов достигается за счёт интенсивно протекающих в их недрах термоядерных реакций.
Такие звёзды в прямом смысле очень быстро сгорают. Всего за 10-50 млн лет они расходуют все свои запасы водорода и сходят с главной последовательности. Чтобы прогреть такого гиганта, приходится тратить очень много энергии! Чем-то похожи звёзды на людей. Так, люди, подобные голубым гигантам, работающие наизнос, или горящие творческим огнём, или пылом эмоций и страстей, рано уходят. К долгожителям же, как правило, относятся приверженцы размеренного и спокойного образа жизни. Вот и среди звёзд словно есть нечто подобное. Голубой гигант Ригель и туманность IC 2118, которую он освещает Проживают голубые гиганты только в молодых космических структурах, таких как рассеянные скопления, рукава спиральных галактик и неправильные галактики.
Они практически не встречаются в ядрах спиральных и эллиптических галактик или в шаровых скоплениях, которые, как полагают, являются старыми объектами.
При обычных условиях настолько далекие звезды не видны даже для орбитальных обсерваторий, однако изображение голубого сверхгиганта оказалось увеличенным в две тысячи раз благодаря эффекту гравитационного линзирования. Астрономы обнаружили Икар случайно, когда с помощью телескопа наблюдали сверхновую, произошедшую в той же галактике. Это явление происходит, когда луч света от далекого объекта попадает в гравитационное поле галактики или галактического кластера и искривляет свою траекторию. В результате объект визуально немного меняет свое расположение на небе и увеличивается в размерах.
Вспышка сверхновой — один из самых мощных взрывных процессов в природе. Она наблюдается как внезапное увеличение блеска звезды в миллиард и более раз. При вспышке сверхновая светит практически так же, как целая галактика. Если в спектре сверхновой нет линий излучения водорода, то ей присваивается тип I, а если линии есть — то тип II. Теория звездной эволюции предсказывает, что вспышка сверхновой типа II — это заключительный этап жизни массивной звезды, масса которой превышает десять солнечных. Согласно современной теории, на этом этапе происходит катастрофически быстрое сжатие ядра звезды, состоящего из атомов железа, и последующий отскок падающей на ядро внешней оболочки, в которой сохранился водород.
Ударная волна, которая образуется при отскоке оболочки, нагревает ее и вызывает столь сильное увеличение блеска звезды. Чтобы взорваться как сверхновая, массивная звезда должна пройти несколько стадий, в течение которых водород в ядре звезды постепенно выгорает и превращается в гелий, затем в углерод, кислород и далее до железа. Теория звездной эволюции говорит, что в конце жизни такая звезда проходит стадию голубого сверхгиганта , затем она становится звездой Вольфа—Райе , и только потом происходит взрыв. Теория и наблюдения показывают, что различия между двумя первыми стадиями значительны. На стадии голубого сверхгиганта в ядре звезды еще горит водород, а сильный звездный ветер уносит оболочку. Продолжительность этого периода — порядка ста тысяч лет — очень мала по сравнению со временем жизни звезд.
После этого горение водорода в ядре прекращается, и звезда представляет собой почти полностью обнаженное гелиевое, углеродное или азотное ядро — звезду Вольфа—Райе. Они показали, что эта последовательность может быть нарушена: голубой сверхгигант, минуя стадию звезды Вольфа—Райе, может взорваться как сверхновая, что не согласуется с существующей теорией звездной эволюции. Открытие было сделано большой командой ученых, работающих по программе Слоановского цифрового обзора неба SDSS.
Голубые сверхгиганты: загадка вселенной разгадана
Впервые найдены наблюдательные свидетельства того, что голубые сверхгиганты могут быть прямыми предшественниками сверхновых звезд. В первый раз найдены наблюдательные свидетельства того, что голубые сверхгиганты могут быть прямыми предшественниками сверхновых звезд. это недавно появившиеся на главной последовательности, они имеют чрезвычайно высокую светимость, высокую скорость потери массы и, как правило, нестабильны.