One of the most visible manifestations is mandatory “implicit bias training,” which seven states have adopted and at least 25 more are considering. Лирическое отступление: p-hacking и publication bias.
Биас — что это значит
I agree to receive new research papers announcements and blog content recommendations as well as information about InData Labs services and special offers We take your privacy seriously. All personal information is kept safe and never shared with anyone. Please leave this field empty. Need your AI strategy consulting?
В процессе аудита Hybe также получил заявление о том, что генеральный директор Ador стремится «в конечном итоге избавиться от Hybe».
На основании этих материалов Hybe сегодня же подаст уголовное заявление против вовлеченных лиц, обвинив их в профессиональном нарушении. Hybe планирует оказать психологическую и эмоциональную помощь участницам NewJeans и поддержать их в меру своих возможностей для успешного камбэка. Компания также планирует как можно скорее встретиться с юридическими представителями участниц группы, чтобы обсудить способы их защиты. Генеральный директор Hybe Пак Джи Вон сказал: «Мы приносим извинения нашим поклонникам, артистам и участницам группы за неудобства, вызванные событиями, произошедшими в процессе обновления нашего мультилейбла.
Сасен — это часть поклонников, особенно фанатично любящие своих кумиров и способные в ряде случаев на нарушение закона ради них, хотя этим термином могут называться сильное увлечение некоторыми исполнителями фанаты. Именно агрессивность и попытки пристального отслеживания жизни кумира считаются отличительными особенностями сасен. Кто такие акгэ-фанаты? Акгэ-фанаты — это поклонники отдельных мемберов, то есть не всей группы целиком, а только только одного участника целой группы. Что означает слово ёгиё, эйгь или егё? Ёгиё — это корейское слово, которое означает что-то милое. Ёгъё включает в себя жестикуляцию, голос с тональностью выше чем обычно и выражением лица, которое корейцы делают, чтобы выглядеть милашками. Егё Слово «йогиё» в переводе с корейского означает «здесь». Еще корейцы любят показывать Пис, еще этот жест называют Виктория. Виктория жест Этот жест означает победу или мир.
В Корее это очень распространенный жест. Aigoo — слово, которое используется для того, чтобы показать разочарование. Слова и фразы, которые должен знать каждый дорамщик Что такое сагык? Сагык — это историческая дорама. Например, это дорамы «Алые сердца Корё» и «Свет луны, очерченный облаком». AJUMMA — AJUSSHI аджума или ачжумма — аджоси или ачжосси — буквально выражаясь это означает тетя и дядя, но обычно слово используется в качестве уважительной формы, при общении с человеком более старшего возраста, либо не сильно знакомому. Аньон или Аньон хасейо — означает слова «привет» или «пока». Анти произошло от английского слова anti — против. Это люди, которые резко негативно относятся к тому или иному артисту. Также это слово можно перевести как «нет» или «не в коем случае».
Айщ — это аналог русского «блин» или «черт». Веб-дорама — это дорама, которую не показывают по ТВ. Она предназначена для трансляции в интернете. Как правило, они не очень продолжительные. Дэбак — здорова, круто, потрясно. Корейцы используют это слово не часто и только тогда, когда их действительно что-то потрясает или восхищает. Оппа — так девушки называют своих парней. Лет 20 назад это слово имело значение старший брат. Хен — именно так называют парней, молодых людей, старше обращающегося.
These two headlines describe the same event. Example 1: Bowley, G. New York Times. Example 2: Otterson, J. Bias through selection and omission An editor can express bias by choosing whether or not to use a specific news story. Within a story, some details can be ignored, others can be included to give readers or viewers a different opinion about the events reported. Only by comparing news reports from a wide variety of sources can this type of bias be observed.
Что такое биасы
Bias instability measures the amount that a sensor output will drift during operation over time and at a steady temperature. Общая лексика: тенденциозная подача новостей, тенденциозное освещение новостей. Negativity bias (or bad news bias), a tendency to show negative events and portray politics as less of a debate on policy and more of a zero-sum struggle for power. это систематическое искажение или предубеждение, которое может влиять на принятие решений или оценку ситуации. Welcome to a seminar about pro-Israel bias in the coverage of war in Palestine by international and Nordic media. Что такое BIAS (БИАС)?
Что такое биасы
Системы, построенные на принципах глубинного обучения в этом смысле не являются исключением, их разработчики не могут быть свободны от присущих им пристрастностей, поэтому с неизбежностью будут переносить часть своей личности в алгоритмы, порождая, в конечном итоге, AI bias. То есть AI bias не собственное свойство ИИ, о следствие переноса в системы качеств, присущих их авторам. Существование алгоритмической пристрастности Algorithmic bias нельзя назвать открытием. Об угрозе возможного «заражения машины человеческими пристрастиями» много лет назад впервые задумался Джозеф Вейценбаум, более известный как автор первой способной вести диалог программы Элиза, написанной им в еще 1966 году. С ней Вейценбаум одним из первых предпринял попытку пройти тест Тьюринга, но он изначально задумывал Элизу как средство для демонстрации возможности имитационного диалога на самом поверхностном уровне. Это был академический розыгрыш высочайшего уровня. Совершенно неожиданно для себя он обнаружил, что к его «разговору с компьютером », в основе которого лежала примитивная пародия, основанная на принципах клиент-центрированной психотерапии Карла Роджерса, многие, в том числе и специалисты, отнеслись всерьез с далеко идущими выводами.
В современности мы называем такого рода технологии чат-ботами. Тем, кто верит в их интеллектуальность, стоит напомнить, что эти программы не умнее Элизы. Вейценбаум наряду с Хьюбертом Дрейфусом и Джоном Серлем вошел в историю ИИ как один из основных критиков утверждений о возможности создания искусственного мозга и тем более искусственного сознания, сравнимого с человеческим по своим возможностям. В переведенной на русский язык в 1982 году книге «Возможности вычислительных машин и человеческий разум» Вейценбаум предупреждал об ошибочности отождествления естественного и искусственного разума, основываясь на сравнительном анализе фундаментальных представлений психологии и на наличии принципиальных различий между человеческим мышлением и информационными процессами в компьютере. А возвращаясь к AI bias заметим, что более тридцати лет назад Вейценбаум писал о том, что предвзятость программы может быть следствием ошибочно использованных данных и особенностей кода этой самой программы. Если код не тривиален, скажем, не формула записанная на Fortran, то такой код так или иначе отражает представления программиста о внешнем мире, поэтому не следует слепо доверять машинным результатам.
А в далеко не тривиальных по своей сложности приложениях глубинного обучения алгоритмическая пристрастность тем более возможна. Она возникает в тех случаях, когда система отражает внутренние ценности ее авторов, на этапах кодирования, сбора и селекции данных, используемых для тренировки алгоритмов. Алгоритмическая пристрастность возникает не только вследствие имеющихся культурных, социальных и институциональных представлений, но и из-за возможных технических ограничений. Существование алгоритмической предвзятости находится в противоречии с интуитивным представлением, а в некоторых случаях с мистической убежденностью в объективности результатов, полученных в результате обработки данных на компьютере. Хорошее введение в тематику, связанную с алгоритмическими пристрастностями, можно найти в статье The Foundations of Algorithmic Bias [9]. В статье «Вот почему возникают ИИ-привязанности и почему с ними сложно бороться» [10] , опубликованной в феврале 2019 года в MIT Review, выделяются три момента, способствующие возникновению AI bias.
Однако, как не странно, их не связывают когнитивными предвзятостями, хотя нетрудно заметить, что в корне всех трех лежат именно они. Постановка задачи Framing the problem. Проблема состоит в том, что методами машинного обучения обычно хочется опередить нечто, не имеющее строгого определения. Скажем банк хочет определить кредитные качества заемщика, но это весьма размытое понятие и результат работы модели будет зависеть от того, как разработчики, в силу своих личных представлений, смогут это качество формализовать. Сбор данных для обучения Collecting the data.
Это продвижение.
Помимо музыкальной деятельности корейские артисты могут продвигать: Благотворительные акции; Фильмы и сериалы с их участием; Любой коммерческий бренд. Файтинг файтин Слово Fighting происходит от английского «Fighting», что переводится как «бороться», «бороться». Но в K-pop это приобрело несколько иное значение. Когда кому-то говорят «драться», они желают ему удачи и победы. Примечательно, что в корейской версии последняя буква G не произносится. Трейни Trainee стажер — так зовут молодых артистов, прошедших кастинг, но еще не дебютировавших.
Если дебют не удастся, айдол-неудачник останется в прежнем положении и стучится в двери агентств. Все звезды K-pop в один голос заявляют, что период их стажировки был самым трудным в их жизни. Обычно длится от 6 месяцев до года, в это время обучают голосам, танцам, пластике. Они сидят на диете и тренируются по 10-12 часов в день, почти семь дней в неделю. Многие ученики бросают учебу, не выдерживая физических и психических нагрузок. Тизер Перед выпуском нового альбома, сингла или видео корейские артисты выпускают тизеры.
По сути, тизер — это аналог спойлера к фильму. Обычно это короткое видео из видео или аудио фрагменты из нового альбома. Релиз тизеров начинается за несколько дней до старта продаж. Таким образом художники согревают поклонников и побуждают их покупать их творения. Как правило, до выхода альбома выпускаются один-два тизера, но иногда их бывает и больше. Все зависит от решения маркетологов.
Насколько затратно готовить солистов? По состоянию на 2012 год доход южнокорейской музыкальной индустрии составлял примерно 3,5 миллиарда долларов. Цифра действительно впечатляющая, но давайте попробуем разобраться, сколько стоит агентству создание солиста или группы. У разных агентств разные показатели, однако в среднем на подготовку человека для группы или соло уходит около полумиллиона долларов. Вы представились? Нет, конечно, платно.
Во время стажировки будущая звезда не обязана ничего платить, однако после дебюта переводчик какое-то время окупит расходы своего агентства, а также принесет гораздо большую прибыль. Эра Эра — особый случай возвращения. Так называется момент, когда коллектив возвращается после записи нового альбома и начинает его продвижение.
This lack of transparency can amplify clinical bias present in the data used for training, potentially leading to unintended consequences. For instance, models may infer demographic information and health factors from medical images to predict healthcare costs or treatment outcomes.
While these models may have positive applications, they could also be exploited to deny care to high-risk individuals or perpetuate existing disparities in healthcare access and treatment. Addressing biassed model development requires thorough research into the context of the clinical problem being addressed. This includes examining disparities in access to imaging modalities, standards of patient referral, and follow-up adherence. Understanding and mitigating these biases are essential to ensure equitable and effective AI applications in healthcare. Privilege bias may arise, where unequal access to AI solutions leads to certain demographics being excluded from benefiting equally.
This can result in biassed training datasets for future model iterations, limiting their applicability to underrepresented populations. Automation bias exacerbates existing social bias by favouring automated recommendations over contrary evidence, leading to errors in interpretation and decision-making. In clinical settings, this bias may manifest as omission errors, where incorrect AI results are overlooked, or commission errors, where incorrect results are accepted despite contrary evidence. Radiology, with its high-volume and time-constrained environment, is particularly vulnerable to automation bias. Inexperienced practitioners and resource-constrained health systems are at higher risk of overreliance on AI solutions, potentially leading to erroneous clinical decisions based on biased model outputs.
The acceptance of incorrect AI results contributes to a feedback loop, perpetuating errors in future model iterations. Certain patient populations, especially those in resource-constrained settings, are disproportionately affected by automation bias due to reliance on AI solutions in the absence of expert review. Challenges and Strategies for AI Equality Inequity refers to unjust and avoidable differences in health outcomes or resource distribution among different social, economic, geographic, or demographic groups, resulting in certain groups being more vulnerable to poor outcomes due to higher health risks. In contrast, inequality refers to unequal differences in health outcomes or resource distribution without reference to fairness. AI models have the potential to exacerbate health inequities by creating or perpetuating biases that lead to differences in performance among certain populations.
For example, underdiagnosis bias in imaging AI models for chest radiographs may disproportionately affect female, young, Black, Hispanic, and Medicaid-insured patients, potentially due to biases in the data used for training. Concerns about AI systems amplifying health inequities stem from their potential to capture social determinants of health or cognitive biases inherent in real-world data. For instance, algorithms used to screen patients for care management programmes may inadvertently prioritise healthier White patients over sicker Black patients due to biases in predicting healthcare costs rather than illness burden. Similarly, automated scheduling systems may assign overbooked appointment slots to Black patients based on prior no-show rates influenced by social determinants of health. Addressing these issues requires careful consideration of the biases present in training data and the potential impact of AI decisions on different demographic groups.
Failure to do so can perpetuate existing health inequities and worsen disparities in healthcare access and outcomes. Metrics to Advance Algorithmic Fairness in Machine Learning Algorithm fairness in machine learning is a growing area of research focused on reducing differences in model outcomes and potential discrimination among protected groups defined by shared sensitive attributes like age, race, and sex. Unfair algorithms favour certain groups over others based on these attributes.
Доступ к этой базе может получить любое юридическое лицо, достаточно просто купить аккаунт и оплачивать несколько рублей за каждый запрос. Работать в системе просто. Специалист забивает ваши ФИО и дату рождения в строку поиска и сразу переходит на вашу страницу. Там он видит все ваши телефоны и адреса, которые вы когда-либо оставляли в различных организациях.
Examples Of Biased News Articles
Как только ты сказала своим подругам-кейпоперам о том, что начала слушать какую-либо корейскую музыкальную группу, то в первую очередь они, конечно же, спросили, кто твой биас. Биас (от слова «bias», означающего предвзятость) — это участник группы, который занимает особенное место в сердце фаната. Investors possessing this bias run the risk of buying into the market at highs.
Media Bias/Fact Check
Везде По новостям По документам По часто задаваемым вопросам. Происхождение: bias— звучит как "бАес", но среди фанатов к-поп более распространен неправильный вариант произношения — "биас". Bias и Variance – это две основные ошибки прогноза, которые чаще всего возникают во время модели машинного обучения. Negativity bias (or bad news bias), a tendency to show negative events and portray politics as less of a debate on policy and more of a zero-sum struggle for power. Bias и Variance – это две основные ошибки прогноза, которые чаще всего возникают во время модели машинного обучения. Bias: Left, Right, Center, Fringe, and Citing Snapchat Several months ago a colleague pointed out a graphic depicting where news fell in terms of political bias.
RBC Defeats Ex-Branch Manager’s Racial Bias, Retaliation Suit
Discover videos related to биас что значит on TikTok. Investors possessing this bias run the risk of buying into the market at highs. Tags: Pew Research Center Media Bias Political Bias Bias in News. Слово "Биас" было заимствовано из английского языка "Bias", и является аббревиатурой от выражения "Being Inspired and Addicted to Someone who doesn't know you", что можно перевести, как «Быть вдохновленным и зависимым от того, кто тебя не знает». Reuters’ fact check section has a Center bias, though there may be some evidence of Lean Left bias, according to a July 2021 Small Group Editorial Review by AllSides editors on the left, cen.
English 111
Фанкам fancam Видео с выступления, снятое фанатами из зала. Фанмит fanmeet Встреча айдола с фанатами. Фансайн fansign Мероприятие, где айдол раздает автографы фанатам. Фансайт fansite Человек, занимающийся фотографированием айдолов.
Так парни обращаются к девушкам и подругам, которые немного старше них. Ольджаны Особый вид знаменитостей, прославившихся благодаря своему красивому лицу. Онни Как и «нуна», это «старшая сестренка».
Только так именно девушки обращаются к знакомым девушкам и подругам, которые немного старше них. Оппа А так девушки в корейской культуре называют старших братьев. В последнее время так принято называть своего парня. Уверены, все слышали такое: «Оппа, саранхэ! Хен Это, как и «оппа», означает «старший брат», тольк так именно парни называют молодых людей старше себя.
Actor who played law enforcement sniper was recorded walking around carrying rifle by the magazine. Further, they routinely publish anti-vaccination propaganda and conspiracy theories. Lastly, this source denies the consensus on climate change without evidence, as seen here: Climate change cultists are now taking over your local weather forecast. During Covid, this source has consistently published disinformation that is dangerous and ridiculous. Failed Fact Checks.
Artificial intelligence wields significant influence across diverse domains, continually advancing in its capacity to emulate human cognition and intelligence. Its impact spans from IT and healthcare to entertainment and marketing, shaping our everyday experiences. Despite the potential for efficiency, productivity, and economic advantages, there are concerns regarding the ethical deployment of AI generative systems. Addressing bias in AI is crucial to ensuring fairness, transparency, and accountability in automated decision-making systems.
K-pop словарик: 12 выражений, которые поймут только истинные фанаты
Так парни обращаются к девушкам и подругам, которые немного старше них. Ольджаны Особый вид знаменитостей, прославившихся благодаря своему красивому лицу. Онни Как и «нуна», это «старшая сестренка». Только так именно девушки обращаются к знакомым девушкам и подругам, которые немного старше них. Оппа А так девушки в корейской культуре называют старших братьев. В последнее время так принято называть своего парня.
Уверены, все слышали такое: «Оппа, саранхэ! Хен Это, как и «оппа», означает «старший брат», тольк так именно парни называют молодых людей старше себя.
Департамент просит обеспечить представление достоверных данных и обращает внимание, что руководители организаций несут персональную ответственность за предоставленные сведения. Департамент экономической политики Минобрнауки России сообщает о необходимости заполнения ежегодной Формы сбора информации об уровне заработной платы отдельных категорий работников организации в личном кабинете на портале stat. Руководителям федеральных учреждений сферы научных исследований и разработок, подведомственных Минобрнауки России. Для заявления налоговой потребности на 2024 год организациям необходимо внести запрашиваемые данные, выгрузить заполненную таблицу и загрузить подписанную руководителем организации скан-копию данных о налоговой потребности. Организации, у которых отсутствует налоговая потребность, должны подтвердить отсутствие потребности и загрузить подписанную руководителем организации скан-копию обнуленной таблицы.
The Azerbaijani Foreign Ministry echoed this sentiment, labeling the resolution as unfounded and accusing it of distorting the human rights situation in the country. Bashir Suleymanli, head of the Institute of Civil Rights, in an interview with the program "Difficult Question" highlighted the longstanding tension between Azerbaijani authorities and human rights advocates. Suleymanli noted that while the government denies any human rights violations or the existence of political prisoners, evidence suggests otherwise. He pointed to ongoing instances of civil society suppression, journalist harassment, and arbitrary arrests as indicative of systemic issues within Azerbaijan.