Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем. Самое масштабное соревнование по искусственному интеллекту — реализуется в рамках федерального проекта «Искусственный интеллект» национальной программы «Цифровая экономика Российской Федерации». Сезон: искусственный интеллект» — самый масштабный в России проект для ИТ-специалистов.
ЕГЭ будет проверять нейросеть: как искусственный интеллект стал частью госэкзаменов в России
Почему стоит начать изучение машинного обучения и нейронных сетей с нашего курса? Если вам интересно познакомиться со спецификой технологий обучения нейросетей, а возможно и принять участие в развитии передовых технологий, регистрируйтесь на вебинар «Кто и как обучает искусственный интеллект». Сезон: искусственный интеллект» — самый масштабный в России проект для ИТ-специалистов. Процесс обучения нейросети и представляет собой такую подстройку «нейронов», чтобы научиться решать задачу и давать правильный ответ.
Виртуальный учитель: как ИИ меняет образование
Если мы добавим сюда и цифровое неравенство, то сократить разрыв будет попросту невозможно», — говорит Болор-Эрдене Батценгель, исследователь Оксфордского университета и бывший вице-министр цифрового развития и коммуникаций Монголии. Доступ к Ии-технологиям есть далеко не у всех Даже когда пользователи в развивающихся странах получают доступ к ИИ, он редко разрабатывается с учетом их потребностей. Однако на данный момент эта проблема не так хорошо освещена как другие и о последствиях этого «цифрового разрыва» говорить рано. Тем не менее, по мере создания более мощных ИИ-систем, неравенство будет расти. Вам будет интересно: Что будет, когда Искусственный интеллект достигнет пика своего развития? Еще больше роботов Переход от использования множества небольших моделей для выполнения разнообразных задач к единым неизбежен. Это подтверждают такие мультимодальные модели, как GPT-4 и Gemini от Google DeepMind, способные решать как визуальные, так и лингвистические задачи. Исходя из этого можно предположить, что то же самое произойдет и с роботами — зачем обучать одного переворачивать блинчики, а другого открывать двери, если можно создать одну универсальную многозадачную модель?
За примерами не нужно далеко ходить — несколько примеров работы в этой области появились в 2023 году. В июне DeepMind выпустила Robocat обновление прошлогоднего Gato , который генерирует собственные данные методом проб и ошибок, чтобы научиться управлять множеством различных роботизированных рук вместо одной конкретной руки. Умных роботов в 2024 году станет еще больше В октябре компания выпустила еще одну универсальную модель для роботов под названием RT-X и большой новый набор обучающих данных общего назначения в сотрудничестве с 33 университетскими лабораториями. И хотя существует множество проблема в нехватке данных, ученые разрабатывают методы, которые позволяют роботам все лучше обучаться методом проб и ошибок. Словом, роботов особенно умных с каждым годом будет становиться все больше. Переход к деталям В меняющемся ландшафте искусственного интеллекта главное — быть на шаг впереди. Это означает, что предприятия как и государства, инвестирующие в отрасль , которые принимают новые тенденции и адаптируются к ним, не только улучшат свою деятельность, но и проложат путь к беспрецедентному росту и инновациям.
Однако на данный момент эта проблема не так хорошо освещена как другие и о последствиях этого «цифрового разрыва» говорить рано. Тем не менее, по мере создания более мощных ИИ-систем, неравенство будет расти. Вам будет интересно: Что будет, когда Искусственный интеллект достигнет пика своего развития? Еще больше роботов Переход от использования множества небольших моделей для выполнения разнообразных задач к единым неизбежен. Это подтверждают такие мультимодальные модели, как GPT-4 и Gemini от Google DeepMind, способные решать как визуальные, так и лингвистические задачи. Исходя из этого можно предположить, что то же самое произойдет и с роботами — зачем обучать одного переворачивать блинчики, а другого открывать двери, если можно создать одну универсальную многозадачную модель?
За примерами не нужно далеко ходить — несколько примеров работы в этой области появились в 2023 году. В июне DeepMind выпустила Robocat обновление прошлогоднего Gato , который генерирует собственные данные методом проб и ошибок, чтобы научиться управлять множеством различных роботизированных рук вместо одной конкретной руки. Умных роботов в 2024 году станет еще больше В октябре компания выпустила еще одну универсальную модель для роботов под названием RT-X и большой новый набор обучающих данных общего назначения в сотрудничестве с 33 университетскими лабораториями. И хотя существует множество проблема в нехватке данных, ученые разрабатывают методы, которые позволяют роботам все лучше обучаться методом проб и ошибок. Словом, роботов особенно умных с каждым годом будет становиться все больше. Переход к деталям В меняющемся ландшафте искусственного интеллекта главное — быть на шаг впереди.
Это означает, что предприятия как и государства, инвестирующие в отрасль , которые принимают новые тенденции и адаптируются к ним, не только улучшат свою деятельность, но и проложат путь к беспрецедентному росту и инновациям. ИИ будет развиваться и дальше, как бы мы этому не противились Также отметим, что будущее ИИ в 2024 году действительно многообещающее и включает не только вышеописанные пункты, но и автоматизацию электронной почты, генеративного и разговорного ИИ, а также роботизированных технологий. Можно с уверенностью сказать, что в текущем году ИИ станет еще более конкретным во всех смыслах этого слова.
Использование продуктов и услуг, созданных при помощи технологий ИИ, позволит расширить возможности и результаты приоритетных отраслей национальной экономики и социальной сферы. Для достижения цели программы необходимы компетентные специалисты и визионеры, способные использовать мировой опыт в области ИИ для развития научно-технической отрасли России и создания новаторских разработок на базе отечественных цифровых технологий. По оценке Gartner, к 2025 году активное внедрение ИИ в различные отрасли экономики создаст 2 миллиона новых рабочих мест. К 2022 году каждый пятый сотрудник будет использовать технологии ИИ для решения нешаблонных задач.
Искусственный интеллект уже кардинально меняет рынок труда и сферу услуг, так что трансформация нынешней системы образования всего лишь вопрос времени. Однако существуют некоторые проблемы, которые могут возникнуть при использовании нейросетей в образовании. Хотя он эффективен в решении определённых задач, ИИ может приводить и к негативным последствиям для обучения. Например, преподаватели могут использовать его для оценивания знаний учащихся, но это может привести к предвзятости и дискриминации. Например, создание индивидуальных учебных программ с помощью нейросети может привести к тому, что учащиеся будут получать только те материалы, которые соответствуют их интересам и уровню знаний. Это может нивелировать разнообразие в учебном процессе и снизить мотивацию. Использование нейросети в образовании может привести к утечке персональных данных учащихся, если учителя не будут должным образом защищать данные или если станут применять ИИ для сбора данных без согласия ребят. Однако необходимо осторожно подходить к внедрению нейросетей в образование в целом и в рутину каждого ученика, учитывая позитивные аспекты и потенциальные риски этих технологий. Баланс между инновациями и традиционными методами обучения — ключевой фактор для успешного влияния ИИ на развитие и обучение детей. Для достижения такого баланса важно: Активное участие взрослых. Родители и педагоги должны поддерживать ребёнка и стимулировать его мотивацию, а также помогать развивать социальные навыки. Ограничение времени. Важно ограничить время, которое ребёнок проводит с устройствами на базе ИИ, чтобы сохранить баланс между цифровым и реальным миром. Обучение навыкам критического мышления. Развитие критического мышления и аналитических способностей должно оставаться ключевой задачей в образовании. Бот пишет шаблонные сочинения, за которые учителя ставят высокие баллы, потому что школу устраивает шаблонность. Ученики вместо собственных мыслей переписывают формулировки ИИ, потому что школа недостаточно мотивирует их думать. Школьники ищут самый лёгкий путь, так как им зачастую важнее получить высокие баллы, а не знания. И если искусственный интеллект разрушит эту систему — так ли уж это плохо? Ему нужны исследователи, первооткрыватели — люди, способные мыслить нестандартно. Ведь нейросети не способны совершить научное открытие или написать произведение, которое изменит общество: они лишь компилируют всё, что создано человечеством до них. Куда важнее учить осмыслять, фильтровать, творчески обрабатывать и критически оценивать информацию.
30 обучающих программ по нейросетям в 2024 году: платные и бесплатные курсы
Акулы нейронных сетей | Нейросети и ИИ-инструменты, а также курсы которыми можно пользоваться бесплатно. |
Бесплатный 3-х дневный интенсив | Сочетая мозговые имплантаты, искусственный интеллект и электрическую стимуляцию, группа исследователей, инженеров и хирургов разработала новую технологию «двойного нейронного шунтирования», которая восстановила движения и чувствительность рук человека с параличом. |
Вопросы и ответы
- Нейронные сети: принцип работы, перспективы и 159 современных нейронок
- Бесплатный 3-х дневный интенсив
- 1. Профессия Machine Learning Engineer от Skillbox
- В России стартовал прием заявок на курсы по искусственному интеллекту
- Очный курс в Петербурге
Что такое нейросети: на что способны, как работают и кому нужны
Нейросети для дизайнеров от «Логомашина» Специальный курс для начинающих и опытных дизайнеров по использованию нейросетей в работе. Как пользоваться, как легализовать, какие есть юридические тонкости. Продолжительность программы три месяца, доступ к лекциям сохраняется на год. Вы получите: Навыки правильного составления промптов для нейросети.
Перечень лучших нейросетей для генерации изображений. Пошаговую инструкцию по регистрации и настройкам. Уроки по созданию консистентного персонажа.
Подробный разбор использования Midjourney. Сертификат об окончании курса, есть возможность получить удостоверение о повышении квалификации. При оплате в рассрочку на 12 месяцев — 4900 руб.
Искусственный интеллект для E-commerce от iWENGO Программа дает практические навыки по использованию ИИ в E-commerce: для улучшения сервиса, товара или услуг, повышения клиентского опыта и делегирования рабочих задач нейросетям. Подходит для начинающих. Продолжительность курса: 36 часов.
Вы получите: Практические навыки применения нейросетей для роста продаж и привлечения внимания клиентов. Кейсы по разработке маркетинговых стратегий с помощью ChatGPT, анализу отзывов клиентов, составлению опросов на сайте. Бонус — мини-курс «Нейромаркетинг» по изучению поведения клиентов и методов воздействия на него.
При покупке в рассрочку от 4992 руб. При оплате сразу 59 900 руб. Сколько времени нужно, чтобы начать работу с ИИ?
Срок зависит от ваших целей, способа обучения. В сети достаточно информации для самообучения, но ее много, она разрозненная и, чтобы найти хороший источник, структурировать и упорядочить новые знания, нужно от нескольких месяцев до года. Учебные программы создаются экспертами на основе их уникального опыта.
В них нет «воды», только концентрированная выжимка самого ценного. Информация поясняется на примерах, сразу же идут практические задания: чтобы вы могли отработать новые навыки и довести их до автоматизма. Можно выбрать общий курс или более узкую специализацию для решения конкретной задачи.
Для самостоятельного обучения нужна сила воли, терпение, большая мотивация. Когда вы занимаетесь на платных курсах, вас поддерживают другие студенты и кураторы. Работать в команде всегда интереснее, вы двигаетесь пошагово, видите свой прогресс и знаете результат: сертификат, диплом, карьерный рост и т.
Если что-то не получается, вам всегда помогут. У вас есть четкие сроки обучения: 3, 6 месяцев, после которых курс заканчивается, и вы сможете двигаться дальше. Например, менять работу, должность или продолжить учиться по выбранной специализации.
Впервые за долгое время фактически сравнялась динамика двух основных сегментов — ДПО и детского образования. Smart Ranking пообщался с компаниями сегмента и узнал перспективы рынка, его тренды, драйверы и барьеры. Аналитика25 Апрель 2024 Корпобучение привлекает инвесторов.
Softline вложится в edtech-стартапы по обучению сотрудников Академия Softline в партнерстве с Softline Venture Partners запустила инвестиционную программу: небольшие edtech-компании и стартапы получат миллиард рублей на развитие своих проектов. Преимущество будет на стороне тех компаний, которые ориентируются на B2B, — Академия Softline включит их решения в свой портфель. Так, сегмент корпоративного обучения может стать самой привлекательной нишей для инвесторов в 2024 году.
Их суммарная выручка составила более 3 млрд рублей, как показало исследование Smart Ranking. Несмотря на перспективность направления, заходить в сегмент пока готовы не все — участников рынка отпугивают госстандарты и сложные бизнес-модели. По оценке Smart Ranking, сумма сделки может составить не менее 7 млрд рублей.
AI дает возможность взглянуть на свою работу и на свою жизнь по-новому! Но самое главное, по-моему, это возможность для самого себя стать Творцом и улучшать себя в этом каждый день! Хочу применить полученные знания по AI для создания нейронной сети по выявлению инцидентов на перегонах на основе данных с детекторов транспортного потока и параметрам движения общественного транспорта. ОЛЕГ Мне 55 лет и я никак не связан с программированием.
Но мне интересна область IT, пробовал делать сайты, писать их начал изучать Python, бросил и на различных конструкторах. Пару сайтов и сейчас веду, продвижение. Еще мне интересна область трейдинга и соответственно автоматизация торговли, и AI это то что мне и нужно. То что увидел сегодня на интенсиве вдохновляет!!
Начинается новая жизнь похоже! С тех пор была интересна эта тема. Очень хотелось создать что-то похожее.
ИИ обучается на результатах деятельности человека.
Соответственно, в областях, где критична человеческая ошибка, будет критична и ошибка машины. Сейчас многие студенты хотят стать стажёрами в компании «Яндекс». Чего вы ждёте от своих стажёров? На стажировку в «Яндекс» попасть непросто — компания тщательно отбирает кандидатов на любые должности.
При этом принять большое количество стажёров и вовсе нереально, поскольку за каждым новичком закрепляется наставник. Стажёры в «Яндексе» по направлению искусственного интеллекта и нейронных сетей решают крайне сложные задачи. Такой подход позволяет привить ответственность и быстро набраться опыта. Были ли какие-то стажеры, которые сразу попадали на работу в «Яндекс»?
Хороший пример: студент 4-го курса пришёл в компанию стажёром, а уже через пару лет внедрил нейронные сети в работу «Яндекса». Как компания взаимодействует с университетами? Многие сотрудники преподают в университетах. Также существуют совместные программы с вузами.
Вы отвечаете за практическую часть на базе искусственного интеллекта. Насколько много удачных экспериментов? Над чем Вы сейчас работаете? Доля неудачных экспериментов больше, нежели удачных.
И это совершенно нормально, поскольку ведётся работа над сложными продуктами. Из удачных — успех при обучении голосового помощника Алисы рисованию, а также нейросети , пишущие музыку. Каков портрет учёного в области нейросетей? Зачем вообще нужен искусственный интеллект?
Какое будущее нас ждёт? Посмотрите видео полностью, чтобы узнать ответы на эти вопросы. В дополнение к теме Сегодня часто можно услышать такие термины, как «нейронные сети», «искусственный интеллект». Эти слова уже довольно прочно вошли в русскую речь.
Использование продуктов и услуг, созданных при помощи технологий ИИ, позволит расширить возможности и результаты приоритетных отраслей национальной экономики и социальной сферы. Для достижения цели программы необходимы компетентные специалисты и визионеры, способные использовать мировой опыт в области ИИ для развития научно-технической отрасли России и создания новаторских разработок на базе отечественных цифровых технологий. По оценке Gartner, к 2025 году активное внедрение ИИ в различные отрасли экономики создаст 2 миллиона новых рабочих мест. К 2022 году каждый пятый сотрудник будет использовать технологии ИИ для решения нешаблонных задач.
Под присмотром искусственного интеллекта: как школы столицы используют нейросети
Биткоин потребляет энергии больше Норвегии, нейросети могут превзойти этот результат По мнению профессора, успеваемость в первую очередь зависит от мотивации обучающихся. ИИ всего лишь технология, результат применения которой напрямую связан с личностью студента. Если ученик хочет обмануть преподавателя, создав при помощи генеративного ИИ текст курсовой или иной работы, то он обманет лишь самого себя — знаний по изучаемой теме он не обретет. Если цель студента — глубоко изучить вопрос, исследовать поставленную задачу, ИИ поможет в поиске релевантной информации: не секрет, что поисковые системы уже несколько лет используют машинное обучение для повышения качества поиска. Ошибки могут привести к негативным последствиям. Широкое использование ИИ может потеснить человека в ряде профессий Из первых уст Преподаватель английского языка Нелли Бондарева рассказала «Известиям», что ИИ позволяет создавать персонализированные учебные планы и программы на основе потребностей и уровня знаний каждого учащегося. Эксперт отмечает, что ИИ не может заменить преподавателя, так как, например, обучение языку требует взаимодействия с носителями и практику общения. ИИ следует рассматривать скорее в качестве дополнения к традиционным методам обучения. Ее основная концепция заключается в предоставлении пользователю коротких текстов на английском языке, часто в формате историй или анекдотов, которые затем анализируются и разбираются с помощью интерактивных упражнений и вопросов.
Компьютерное зрение и библиотека PyTorch от «Специалист. Понимание процесса анализа и визуализации на Python, основных библиотек Pandas, numpy, Matplotlib. Обучение очно или онлайн. Вы получите: Понимание, что такое библиотека PyTorch, как использовать ее инструменты при глубоком обучении моделей. Практический опыт по работе с полносвязной и сверточной нейросетью. Готовые решения для реальных задач: классификации данных, распознавания объектов, поиска похожих изображений. Каждый модуль отрабатывается в практикуме. Демонстрационное приложение собственной разработки на базе библиотеки Gradio. В зависимости от программы: свидетельство, сертификат или удостоверение о повышении квалификации. Для частных лиц при оплате в кредит: от 2027 руб. Для организаций: 39 990 руб. Machine Learning. По окончании вы получите уровень Middle и сможете претендовать на более высокую должность. Для успешного завершения нужно знать Python, понимать алгоритмы машинного обучения, теорию вероятностей и математическую статистику. Продолжительность курса: 5 месяцев. Обширную базу знаний для решения сложных нестандартных задач, связанных с временными рядами, рекомендательными системами и т. Поддержку и консультации преподавателей-практиков в течение обучения. Помощь в трудоустройстве — ваше резюме будет размещено в базе OTUS и его увидят партнеры компании. Сертификат об окончании курса. В рассрочку: от 8500 руб. При оплате сразу всей суммы: 85 тыс. Нейросети для дизайнеров от «Логомашина» Специальный курс для начинающих и опытных дизайнеров по использованию нейросетей в работе. Как пользоваться, как легализовать, какие есть юридические тонкости. Продолжительность программы три месяца, доступ к лекциям сохраняется на год. Вы получите: Навыки правильного составления промптов для нейросети. Перечень лучших нейросетей для генерации изображений. Пошаговую инструкцию по регистрации и настройкам. Уроки по созданию консистентного персонажа. Подробный разбор использования Midjourney. Сертификат об окончании курса, есть возможность получить удостоверение о повышении квалификации. При оплате в рассрочку на 12 месяцев — 4900 руб. Искусственный интеллект для E-commerce от iWENGO Программа дает практические навыки по использованию ИИ в E-commerce: для улучшения сервиса, товара или услуг, повышения клиентского опыта и делегирования рабочих задач нейросетям. Подходит для начинающих. Продолжительность курса: 36 часов. Вы получите: Практические навыки применения нейросетей для роста продаж и привлечения внимания клиентов. Кейсы по разработке маркетинговых стратегий с помощью ChatGPT, анализу отзывов клиентов, составлению опросов на сайте. Бонус — мини-курс «Нейромаркетинг» по изучению поведения клиентов и методов воздействия на него. При покупке в рассрочку от 4992 руб. При оплате сразу 59 900 руб. Сколько времени нужно, чтобы начать работу с ИИ?
Дальше расскажут, как упрощать быт, писать тексты, работать с данными и генерировать идеи с ChatGPT, а потом — как создавать иллюстрации в Midjourney. Авторы обещают дать примеры готовых сценариев для запроса к нейросети, а еще научат, как писать их под свои нужды. Все советы отрабатывают на упражнениях с примерами запросов. Источник: datacamp. Тренинг ведет Пол Чапмен, менеджер учебных программ платформы Datacamp, которая специализируется на искусственном интеллекте и больших данных. Программа разделена на две части: первая рассказывает о возможностях и ограничениях ChatGPT и учит писать эффективные промпты. Ее можно пройти бесплатно.
Интеллектуальный PR для вашего бренда Заказать Другие нейросети OpenAI OpenAI также предоставляет доступ к нейронной сети GPT-3, алгоритмам машинного обучения для создания контента и прогнозирования временных рядов, инструментам для обработки естественного языка и машинного обучения, а также крупные модели, такие как Codex и CLIP. Whisper Whisper — это инструмент, предназначенный для обеспечения более безопасной и приватной коммуникации между устройствами IoT: домашними устройствами, медицинскими приборами, автомобилями и др. Кроме того, Whisper может транскрибировать речь в текст и переводить многие языки на английский. Нейронные сети, популярные в России Волна популярности нейросетей стремительно растет. В первую очередь это нейросети для генерации изображений и чаты. Нейросеть Notion AI распознает текст и изображения, автоматически заполняет базы данных, предсказывает и анализирует данные, а также отвечает на вопросы пользователей. Bing AI — это разработка компании Microsoft, владеющей поисковой системой Bing. Нейросеть способна обрабатывать запросы пользователей, показывать результаты поиска, предлагать схожие запросы, а также выполнять другие задачи, связанные с поиском информации в Интернете. Есть и другие нейросети, которые контент-мейкеры могут использовать как удобный инструмент. С их помощью можно сделать из обычной аудиозаписи звук студийного качества, высокоточный AI-перевод, убрать фон на изображении, улучшить размер и качество изображения, создать эффектную презентацию и решать еще огромное множество повседневных задач, в том числе для маркетинга. ИИ сам составляет контент-планы, пишет сценарии для Reels и даже выявляет «боли» и потребности аудитории при правильном запросе. Еще ChatGPT можно использовать для рерайта материалов, но каркас лучше подготовить самим. В копирайте применяем аккуратно, пока только для соцсетей. Используем Notion: она хорошо справляется с базовыми задачами, но еще многого не умеет. Чего не может делать искусственный интеллект В нем, безусловно, нет human touch, глубокой аналитики, поэтому он не может полностью заменить человека — профессионального маркетолога и пиарщика. Дизайнеры отдают предпочтение Wombo и Midjourney. Не всегда можно найти нужную иллюстрацию или картинку на стоке, намного быстрее будет сгенерировать изображение и немного его доработать. Большой плюс в том, что на выходе у тебя уникальная картинка, сделанная искусственным интеллектом, на которую не надо покупать права но надо купить доступ к нейросети, как правило, они имеют платный абонемент. Чего не может neural network: — корректно работать с неоднозначными вопросами; — учитывать контекст особенности аудитории, площадки, где будет размещен текст, и другие подобные нюансы ; — находить интересную фактуру: примеры, детали, кейсы и прочее иногда нейросеть справляется, но зачастую материала не хватает — получается суховатое изложение фактов; и, конечно, нейросеть не сможет поговорить с экспертом и добавить в материал ту фактуру, которой нет в Интернете ; — использовать собственный опыт и экспертность: у нейросети нет собственного опыта, а у человека есть. Практические советы Что дает ChatGPT Plus и зачем он нужен ChatGPT Plus — это платная подписка, по которой пользователи получают дополнительные преимущества, такие как приоритетный доступ к обновлениям и новым функциям, быстрый ответ от модели и обслуживание высокого качества. Это помогает поддерживать бесплатное использование ChatGPT для как можно большего числа пользователей. Что такое промпты prompts в ChatGPT и чем они могут быть полезны Промпты — это подсказки или вопросы, которые пользователь дает нейронной сети для получения ответа или генерации текста. Простыми словами, промпты — это заранее внедренный контекст в вашу переписку с ChatGPT условное забалтывание. При классическом использовании промпты помогали делать базовые, но хорошо оптимизированные сценарии для YouTube, статьи для блогов, посты для соцсетей и т. Но есть и темная сторона: еще с самых первых версий шла война пользователей и создателей ChatGPT, связанная с тем, что первые пытались обойти систему. С помощью промптов-забалтываний ChatGPT мог начать выражать условное собственное мнение, предсказывать будущее и т. Секреты доступа к нейросетям для россиян Три правила для регистрации: VPN, почта не на домене «. Общие советы по работе с искусственным интеллектом Проверка фактов Руководствоваться здравым смыслом и обязательно проводить фактчекинг. Знания, ограниченные временем Учитывать, что модели могут не знать о текущих событиях.
Путешествие в мир искусственного интеллекта
Одной из основных причин, по которой родители и учителя скептически относятся к нейросетям и чат-ботам, является страх, что искусственный интеллект лишит детей способности размышлять, анализировать и самостоятельно искать ответы. Известный исследователь машинного разума пришёл к выводу, что разработчики нейросетей очень слабо представляют себе, что они создают. Оператор Искусственного Интеллекта. Новости Искусственного Интеллекта (ИИ), машинное обучение, квантовые компьютеры, нейронные сети и другие научные новости и открытия в сфере Искусственного Интеллекта.
ChatGPT, Lexica и другие нейросети: мнение учителей о новых инструментах в руках школьников
Эволюция и стоимость обучения искусственного интеллекта: от Transformers до Gemini Ultra. Искусственный интеллект Gemini от Google превзошел всех людей и нейросети в 57 науках. Нейросети, AI, искусственный интеллект, ML, ИИ —. так называют сложные математические модели, созданные людьми. Узнаете, что такое искусственный интеллект и нейросети. Поймете, почему их нужно осваивать именно сейчас. Составите список дел, которые сможете им делегировать уже сейчас.
Нейронные сети: принцип работы, перспективы и 159 современных нейронок
Ажиотаж вокруг гаджета спал быстрее, чем ожидалось, а владельцы перепродают топовую модель очков Apple с ощутимыми скидками. В их числе работники колл-центров. Уже сейчас некоторые компании заменяют персонал служб поддержки по телефону генеративным ИИ и буквально через год в отрасли, возможно, будут использоваться только чат-боты на базе ИИ. Согласно данным Gartner в 2022 году в индустрии центров поддержки клиентов работало около 17 млн человек. Перед стартом состоялся показательный соревновательный заезд между Даниилом Квятом на обычном болиде и беспилотником. Выручка Intel больше не снижается, и компания остаётся крупнейшим производителем процессоров для ПК и ноутбуков. Но продажи в I квартале не оправдали ожиданий аналитиков, и собственный прогноз Intel на текущий квартал отражает слабый спрос. Это непростой момент для гендиректора Пэта Гелсингера Pat Gelsinger который находится у руля уже четвёртый год.
Проблемы Intel накапливались десятилетиями. Уязвимость затрагивает неисчислимое множество процессоров, а её устранение грозит катастрофическим снижением производительности. Компания переложила вину на производителей материнских плат, которые при разработке BIOS не последователи спецификациям процессоров и направленным им рекомендациям. Компания отрабатывает технологию захвата и свода в атмосферу ненужного хлама в окружении Земли, чтобы запускам ракет и спутникам ничего не угрожало.
В этом году стало известно, что ИИ будет интегрирован в один из самых востребованных курсов по программированию в «Гарварде». Начиная с осени, учащиеся смогут использовать ИИ, чтобы находить ошибки в своем коде, оставлять отзывы о дизайне студенческих программ. Об этом «Известиям» рассказал генеральный директор компании «Дататех» Юрий Евтушик. Менеджер проекта «Контур.
Класс» Алиса Кричевская выделяет две проблемы интеграции ИИ в образовательный процесс. Первой является то, что искусственный интеллект может выдавать неверную информацию, а ученик, в свою очередь, принимать ее за истину. Поэтому сегодня важно обладать критическим мышлением, уметь проверять данные, эти навыки становятся более востребованными. Второй проблемой эксперт называет отсутствие единых критериев для оценивания материала, созданного при помощи ИИ. Непонятно, как решать вопрос авторского права.
Модель используется в образовательной организации Khan Academy и в мобильном приложении Be My Eyes, которое помогает плоховидящим посредством видеозвонков. Функция "Виртуальный волонтер", которую планируют интегрировать в Be My Eyes, будет содержать генератор голосового описания изображений. Почти все эксперты высоко оценили работу, проделанную датасайентистами OpenAI Так по оценке технического директора компании Cloud, Федора Прохорова, GPT4 - это действительно значительный шаг вперед в области универсальных ML-моделей. Однако, несмотря на впечатляющие характеристики GPT4, у сообщества ИИ-разработчиков возникли вопросы к Open AI, которая практически не предоставила никакой информации о данных, используемых для обучения системы, затратах на разработку и обучение, характеристиках оборудования и методах, использованных для создания GPT-4. Закрытый подход является самым заметным за последнее годы изменением политики OpenAI, которая была основана в 2015 году небольшой группой экспертов и бизнесменов, и в которую входили нынешний генеральный директор Сэм Альтман, генеральный директор Tesla Илон Маск ушел из совета директоров в 2018 году и исследователь ИИ Илья Суцкевер. Изначально OpenAI позиционировалась, как некоммерческая организация, но позже стала "компанией с ограниченной прибылью". Это было сделано для того чтобы обеспечить миллиардные инвестиции от Microsoft, с которой было заключено эксклюзивное партнерство. На вопрос издания The Verge, почему OpenAI изменила свой подход к публикации своих исследований, главный научный сотрудник и соучредитель OpenAI Суцкевер ответил: " Если вы, как и мы, верите, что в какой-то момент ИИ - станет чрезвычайно, невероятно мощным, тогда в открытом исходном коде просто нет смысла. Это плохая идея… Я полностью ожидаю, что через несколько лет всем станет совершенно очевидно, что ИИ с открытым исходным кодом просто неразумен". Многие в сообществе ИИ раскритиковали это решение, отметив, что оно подрывает дух компании OpenAI, как исследовательской организации и затрудняет повторение ее работы другими исследователями.
Линейный слой Dense 08 Обучающая, проверочная и тестовая выборки. Переобучение НС 09 Сверточные нейронные сети 10 Обработка текстов с помощью нейронных сетей 11 Рекуррентные и одномерные сверточные нейронные сети 12 Классификация изображений и текстов на AutoML 13 Библиотеки Pandas и Matplotlib 14 Решение задачи регрессии с помощью нейронных сетей 15 Обработка временных рядов с помощью нейронных сетей 16 Оценка табличных данных и предсказание временных рядов на AutoML 17 Сегментация изображений 18 Сегментация изображений на фреймворках 19 Object detection на изображениях и видео.
Семинар Проблемы ИИ 25.10.2023
То есть все задачи, которые связаны с обработкой визуальных данных, называют компьютерным зрением. Это, например, поиск похожих картинок, детекция объектов и подобные вещи. В частности, с помощью компьютерного зрения мы учим программы на лету распознавать нужные объекты. К примеру, в любом супермаркете у дома есть камеры. А ещё есть сервер, который обрабатывает видео: нейросети следят, чтобы полки в магазине всегда были заполнены товаром. Если где-то мало помидоров или детского питания, нейронка сигнализирует человеку — и он добавляет товар. Вернёмся от помидоров к Шедевруму. Как у вас распределены роли? В Шедевруме есть две команды. Мои ребята — это исследователи машинного обучения. Они отвечают за то, чтобы как можно лучше обучать сеть генерировать картинки, видео и другой контент.
А есть команда, которая занимается приложением. Она следит за тем, чтобы всё классно работало, было красиво, придумывает продуктовое развитие — это команда Николая. Недавно Шедеврум научился генерировать короткие видеоролики! Нейросеть создаёт видео длиной четыре секунды с частотой 24 кадра в секунду. После публикации ими можно поделиться с друзьями или сохранить в формате MP4. Чтобы получился ролик, сперва нужно описать текстом то, что хочется увидеть. В ответ приложение предложит четыре варианта первого кадра и набор анимационных эффектов для создания движения. Нейронка берёт за основу выбранное пользователем изображение, создаёт набор его изменённых версий и объединяет всё выбранным эффектом. Сейчас их семь: зум приближение , таймлапс ускоренная перемотка , полёт, панорама, вращение, подъём и морфинг постепенное изменение. А какие сотрудники тебе всегда нужны в команду?
И где их найти? Вот три группы специалистов, которых я всегда жду. Machine learning research инженеры, чтобы выдвигать гипотезы, писать код по их имплементации, проверять их, читать статьи и генерировать свои идеи по улучшению нейросетей. Их главная задача — развивать область генеративных моделей, проводить нетривиальные эксперименты и исследовать новые подходы в диффузионных моделях. Их задача — писать код, чтобы всё работало. В то время как ML-инженеры разрабатывают модели обучения машин, MLOps-инженеры программируют весь цикл машинного обучения: от разработки до внедрения и поддержки. Этим специалистам должно быть интересно работать над высоконагруженными сервисами, использующими нейросети, а также развивать экосистему инструментов вокруг новейшей и динамично развивающейся области генеративных моделей.
Она состоит из 16 нейросетей-экспертов с размером по 111 миллиардов параметров каждая. За счёт архитектуры MoE элементы системы работают параллельно и в каждый момент времени ответы даёт лишь один виртуальный «эксперт», снижая вычислительные затраты и увеличивая скорость работы.
Читайте также: Основные тренды Можно выделить несколько направлений в развитии языковых моделей, которые сохранятся в ближайшем будущем: Инженеры разрабатывают новые подходы к архитектуре нейросетей для замены Transformer. Например, GPT-4 использует модель смешанных экспертов, а отечественный проект Fractal GPT — симбиоз графовых моделей и многоагентных систем. Google и другие компании работают над повышением точности ответов LLM, при одновременном снижении их размерности. Так, новая модель PaLM 2, по сообщениям разработчиков , меньше, чем исходная PaLM, но лучше и быстрее справляется с задачами из разных областей. Разработчики языковых моделей ищут новые методы обучения LLM, которые смогли бы уменьшить объём необходимых тренировочных данных и снизить трудоёмкость их разметки. Например, обучают модели на синтетических данных , созданных другой нейросетью. Нейросети учатся искать актуальную информацию в интернете и обращаться к внешним сервисам. Чаще всего для этого используют систему плагинов, по аналогии с решением, используемым в ChatGPT. Компании увеличивают длину контекстного окна для повышения точности ответов.
GPT-4 и Claude 100K способны воспринимать более 100 тысяч токенов за раз. На подходе технологии с ещё более внушительными параметрами — до 1—2 миллионов токенов. Инженеры работают над уменьшением числа галлюцинаций и токсичного вывода в моделях. Нейросети учатся понимать промпты на локальных языках и отвечать на них. Сегодня существующие модели охватывают лишь сотню языков из более чем 7000 известных. В 2023 году для формирования набора данных для 1100 неохваченных ранее языков запущен проект Massively Multilingual Speech MMS. IT-гиганты повышают секретность в отношении своих проприетарных моделей. Теперь отчёты о выходе новых версий нейросетей больше похожи на рекламные брошюры с описанием возможностей, а не на техническую документацию. Китай становится альтернативным центром развития генеративного ИИ, способным бросить вызов американским компаниям.
К 2023 году в этой стране разработали более 130 LLM. Читайте также: Стремительный тигр, мудрый дракон: проекты и перспективы Китая в гонке генеративного ИИ Чего ждать в 2024 году Лидеры IT-индустрии продолжат скрывать подробности о внутреннем устройстве и параметрах обучения своих моделей. Связано это с тем, что именно они, а не только внушительный размер LLM, теперь являются конкурентными преимуществами. Самое ожидаемое событие 2024 года — выход языковой модели следующего поколения от компании OpenAI. Ходят слухи, что GPT-5 сможет достичь уровня AGI по ряду ключевых показателей, что может привести к непредсказуемым последствиям для отрасли ИИ и всего человечества. Читайте также: Новый уровень искусственного интеллекта: что такое AGI, когда он появится и каким будет В любом случае нейросети следующего года станут более эффективными, то есть будут работать лучше при тех же или даже меньших размерах. Они смогут за один проход понимать тексты, сопоставимые по объёму с романами Льва Толстого, на лету считывать новости из интернета, решать сложные задачи за счёт обращения к внешним сервисам и быстро учиться на актуальных данных, в том числе синтезированных. Мы ждём от них умения общаться с пользователями на их родных языках, включая редкие местные наречия. И конечно, будем следить за нейросетями из Китая, эффективность и качество работы которых продолжат расти, догоняя лучшие западные аналоги.
При этом LLM ближайшего будущего, скорее всего, будут более стабильны, безопасны и, возможно, скучны. Они не станут генерировать бред и обсуждать скользкие темы. А взлом с помощью джейлбрейк-промптов постепенно станет невозможным. Виктор Носко генеральный директор компании «Аватар Машина», создатель чат-бота-психолога « Сабина Ai », соавтор проекта FractalGPT — Думаю, что в больших языковых моделях в мировом масштабе наступила эпоха стагнации: теперь новые эмерджентные свойства не будут возникать с ростом числа параметров.
Суть задачи: пусть имеется обучающая выборка X 1 , Y 2 , X 2 , Y 2 ,... Суть задачи: найти максимальное или минимальное значение целевой функции, удовлетворяющее системе ограничений. Следовательно, с помощью искусственных нейронных сетей можно решать задачи из разнообразных областей, а именно: обработка зашумленных данных, распознавание и дополнение образов, распознавание речи, ассоциативный поиск, абстрагирование, классификация, прогнозирование, оптимизация, составление расписаний, диагностика, обработка сигналов, управление процессами, сегментация сигналов и данных, моделирование сложных процессов, сжатие информации, машинное зрение. Как уже отмечалось ранее, основное преимущество искусственных нейронных сетей заключается в том, что они строят модель на основе предъявленной информации, т. Именно по этой причине искусственные нейронные сети широко применяются в тех области человеческой деятельности, где есть плохо алгоритмизуемые задачи.
Например: — Ввод и обработка информации: распознавание рукописных текстов, отсканированных почтовых, платежных, финансовых и бухгалтерских документов. Также продолжат в дальнейшем совершенствоваться искусственные нейронные сети, используемые в финансовом прогнозировании, в информационной безопасности шифрование данных, контроль трафика в компьютерных сетях , археологических данных. В настоящее время наблюдается устойчивая тенденция поиска эффективных методов синхронизации работы искусственных нейронных сетей на параллельных устройствах. Еще одна современная тенденция использования искусственных нейронных сетей — это вычисления. Современные нейрокомпьютеры в основном используются в программных продуктах, поэтому редко используют свой потенциал «параллелизма». Параллельные нейровычисления начнут бурно развиваться тогда, когда на рынке появится большое число специализированных нейрочипов и плат расширений, предназначенных для обработки речи, видео, статических изображений и других типов образной информации. Пока это время еще не наступило по причине их дороговизны или их выпуска только в составе специализированных устройств. На разработку нейропроцессоров тратится большое количество времени, за которое программные реализации на самых последних компьютерах оказываются лишь на порядок менее производительными, что в конечно итоге делает их использование нерентабельным. Смеем предположить, что решение данной проблемы — это лишь только вопрос времени.
Искусственные нейронные сети пройдут тот же путь, что и компьютеры: будут постепенно увеличивать свои возможности и производительность, находя области использования по мере появления новых задач и развития технической базы для их разработки. Также намечается перспектива модификации интерфейса взаимодействия пользователя с нейронной сетью — интерфейс будет основан на новом виде программного обеспечения «Agentware» — интеллектуальных агентах. Агенты будут осуществлять взаимодействие не только со своим пользователем, но и с другими такими же агентами и со специальными сервисами. Вследствие этого в сети возникнет новый социум с самообучающимися агентами, принимающими решения от имени пользователя. Бэстенс Д. Нейронные сети финансовые рынки: принятие решений в торговых операциях. Заенцев И. Нейронные сети: основные модели. Каллан Роберт Основные концепции нейронных сетей: Пер.
Круглов В. Искусственные нейронные сети. Теория и практика.
Как изменить выбранную программу? Если вы подали заявку на программу, но еще не заключили договор с образовательной организацией, вы можете изменить программу.
Для этого необходимо написать на ai-help 2035. Изменить программу после заключения договора с образовательной организацией нельзя. Кто может получить финансирование от государства на обучение?
Яндекс Образование
Международный конкурс по искусственному интеллекту для молодежи. Выдающийся преподаватель иностранного языка и автор собственной методики обучения рассказала о том, как искусственный интеллект меняет образование. Проблема искусственного интеллекта в образовании. Искусственный интеллект может помочь улучшить качество обучения, ускорить процесс и повысить эффективность. Лаборатория «Искусственный интеллект в биоинформатике и медицине» работает над созданием нейросети, способной объединять знания из разных публикаций.