Новости реактор на быстрых нейтронах в россии

Заметим, что и быстрые нейтроны появились в Поднебесной не без участия России. В отличие от водо-водяных энергетических реакторов (ВВЭР), реактор на быстрых нейтронах в качестве теплоносителя использует не воду, а жидкий металл, в данном случае — натрий. «Прорыв» относится к поколению так называемых реакторов на быстрых нейтронах, работающих по принципу замкнутого цикла, то есть без отходов. Сообщается, что отечественные реакторы на быстрых нейтронах ранее загружались обычным урановым топливом, т. к. отрабатывали на них натриевые технологии. «Россия продолжает шаг за шагом использовать те уникальные преимущества, которые дают нашей отрасли мощные реакторы на быстрых нейтронах.

Быстрые нейтроны на земле, под водой и в реакторах Поднебесной: кто этому прокладывал дорогу?

Испытания говорят о появлении принципиально новых ядерных реакторов, так называемых реакторов на быстрых нейтронах. В реакторах на быстрых нейтронах обходятся без замедлителей. Но картина решительно меняется при рассмотрении широкомасштабного внедрения ядерных реакторов на быстрых нейтронах и замыкании топливного цикла.

Уникальный реактор обеспечит энергетическое будущее России

«Росатом» начал возводить в Томской области уникальный реактор на быстрых нейтронах. Причина, по которой нет плутониевых реакторов на быстрых нейтронах, впрочем, весьма простая. По сути, реактор на быстрых нейтронах превратится в “перпетуум мобиле”. Кроме того, реакторы на быстрых нейтронах, работая на МОКС‑топливе, способны нарабатывать плутоний, которого хватит, чтобы обеспечить себя и при необходимости другие реакторы новым топливом. Именно этот инновационный реактор на быстрых нейтронах стал настоящей мировой сенсацией, когда первым на планете целый год вырабатывал энергию на МОКС-топливе.

Россия на пороге создания нового реактора на быстрых нейтронах

Новый ядерный реактор на быстрых нейтронах со свинцовым теплоносителем должен стать демонстратором уникальной технологии – полностью замкнутого ядерного топливного цикла. При выстраивании двухкомпонентной атомной энергетики с замыканием ядерного топливного цикла то, что не знали куда деть, становится ценнейшим сырьем – реакторы на быстрых нейтронах «питаются» тем, что остается после работы обычных реакторов. Программа «Росатома» предполагает использовать блоки с «быстрыми» реакторами в сочетании с реакторами на тепловых нейтронах. Но картина решительно меняется при рассмотрении широкомасштабного внедрения ядерных реакторов на быстрых нейтронах и замыкании топливного цикла. МБИР — многоцелевой исследовательский реактор на быстрых нейтронах — резко отличается от своих прошлых собратьев тем, что специально задуман как «многоликий». «Росатом» приступил к строительству в России атомного энергоблока с инновационным реактором на быстрых нейтронах БРЕСТ-ОД-300.

Бесконечная энергия: «Росатом» строит первый в мире реактор с замкнутым циклом

Здесь были выдвинуты и реализованы идеи создания реакторов на быстрых нейтронах и реакторов с прямым преобразованием ядерной энергии в электрическую. В перспективе можно обеспечить им атомную энергетику на тысячелетия вперед, сделав ее безотходной, и тогда реакторы на быстрых нейтронах станут своеобразными вечными двигателями, которые будут снабжать потребителей копеечной электроэнергией. Кроме того, реакторы на быстрых нейтронах, работая на МОКС‑топливе, способны нарабатывать плутоний, которого хватит, чтобы обеспечить себя и при необходимости другие реакторы новым топливом. В нем реакторы на быстрых и на тепловых нейтронах будут работать совместно, обмениваясь топливом. Этот проект нужен для отработки технологии реакторов на «быстрых» нейтронах с использованием уранплутониевого топлива.

Multi-Purpose Fast Reactor (MBIR)

Одной из важных задач этого года является выбор топлива для реактора БН-1200М». Быстрая тематика — главный приоритет Физико-энергетического института им. Лейпунского, который выполняет функции научного руководителя всех проектов российских натриевых реакторов. Такие эксперименты обеспечивают технологическое лидерство России в мире и создают задел на создание новых реакторов и атомных электростанций, обеспеченных современными технологиями и высококвалифицированным персоналом. Для справки: Акционерное общество «Государственный научный центр Российской Федерации — Физико-энергетический институт имени А.

Эксперименты продолжились. Начиная с 1969 года в НИИ атомных реакторов в Димитровграде работает БОР-60 — в нём исследуют топливо и материалы для быстрых реакторов. Затем был БН-600, который запустили в 1980-м, — он, кстати, также действует до сих пор.

В январе 1997 года получил лицензию на производство проект реактора БН-800, в декабре 2015-го блок с этим реактором заработал на Белоярской АЭС. Мы берём ядерные отходы, делаем из них МОКС-топливо, кидаем его в реактор, оно там выделяет энергию, производит плутоний — и так до бесконечности? Если говорить простым языком, из отработанного МОКС-топлива сначала удаляются вредные и ненужные продукты ядерной реакции — осколки деления.

А уран и плутоний остаются. Мы «подливаем» в них недостающие элементы — и вот тогда снова отправляем работать в реактор. У МОКС-топлива есть ещё одно преимущество, как подарок будущим поколениям, — замыкание топливного цикла с точки зрения утилизации америция и нептуния.

Это два очень вредных продукта деления ядерной реакции в любом реакторе. И реактор на быстрых нейтронах немного уменьшает их количество. То есть если топливо изначально содержит америций или нептуний, то можно таким образом облучить это топливо в реакторе на быстрых нейтронах, что они выгорят или превратятся во что-то более нейтральное, — и всё, не нужно это опасное вещество где-то хранить.

Для справки В чём различие между тепловым и быстрым реактором? В первом случае в качестве теплоносителя используется вода: ядерное топливо нагревает её до температуры кипения, полученный пар вращает турбины, которые вырабатывают электричество. В БН-800 вместо воды берут натрий.

Он не только позволяет использовать в качестве топлива уран-238, которого много на Земле, но ещё и намного безопаснее, потому что при одинаковой мощности давление в быстром реакторе в разы меньше, чем в тепловом, хотя вода нагревается только до 300 градусов Цельсия, а натрий — до 500, что даёт больше тепла и электричества. Не знаете, каковы результаты этого эксперимента? Помимо МОКСа есть ещё и другие инновационные виды топлива.

Но МОКС — пока самый перспективный вариант, просто потому, что уже есть и отлично работает. Реактор построен, чертежи на него есть, никто не мешает взять и в любом подходящем месте построить ещё один такой реактор. Это топливо предназначено для тепловых реакторов.

СНУП-топливо представляет собой смесь обеднённого урана и плутония, однако не в оксидной, а в нитридной форме. Сырьё здесь — обеднённый или природный уран и плутоний, который в природе уже давно закончился: весь плутоний, который есть на планете, создан человеком. Рано или поздно уран тоже закончится.

Реактор планируется ввести в эксплуатацию во второй половине 2020-х годов. В ходе этой операции окончательно проверяется достижение проектных геометрических параметров всех элементов и подтверждается работоспособность реактора», — цитирует Никипелова РИА «Новости». По словам Никипелова, такие реакторы строятся раз в 50 лет и это «действительно штучный продукт». На базе МБИР планируют создать международный центр исследований, в рамках которого зарубежные участники смогут выполнять эксперименты. Строительство МБИР началось в 2015 году.

Реактор на быстрых нейтронах — ядерный реактор, в активной зоне которого нет замедлителей нейтронов вода или графит. Отсюда и название этого типа реакторов, которые позволяют превращать отработавшее ядерное топливо в новое топливо для АЭС, образуя замкнутый ядерно-топливный цикл. Реакторы на быстрых нейтронах используют в качестве теплоносителя не воду, а легкоплавкие металлы. MOX Mixed-Oxide fuel — ядерное топливо, которое содержит несколько видов оксидов плутония и урана.

В январе 2021 года после очередной перегрузки доля МОКС-топлива выросла до трети. В январе текущего года — до двух третей. В конце сентября блок был полностью загружен МОКС-топливом, изготовленным на Горно-химическом комбинате в городе Железногорске Красноярского края. Главное преимущество реактора на быстрых нейтронах состоит в том, что он позволяет превращать отработавшее ядерное топливо в новое топливо для АЭС, образуя замкнутый ядерно-топливный цикл. Таким образом, атомная энергетика будущего, в создании которой лидируют российские атомщики, не будет иметь ядерных отходов. Кроме того, реактор на быстрых нейтронах позволяет использовать уран-238, запасов которого хватит более чем на три тысячи лет. Вообще-то, Россия не является пионером в создании реакторов на быстрых нейтронах, но она стала первой, кто преуспел в этом. Первым атомным реактором на быстрых нейтронах с натриевым теплоносителем стал американский EBR I, запущенный 20 декабря 1951 года, но к электросетям он подключен не был, энергия использовалась в основном для освещения здания, в котором находился реактор. В 1965 году реактор остановили и запустили второй такой же, но в 1994 году остановили.

«Росатом» начал строить первый в мире атомный энергоблок с безотходным циклом

Специальный модуль создает ядерное топливо, затем оно поступает в энергоблок «Брест-ОД-300» на быстрых нейтронах, а после переработки то же самое топливо возвращается обратно в реактор, и снова по кругу. БРЕСТ — это опытный образец. Его примерная стоимость — 100 миллиардов рублей, но затраты на производство энергии будут значительно ниже, чем на обычных АЭС. Что касается безопасности, то «Прорыв» решает проблему с захоронением отходов. Теперь их просто не нужно накапливать, ведь отработанное топливо будут использовать снова.

Он станет частью опытно-демонстрационного энергетического комплекса ОДЭК , важнейшего для всей мировой ядерной энергетики объекта, создаваемого в рамках отраслевого проекта «Прорыв», который реализуется в России с 2010-х годов. Ожидается, что реактор заработает во второй половине 2020-х годов. По принципу естественной безопасности Перед началом официального старта мероприятия руководитель проектного направления «Прорыв», специальный представитель по международным и научно-техническим проектам госкорпорации «Росатом» Вячеслав Першуков рассказал журналистам, что конструкция реактора БРЕСТ-ОД-300 со свинцовым теплоносителем основана на принципах так называемой естественной безопасности. По его словам, интегральная конструкция и физика реакторной установки позволяют исключить аварии, требующие эвакуации населения. Он уверен, что в будущем подобные установки должны сделать атомную энергетику «не только более безопасной, но и более экономически конкурентной по сравнению с наиболее эффективной тепловой электрогенерацией».

Она также подчеркнула, что «сама идея проекта "Прорыв" — это не только новое поколение реакторов, но и новое поколение технологий ядерного топливного цикла». Все они искренне радовались этому стартовавшему в России инновационному и очень важному для всей атомной энергетики проекту.

На основе МБИРа создается самая современная исследовательская площадка не только для России, но фактически для всего мира. Росатом неоднократно заявлял, что открыт для взаимовыгодного сотрудничества в данном проекте со всеми заинтересованными сторонами, поэтому и возникла идея сформировать на базе МБИРа Международный центр исследований.

Росатом предложил зарубежным партнерам уникальную возможность — принять участие в создании исследовательской инфраструктуры, которая нацелена на решение актуальных научных задач в обоснование инновационных реакторных концепций и будет отвечать всем передовым требованиям. Универсальная исследовательская установка с высоким нейтронным потоком не может быть реализована в малом масштабе или на модульной основе, таким образом, высокая стоимость — неизбежный фактор. Данный факт приводит к идее, продвигаемой МАГАТЭ, а именно к региональным «центрам коллективного пользования», в рамках которых один реактор может обслуживать потребности многих стран. Участвуя в проекте, международные партнеры смогут получить доступ к уникальному инструменту, которого нет больше нигде в мире, и при этом минимизировать и оптимизировать свои расходы.

Текущий год стал отправной точкой для проведения работ по созданию МЦИ. Росатом уже подписал два международных меморандума о сотрудничестве и планирует до конца года подписать еще несколько. Таким образом, будет сформирован круг ключевых участников, которые смогут активно влиять на развитие проекта и условия участия в нем. В 2016 г.

МБИР можем стать единственной подобной установкой в мире. Максимальная плотность потока нейтронов 5. Предусматривается, что новая исследовательская ядерная установка будет иметь несколько независимых петель с автономным охлаждением, набор инструментованных ячеек в активной зоне, а также большое количество ячеек для размещения материаловедческих сборок. Технические характеристики МБИРа позволят решать широкий спектр задач, в том числе в области экспериментального обеспечения научно-исследовательских и опытно-конструкторских работ по созданию инновационных ядерно-энергетических установок нового поколения. Реактор позволит осуществлять отработку технологий замыкания топливного цикла и утилизации радиоактивных отходов, проводить комплексные исследования по радиационному материаловедению, включая создание новых конструкционных, топливных и поглощающих материалов, а также осуществлять комплексные экспериментальные работы с использованием нейтронного и других видов реакторных излучений для фундаментальных исследований. Мощность для исследовательского реактора не важна, но она прямо связана с нейтронным потоком, который и является главным инструментом исследований. А поток влияет на сроки набора дозы облучения — возможность провести эксперименты с облучением за три года вместо 10 лет безусловно важна для исследователей, и это и является главным преимуществом высокопоточного реактора, так же, как и возможность проведения экспериментов в более широком диапазоне температур. На основе МБИРа создается самая современная исследовательская площадка не только для России, но фактически для всего мира.

Росатом неоднократно заявлял, что открыт для взаимовыгодного сотрудничества в данном проекте со всеми заинтересованными сторонами, поэтому и возникла идея сформировать на базе МБИРа Международный центр исследований. Росатом предложил зарубежным партнерам уникальную возможность — принять участие в создании исследовательской инфраструктуры, которая нацелена на решение актуальных научных задач в обоснование инновационных реакторных концепций и будет отвечать всем передовым требованиям.

Атомный феникс для вечного двигателя

В 2023 году производства МОКС-топлива, созданное на Горно-химическом комбинате, полностью перешло на изготовление оболочек тепловыделяющих элементов из хромоникелевой аустенитной стали ЭК164. В перспективе это позволит повысить уровень выгорания ядерного топлива и увеличить длительность топливной компании, тем самым сделав эксплуатацию энергоблока более экономически эффективной. Следующим шагом станет изготовление и загрузка в реактор БН-800 опытных МОКС-ТВС, содержащих минорные актиниды америций, нептуний — наиболее высокоактивные и токсичные элементы, содержащиеся в облученном ядерном топливе. Таким образом, российские атомщики первыми смогут использовать еще одно конкурентное преимущество «быстрых» реакторов, позволяющих «дожигать» минорные актиниды вместо глубокого геологического захоронения в качестве ядерных отходов. Инновационные технологии Росатома основаны на передовых достижениях российской атомной науки и в полной мере отвечают актуальной ESG-повестке.

Достигнутые результаты — это труд тысяч высококвалифицированных профессионалов, которые работают в интересах экономической стабильности России.

Во время планово-предупредительного ремонта на энергоблоке также был осуществлен капитальный ремонт главного циркуляционного насоса, техобслуживание и ремонт насосов теплообменников, парогенераторов и турбогенератора. В ходе ППР специалисты также выполнили эксплуатационный контроль металла и сварных соединений трубопроводов, испытали системы контроля герметичности оболочек с использованием метрологической сборки. Это именно та веха, ради которой изначально проектировался БН-800, строился уникальный атомной энергоблок и автоматизированное производство топлива на ГХК», — сказал он.

Это разведка и добыча урана в Армении, где объем залежей оценивается до 40 тыс. Имеются планы и договоренности о совместных работах по добыче урана в Африке и Канаде. Это, наконец, поставки урана из Австралии, занимающей первое место в мире по объему запасов урана - 990 тыс. Последняя договоренность вызвала недовольство в некоторых кругах США. Объясняется все просто: это свидетельствует о разработке планов по значительному увеличению добычи урана в нашей стране.

Не останавливаясь подробно на этом вопросе, отметим некоторые моменты. Во-первых, это произошедшее за последние годы многократное повышение цен на природный уран - с 6,4 долл. Как результат - пересмотрены оценочные запасы урана в России в сторону увеличения, по меньшей мере, до 600800 тыс. А согласно информации руководителя Федерального агентства по недропользованию Анатолия Ледовских, ресурсы урана «по категории Р-1 должны быть увеличены до 2020 г. И, во-вторых, увеличены планы добычи урана в республиках Бурятия и Саха Якутия , Забайкальском крае и в Курганской области.

Это значительная по объемам и очень серьезная работа всей отрасли - строителей, геологов, других специалистов. В этой связи возникает вопрос, все ли есть сегодня в России для широкого развития ядерной энергетики, для достижения объемов, намечаемых многими странами мира? Представляется, что пока еще не все! Нет достаточной четкости у авторов проекта расширения числа АЭС в России, что видно из плана создания атомных станций до 2020 г. И тем не менее из них не ясно, где намечается строительство станции «Центр» два блока по 1200 МВт или «Кола» четыре блока по 1200 МВт.

Вот, например, руководитель отрасли считает, что «до 2030 г. Россия может претендовать на строительство у себя мощностей до 40 ГВт». В то же время, если строительство будет идти в соответствии с намеченной «дорожной картой», то к 2030 г. Но это, по-видимому, мелочи по сравнению с другими более серьезными недостатками плана. Главное для реализации столь грандиозных планов - необходимое количество квалифицированных строителей и монтажников, притом значительное, а также надежно обеспеченные поставки оборудования.

К сожалению, Минатом России в чрезвычайно сложные девяностые годы не досчитался в своем составе трех главных управлений строителей и монтажников. Ряд предприятий, поставлявших в отрасль механическое оборудование, были переориентированы на иные задачи, другие оказались за рубежом, например на Украине. Поэтому сегодня руководство Росатома вынуждено решать и эти задачи, поскольку без них построить станции будет сложнее и дороже. Уже сейчас отставание с окончанием стройки Ростовской АЭС на полгода из-за задержки изготовления оборудования - первая ласточка возможных трудностей в будущем. И имеющаяся договоренность с Европой по обеспечению России оборудованием для машинных залов АЭС - тоже вынужденная мера, не характерная для развитых государств мира.

Отрицательно сказываются на увеличении общих затрат и такие факты, как отставание наших ядерных энергоблоков по мощности от зарубежных аналогов. И мы верим, что госкорпорация «Росатом» справится с имеющимися сложностями. Названные выше меры, предпринимаемые в целях развития ядерной энергетики в нашей стране, - еще не весь объем необходимых работ. В России он должен быть комплексным - от добычи урана до захоронения радиоактивных отходов. Сегодня для заключительной стадии ядерной энергетики под Красноярском г.

Железногорск срочно строится хранилище для отработанных твэлов. В практике ядерной энергетики всегда было три направления окончания ядерного топливного цикла. Понятно, что со временем позиции стран претерпевают изменения. Так, в США объем захоронений ОЯТ может стать столь велик, что трудно будет найти новые площадки помимо ныне строящегося хранилища в горах Юкка-Маунтин в штате Невада примерно в 145 км от Лас-Вегаса , поэтому придется принимать решение о переработке ОЯТ и т. Наиболее перспективным направлением является, конечно, полезное использование плутония, а с ним и других накапливающихся трансурановых элементов нептуния, америция, кюрия.

Оптимальным в этом направлении является также использование плутония в реакторах на быстрых нейтронах. Это позволяет производить в них и сжигание урана-238, и увеличение за этот счет сырья для ядерной энергетики на сотни и тысячи лет. Данное направление, к сожалению, в мире пока осваивается с трудом. Так, в США разработки опытного реактора на быстрых нейтронах были прекращены без каких-либо конкретных планов по строительству более мощных промышленных установок. Но сегодня США пытаются вернуться к развитию этого направления.

Во Франции после многолетних исследований на опытном реакторе «Феникс» 14 января 1986 г. Его эксплуатация закончилась неудачно, и в июне 1 997 г. В то же время продолжаются испытания реактора «Феникс», а также есть планы создания нового промышленного реактора. Япония продолжает работы по повторному введению в эксплуатацию опытного быстрого реактора «Мондзю» мощностью 280 МВт.

Теперь детали реактора общим весом более 360 тонн отправлены в Ульяновскую область в научно-исследовательский институт. После монтажа оборудования длина корпуса реактора составит 12 метров с минимальной для таких изделий толщиной металла до 50 мм. На новом реакторе российские ученые будут испытывать инновационные материалы для создания энергетических систем четвертого поколения, уточняет газета «Волгодонская правда».

Атомные реакторы нового поколения

  • Атомный феникс для вечного двигателя — Журнал «Луч»: объединяем жителей атомных городов
  • Мнение физика Андрея Ожаровского
  • «Легкий» уран не любит «горячую картошку»
  • Быстрое семейство
  • Российские атомщики совершили «Прорыв» за всё человечество
  • Россия сделала шаг к энергетике будущего

Список статей

  • Search form
  • Новое топливо
  • Не просто полностью безопасный, но ещё и сугубо мирный
  • Росатом Госкорпорация «Росатом» ядерные технологии атомная энергетика АЭС ядерная медицина

Похожие новости:

Оцените статью
Добавить комментарий