Новости термоядерный холодный синтез

Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях.

Холодный синтез: самое известное физическое мошенничество

Для поддержания термоядерной реакции 5 декабря 2022 года 192 гигантских лазера в Национальном комплексе лазерных термоядерных реакций National Ignition Facility, NIF разогрели цилиндрик размером с ластик, в котором в алмазной оболочке содержалось небольшое количество водорода. Одновременно разогрев цилиндр сверху и снизу, лазерные лучи испарили его. Порождённые этим процессом рентгеновские лучи пронизали шарик топлива, состоящего из дейтерия и трития. За время меньшее 100 триллионных долей секунды шарик принял на себя 2,05 МДж энергии и выдал поток нейтронов, порождённых синтезом, унесших с собой 3 МДж энергии — в полтора раза больше, чем было потрачено.

В отдельных участках образуется потенциальные ямы, в которых на короткое время снимается кулоновский барьер, препятствующий слиянию ядра атома и протона. В таком состоянии становиться возможной трансмутация. Самое перспективное направление этой технологии — производство сверхредких и сверхдорогих тяжелых изотопов и ускоренная биологическая дезактивация опасных радиоактивных загрязнений.

Так в опытах Высоцкого с цезием 137 в Чернобыле период его полураспада до стабильного изотопа бария 138 удалось снизить, внимание, с 30 лет до 310 дней, то есть более, чем в 23 раз. Результаты абсолютно достоверные и опубликованы в научном журнале «Энерсофтнукэнерджи». Сегодня проектом живо интересуются в Индии и Японии, где на складах Фокусимы скопилось более миллиона тонн радиоактивной воды, но перспективы его признания лабораториями и корпорациями, синтезирующими редкие изотопы на миллиарды долларов традиционным путем, выглядят не слишком радужно.

Холодный ядерный синтез 23 марта 1989 года ученые из университета Юты Флешмен и Полц объявили о получении аномально высокого тепла в ходе ядерной реакции, проводимой без использования сверхвысоких температур и энергии. Но опыта были признаны невоспроизводимыми. Между тем еще в 1957 технология без уранового ядерного синтеза гелия из дейтерия на тяжелой воде при температуре 1010 градусов Цельсия была предложена Иваном Филимоненко.

Какие именно технологии и системы для этого нужны? Виктор Ильгисонис: Это инновационные разработки магнитных систем, конструктивных элементов бланкета, дивертора, первой стенки. Это оригинальные системы топливного цикла, нагрева плазмы и отвода энергии и многое другое. Плазма в реакторе ИТЭР должна быть в десять раз горячее солнечного ядра, а температура в его криостате в 30 раз ниже, чем в морозильнике А разве этого нет в проекте ИТЭР? Виктор Ильгисонис: В том-то и дело. Наши решения оригинальны, таких нет ни в проекте ИТЭР, ни в национальных проектах зарубежных коллег. Абсолютно закономерно, что проект ТРТ возник в России - он способен вернуть нашей стране прежнее лидерство, во многом утраченное за постсоветское время. Так что ТРТ - не мутант, а, скорее, естественный продукт эволюции. И его перспективы будут зависеть от той поддержки со стороны правительства в финансировании программы РТТН, о которой мы уже говорили. К концу 2024 года планируем завершить разработку эскизного проекта и отработать ряд ключевых элементов технического проекта.

Так что при одобрении "сверху" сооружение ТРТ к 2030 году - вполне реальная задача. У "Росатома" есть действующее соглашение с РАН. Как оцениваете участие академических институтов в совместной реализации федерального проекта "Термоядерные и плазменные технологии"? Виктор Ильгисонис: Как абсолютно необходимое. Дело в том, что все академические институты - участники проекта "Термоядерные и плазменные технологии" - имеют собственные уникальные компетенции, освоение которых в контуре "Росатома" заведомо нецелесообразно, если мы исповедуем государственный подход. О других и не говорим… Виктор Ильгисонис: Так вот: уже упомянутый мною Институт прикладной физики в Нижнем Новгороде разрабатывает и производит лучшие в мире гиротроны - специальные устройства для мощного нагрева электронной компоненты плазмы. Новосибирский ИЯФ создает источники ионов и нейтральных атомов высокой энергии, которые приобретаются всеми ведущими мировыми лабораториями. Санкт-Петербургский физтех - признанный авторитет в методах высокочастотного нагрева плазмы… Список можно продолжать. И сказанное в полной мере относится не только к институтам РАН, но и к организациям НИЦ "Курчатовский институт", к вовлеченным в проект университетам. Какие риски здесь можно и должно прогнозировать с учетом нарастающих антироссийских санкций?

Виктор Ильгисонис: Вопрос о пользе нашего участия задают уже лет пятнадцать - с того момента, как проект стартовал. Очевидная и главная польза - это ожидаемое появление в мире уникального экспериментального устройства, создание которого оказалось непосильным ни для одной страны.

Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях. Хольраум с топливом Чтобы выполнить термоядерное зажигание, капсулу с топливом поместили в хольраум — крошечную камеру, стенки которой превращают лазерное излучение в рентгеновские лучи. Эти лучи сжимают топливо до тех пор, пока оно не взорвётся, создавая плазму с крайне высокими температурой и давлением. Визуализация облучения топлива лазерными лучами, которые преобразуются в рентгеновские для запуска синтеза В рамках многолетних исследований в LLNL была построена серия все более мощных лазерных систем, что привело к созданию NIF — крупнейшей и самой мощной лазерной системы в мире. NIF имеет размер спортивного стадиона и использует мощные лазерные лучи для создания температур и давлений, подобных тем, которые возникают в ядрах звезд и планет-гигантов. Конечно, до момента, когда термоядерная энергетика станет обыденностью, пройдёт ещё немало времени, и для этого потребуется провести ещё массу исследований.

Подписка на дайджест

  • Термоядерная мощь: насколько люди близки к созданию неисчерпаемого источника энергии
  • Deneum: как заниматься холодным ядерным синтезом и бороться с сомнениями ученых
  • Разжечь Солнце на Земле. Россия первой запустит полноценный термоядерный реактор
  • От самоклеящихся стикеров до новой энергии

Холодный ядерный синтез перестал быть лженаукой в ЕС

У гелия два электрона размещены на этой сфере таким образом, чтобы центральное поле электрического заряда ядра «видело» максимальную поверхность волноводов этих электронов не только ближайшей поверхности, но и последующих по мере возрастания радиуса. В данном случае это достигается диаметрально противоположным расположением. Когда ядро обладает более значительным зарядом электрического потенциала, то на оболочке большего диаметра появляется больше свободной поверхности для размещения большего количества электронов. Так, например, у алюминия на втором слое, во второй p-оболочке может на поверхности сферы разместится уже 6 электронов. Эти электроны равномерно перекрывают своими волноводами всю поверхность этой оболочки. Поэтому на поверхности оболочек большего диаметра их число резко возрастает. Такая структура атомов возможна лишь в достаточно свободном пространством, какое имеется на поверхности планет и звёзд, но такая структура реально невозможна в глубине нижней мантии Земли, где благодаря очень высокому давлению отсутствует достаточно свободное пространство для образования перехода нейтрона с объёмом соответствующим размеру 10—13 см в объём атома водорода с размером радиуса 10—8 см, но возможно образование мю-атомов водорода, энергия которых может лишь представляться не температурой вращательно-колебательных состояний, а только вращением. Рассмотренная структура размещения электронов в соответствующих оболочках полностью исключает всякое орбитальное движение электронов в пространстве вокруг ядра. Орбитальное движение электронов, как и движение электрона из возбуждённого состояния в основное состояние атома должно приводить к излучению дебройлевских волн, что наблюдается на практике высвечиванием оптических фотонов, но не наблюдается для атомов, находящихся в основном состоянии.

Запись, отражающая распределение электронов в атоме химического элемента по энергетическим уровням слоям и подуровням оболочкам , называется электронной конфигурацией этого атома. Так, например, выше рассмотренная конфигурация атома алюминия может быть представлена, как 1s 2 2s 2 2p 6 3s 2 3p. В основном невозбужденном состоянии атома все электроны удовлетворяют принципу минимума потенциальной энергии. Это значит, что сначала заполняются слои, для которых: — главное квантовое число «n» минимально, — внутри одного слоя сначала заполняется s — оболочка, затем p — и лишь затем d и т. Атомные микропространства проявляют весьма характерные свойства. Например, атом водорода способен поглощать или излучать вполне определенные серии фотонов. Это так называемые характеристические серии Бальмера, Пашена, Лаймана и т. При поглощении фотонов из этой серии, электрон переходит из 1S состояния в другие, более высоковозбужденные состояния — 2Р или 3S и т.

У атома гелия возможностей еще больше — у него два электрона 1S 2. Если возбужден только один электрон — 1S2S или 1S3Р и т. Что это значит? Это значит, что при поглощении энергии электрон переходит в потенциальном поле ядра на более далёкое расстояние от него, которые называются ридберговскими состояниями атомов. Главный вопрос. Почему при рекомбинации протона с электроном, последние не падают друг на друга, как противоположные заряды, а остаются в противостоянии друг другу на расстоянии 10 —8 см, с образованием устойчивых атомов? Заметим, что после 1989 года было экспериментально Г. Демельтом установлен размер электрона равный около 10 -20 см.

Как было уже показано на примере нейтрона, в процессе его распада, из него уносится энергия 1,29 Мэв в форме частиц электрона и антинейтрино и кинетической энергии движения, распределенной между ними. Эта унесенная энергия и является тем барьером противостояния, который электрон благодаря своему стабильному существованию в виде пульсаций сферы размером в 10 -20 см в полусферу волноводов радиусом 2,4х10—10 см размещён в атоме в сферическом слое при нормальных условиях радиусом 10—7—10—8 см, и поэтому не может упасть на поверхность протона. По той причине, что размер дискретного пространства волноводов электрона на три десятичных порядка превосходит внешний волновод любого атомного ядра. Отсюда, чем меньше «масса» микрочастицы, тем больше средний размер-диаметр его волноводов в полной аналогии со свойствами ЭМВ — чем выше энергия, тем короче длина волны и выше частота вихрона. Сфера магнитного монополя электрона может «жить» только на поверхности полусферы указанного радиуса. Можно образно сказать, что энергия в вихревых полях атома представлена формой материи холодной безмассовой плазмы в виде динамического слоя сферического пространства из противоположно электрически заряженных зёрен-потенциалов — барьер. Поэтому дебройлевская полусфера-волновод связанного атомного электрона не может физически «упасть» в центр — она способна лишь окружить его. Эта же причина является основой образования всех атомов таблицы Менделеева.

И именно этот факт доказывает путь рождения всех атомных ядер, как и путь протона. К великому сожалению на коллайдерах и на других технических установках пока не научились получать плазму вихронов с энергией, позволяющей получать нейтральные ядра с большим атомным весом, чем масса нейтрона. Это позволило бы проанализировать тип и вид распада, а также возможность синтеза искусственного атома. С другой стороны, известно, что размер мюона соизмерим с внешними оболочками ядер, и поэтому присоединением мюона к ядру мезоатом осуществляется его приближение к ядру в 207 раз ближе, чем для электрона. Атом в целом электрически нейтрален. Механизм электронейтральности поясняется схемой, представленной на фото 2. Оболочки из электронов, образованные на расстоянии-радиусах от 0,5 — 15 х 10—8 см, постоянно обновляются магнитными монополями с рождением экранирующего облака-потока отрицательно заряженных зёрен-потенциалов. Внутри атома образуется динамическое равновесное микропространство-поле, заполненное двух знаковым электрическим эфиром — электрическая холодная плазма.

Противоположно заряженные потоки зерен-электропотенциалов аннигилируют с образованием силовых линий электрического поля и уничтожением пространства, что приводит к притяжению источников их породивших и фиксации параметров атомного пространства путём рождения и обновления холодной плазмы из безмассовых электрических зёрен-потенциалов с противоположными знаками. Нескомпенсированный электрический эфир может выводится из межатомного пространства при сильной внешней поляризации вещества большими по значению электрическими потенциалами и способен к образованию облака-заряда электрическими зёрнами-потенциалами с последующим его захватом и преобразованием в электрический холодный ток технологиями Н. Отсюда следует жизнь и существование зарядов электрическим потенциалом в пятой форме, характеризующей наличие атомного пространства в активной аннигилирующей форме, приводящей к наличию в нём двухзнакового эфира зоны холодной безмассовой плазмы из противоположных зёрен-электропотенциалов обоих знаков. Аналогична по рождению и уничтожению магнитная холодная плазма, которая характеризуется притяжением полюсов стационарных магнитов. Однако гравитационная холодная безмассовая плазма, порождаемая в основном ядром атома, излучающим более дальнодействующие и однознаковые зёрна-гравпотенциалы, отличается по свойствам. Однополярный гравитационный эфир, излучаемый замкнутыми оболочками атомного ядра, вследствие его высокой плотности выходит не только наружу атома, но и кластера вещества в целом, формируя внешнее гравитационное поле такого атомно-молекулярного вещества. Это поле взаимодействует с центральным полем тяготения Земли и проявляет таким взаимодействием и у атома, и кластера из таких атомов, свойство массы и инертности. Поэтому снаружи атома внешнее электрическое поле ядра полностью скомпенсировано внешними полями электронов, размещённых на фиксированных оболочках.

В связи с этим, у атомов появляется возможность объединяться в кластеры вещества, вплоть до жидкости и твёрдого тела. Однако у металлов внешние валентные электроны атомов почти свободны и образуют в больших массивных кластерах проводников облака свободного отрицательно заряженного электрического эфира, который по технологиям Н. Морея и многих других можно захватывать и преобразовывать специальными схемами в холодное электричество, образуя независимые и автономные источники питания. Атомы, их атомные ядра и электроны проявляют магнитные свойства, но разные и в разных формах, что позволяет широко применять метод Ядерно-магнитного резонанса — спин ядра в атомах углерода равен нулю, а в атомах водорода полуцелый и т. Несмотря на то, что магнитные монополи широкого частотного спектра являются строителями атомов и его элементов ядра и электроны , и при таком производстве «отходами» является его двух знаковый невидимый магнитный эфир, образующий магнитные моменты атомных ядер и электронов, его до сих пор не могут зарегистрировать и проявить. Однако, как и в случае с электрическим эфиром, если использовать известные методы намагничивания некоторых металлов и их сплавов, например, метод Лидскалнина, то удаётся выделить потоки магнитного эфира даже из обычного стержня железа, при этом намагниченный стержень становится постоянным магнитом на достаточно долгое время. А его магнитный эфир из зёрен-потенциалов проявляет себя в виде потоков из полюсов стационарных магнитов и занимает промежуточное свойство по дальнодействию и проникающей способности по сравнению с электрическим и гравитационным эфиром. Основной вывод — для объяснения механизма образования атомов нет необходимости привлечения механизма орбитального движения атомных электронов.

Такие свойства объема, который занимает нейтрон, как спин, масса, инертность, плотность, магнитный момент, электрический дипольный момент, распределение плотности электрического заряда и магнитного момента, время жизни и другие — отрицают его как материальную бесструктурную частицу и определяют его как некое сложно-составное вихревое электромагнитное микропространство. Вилчек в своей книге 21 , развивая, дополняя и по новому интерпретируя первый, второй закон Эйнштейна и т. В данной книге по аналогии — основной компонент реальности оживлён магнитными монополями. Основной вопрос современности — где расположен и что является главным источником производства нейтронов? Ответ: основными источниками производства нейтронов являются ядра пульсаров-нейтронные звёзды и все ядра светящихся звёзд, а также геологически активных планет типа Земли. Другими источниками, которые порождают такие микропростраства, являются возбужденные тем или иным методом более крупные или тяжелые ядра атомов химических элементов. Возраст жизни нейтронов зависит от силы и формы полей в объемах, где они присутствуют. В обычных условиях на поверхности Земли нейтрон распадается фото 3 , превращаясь в протон.

Фото 3. Распад нейтрона Кроме протона при распаде появляются электрон и антинейтрино. Кинетическим корпускулярным осколком этой ядерной реакции, уносящим часть энергии, является антинейтрино. В процессе термализации, то есть охлаждении этих частиц до состояния при, котором происходит их рекомбинация, образуется атом водорода. Период полураспада 10—20 минут зависит от некоторых внешних условий. Присутствие небольшой примеси протонов и электронов существенно увеличивает их возраст, так как электрические поля этих частиц блокируют процесс разрыхления вихронов внешних оболочек нейтронов, тем самым замедляют их распад. На поверхности ЧСТ, ядра нейтронной звезды, то есть в очень сильном центральном гравитационном поле нейтроны живут долго без распада, накапливаясь в таком количестве, что образуют достаточно толстую атмосферу. В конечном итоге, этот слой нейтронов, отдаляясь в область слабого гравитационного поля и распадаясь, формирует слой протонов и антипротонов, которые аннигилируют взрывом сверхновой, то есть происходит одновременный вынужденный взрыв-аннигиляция всей атмосферы.

Нейтрон обладает структурой и внешними-внутренними свойствами. Внешние свойства обнаруживают с помощью различных технических средств и приёмов вычислений системы измерений СИ. К ним относятся внешние поля нейтронов, пространственный размер, спин, заряд массы, магнитный момент, отсутствие электрического заряда, период полураспада, а также взаимодействия нейтронов с атомными ядрами. Внешние поля заряда массы гравитационные поля создаются также как и у мюонов, но в отличие от них сформированы суммарным излучением трёх контурных оболочек нейтрона, обладающего набором уже различных частот. Внешнее электрическое поле нейтрона, как и в атоме, полностью уничтожено аннигиляцией противоположных по заряду излучаемых зёрен-электропотенциалов. Кроме того нейтрон и протон имеют очень большие аномальные магнитные моменты, которые в 1,91 и 2,79 раз соответственно больше по абсолютной величине ядерного магнетона, что свидетельствует о значительных токах магнитных монополей внутри их оболочек. В реальном рассмотрении в основу положена структура, основанная на электромагнитной модели а не кварковой нейтронов, разработанной в Стэнфордском университете научной группой во главе с Хофштадтером 22 — 1956 год. Экспериментально исследована внутренняя структура нейтрона была Р.

Хофштадтером 23 путём изучения столкновений пучка электронов высоких энергий 2 ГэВ с нейтронами, входящими в состав дейтрона Нобелевская премия по физике 1961 г. Из этой работы следует заключение автора. Как мы видели, протон и нейтрон, которые считались элементарными частицами, представляются очень сложными образованиями. Почти с уверенностью можно сказать, что физики будут последовательно исследовать составные части протона и нейтрона — мезоны одного или другого сорта. Что будет создано на основе этого? Начиная с 1958 года, подобная модель была развита и дополнена Р. Вильсоном с сотрудниками из Корнельского университета, Г. Шоппером 24 и С.

Бергиа с сотрудниками по идеям 25 Фрэзера и Фулко, Намбо 26 и Чу. Причём их испускание происходит в состоянии с отличным от нуля моментом количества движения, то есть они должны вращаться вокруг уже названного ядра нуклонов. Из-за этого и образуются круговые токи, которые порождают аномальные магнитные моменты».

Если учёным действительно удалось провести реакцию ядерного синтеза с указанными выше условиями, это сулит революцию в энергетике. Проект National Ignition Facility, специалисты которого и добились успеха, использует метод так называемого «термоядерного инерционного синтеза». На практике американские учёные стреляют гранулами, содержащими водородное топливо, в пучок из почти 200 лазеров, создавая серию чрезвычайно быстрых повторяющихся взрывов со скоростью 50 раз в секунду.

Энергия, полученная от нейтронов и альфа-частиц, извлекается в виде тепла, и это тепло является ключом к производству энергии.

Однако российские учёные тем временем придумали, как из экспериментальной конструкции сделать пригодный к опытно-промышленному применению термоядерный реактор. На токамаке реакторе, в котором разогретую плазму удерживают магнитные катушки Т-15МД российские учёные будут отрабатывать все процессы. Затем их масштабируют на реакторе ITER. Этот термоядерный реактор, строящийся сейчас на территории Франции, без опыта российских исследователей просто не запустится.

Это значит, что без преувеличения жизни миллионов землян будущего зависят от российских физиков. Уже известно, что над проектом токамака Т-15МД трудятся лучшие специалисты Курчатовского института и Научно-исследовательского института электрофизической аппаратуры имени Ефремова, и, по сути, российские специалисты — единственные в своём роде: ни в одной другой стране мира попытки совладать с термоядерным синтезом не дошли до строительства реакторов подобного масштаба и типа, как в России. Инженер-атомщик Владимир Спиридонов в беседе с Лайфом отметил, что ни в США, ни в Европе, ни в Китае к разгадке секрета термоядерного синтеза пока не приблизились. Проблема та же, что и 30, и 40 лет назад. Нормальный источник возбуждения реакции не найден, механизм удержания — тоже.

Теоретически, у того, кто первым освоит термоядерный синтез, будет монополия на всё, что связано с электричеством. Энергия, выработанная термоядерными реакторами, даже по самым скромным подсчётам, должна стать дешевле атомной минимум в двадцать, а максимум в сто раз. Если всё произойдёт именно так, как это себе представляют учёные, то дорогая электроэнергия исчезнет как таковая, а вслед за ней буквально всё — от производства продуктов питания до лекарств — должно упасть в цене. Почти сразу после этого станет широко доступным электротранспорт. Здесь важно пояснить, что современная наука и любые, даже самые продвинутые технологии в энергетике не смогут зарядить все электрические машины, если ими начнёт пользоваться сразу один миллиард человек.

Атомная энергия, по прогнозам специалистов, тоже может закончиться — запасы радиоактивных материалов конечны, и к моменту наступления "конца света" хорошо бы иметь надёжную и дешёвую технологию по производству энергии. Если отечественные учёные смогут решить проблему безопасной и стабильной работы термоядерного реактора первыми, то Россия будет монополистом на рынке электроэнергии до тех пор, пока другие страны не доработают собственные решения в этом направлении.

Вместо того чтобы поддерживать температуры в миллионы градусов, холодный синтез — недавно переименованный в LENR — в теории позволит эффективно проводить повторяющиеся реакции при значительно более низких температурах, в тысячи градусов или даже чуть выше комнатной температуры.

Он мог бы обеспечить нас дешевой и изобильной энергией и даже поселиться в каждом доме. Кто сказал, что холодный синтез возможен? Похоже на вымысел, не так ли?

Красивая сказка, придуманная учеными, которые пытаются оправдать собственные потуги. Существует одна старая история, которая по своей природе очень похожа на сказки про холодный синтез. Она началась еще в 1770 году, еще когда никто не мог подумать не то чтобы о ядерном синтезе — даже современной теории атомов не существовало.

Это история про самый первый автомат для игры в шахматы, Mechanical Turk «Механический турок» Вольфганга фон Кемпелена. Почти за двести лет до изобретения современного компьютера «Турок» мог предложить очень сильную игру в шахматы, выиграл большинство своих игр и победил почти всех, не считая самых лучших игроков на то время. Его считали мистификацией, но множество выставок, на которых показали машину, подтвердили ее подлинность.

Машина, казалось, не только обладает незаурядным шахматным мастерством, но и может обнаруживать подставные ходы. В дополнение к нижним ящикам, в которых были шахматная доска и фигуры, у него было шесть дверец, три спереди и три сзади. За левой дверью был набор взаимосвязанных металлических зубчатых колес, которые действительно поворачивались, если их завести.

За правыми двумя была красная подушка и открытое пространство. Если открыть все три двери, можно было увидеть все внутренности «Турка». Тот самый «Турок» После победы во всех, кроме самого сильного регионального состязания, «Турок» отправился по Европе, где сыграл кучу игр, в том числе и против одного из самых сильных игроков того времени Андре Филидора, который хоть и победил, назвал игру с «Турком» одной из самых утомительных в своей жизни.

Но шестеренки слева и ящики на дне были ложными; они занимали лишь треть пространства, позволяя оператору — невысокому человеку, который скрывался внутри — оставаться незамеченным, когда правые двери были открыты.

Мегаджоули управляемого термоядерного синтеза

Этот метод был назван управляемым термоядерным синтезом с инерционным удержанием, и спустя множество десятилетий работы его удалось воплотить в лабораторных условиях. Хольраум с топливом Чтобы выполнить термоядерное зажигание, капсулу с топливом поместили в хольраум — крошечную камеру, стенки которой превращают лазерное излучение в рентгеновские лучи. Эти лучи сжимают топливо до тех пор, пока оно не взорвётся, создавая плазму с крайне высокими температурой и давлением. Визуализация облучения топлива лазерными лучами, которые преобразуются в рентгеновские для запуска синтеза В рамках многолетних исследований в LLNL была построена серия все более мощных лазерных систем, что привело к созданию NIF — крупнейшей и самой мощной лазерной системы в мире. NIF имеет размер спортивного стадиона и использует мощные лазерные лучи для создания температур и давлений, подобных тем, которые возникают в ядрах звезд и планет-гигантов.

Конечно, до момента, когда термоядерная энергетика станет обыденностью, пройдёт ещё немало времени, и для этого потребуется провести ещё массу исследований.

Лаборатория подтвердила успешный эксперимент в Национальном комплексе лазерных термоядерных реакций, но подчеркнула, что анализ результатов продолжается. Однако точная выработка все еще определяется, и мы не можем подтвердить, что на сегодняшний момент она превышает пороговое значение, — говорится в сообщении. Два осведомленных источника сообщили, что выход энергии превысил ожидаемый, повредив часть диагностического оборудования и затруднив анализ.

При этом прорыв уже широко обсуждается учеными, добавили источники. Национальный комплекс лазерных термоядерных реакций стоимостью 3,5 миллиарда долларов изначально строился для испытаний ядерного оружия через имитацию взрывов, но с тех пор использовался для исследований в области термоядерной энергии. Gizmodo США : сможет ли человечество использовать термоядерный синтез как источник энергии? Ученые давно ведут поиски альтернативных источников энергии для спасения планеты.

Один из них — управляемый термоядерный синтез. Разговоры о нем идут уже не одно десятилетие, и, судя по всему, его использование может начаться совсем скоро, считает автор статьи.

И это сработало! Исследователи сообщили всему миру о производстве избыточного тепла. И даже некоторых побочных продуктов синтеза! К сожалению, ни одна другая лаборатория не смогла воспроизвести этот эксперимент. И это погасило бушующее пламя сенсации — холодного синтеза с положительным выходом энергии. Никто так и не смог объяснить, почему один раз это сработало, а в другие — нет. Отбросьте глупые амбиции!

После стольких лет неудачных исследований холодный синтез начал приобретать плохую репутацию. Как для себя, так и для всех, кто им занимался. Это направление исследований стали рассматривать как лженауку. Как что-то, что никогда не может быть достигнуто. Что-то, что никогда не будет надёжным источником энергии. Это создало своеобразную репутационную ловушку. Которая привела к застою в этой области и всеобщему преследованию её сторонников. В попытке немного «почистить ауру» и сделать название более привлекательным, исследователи стали называть холодный синтез «низкоэнергетическими ядерными реакциями». Но прорыва после этого так и не последовало.

В последнее время стали появляться сообщения, что некоторые неровности на поверхности металла ответственны за появление горячих точек ядерной активности. И что именно в этом причина несоответствия проводимых экспериментов. Просто у некоторых металлов есть такие неровности, а у других их нет. Опять же, это утверждение, которое никто не смог проверить. Новые горизонты Перспектива превращения научной фантастики в науку всегда завораживает. Вспомните: такие вещи, как клонирование, космический туризм и карманные компьютеры, были лишь мечтами 20-25 лет назад. А сегодня они стали обыденной реальностью.

На связь оттуда вышел генеральный директор проекта.

На совещании глава правительства обсудил с российскими учеными федеральную программу развития синхротронных и нейтронных исследований. До 2027 года на нее предусмотрено выделить 138 миллиардов рублей. В рамках программы Курчатовский институт создает по стране целую сеть мегаустановок нового уровня. Россия была абсолютно самодостаточна. Мы производили все сами, все компоненты от начала до конца. И сейчас у нас это есть, но это требуется перевести на современный уровень», — отметил президент НИЦ «Курчатовский институт» Михаил Ковальчук. План по модернизации прорабатывается, и глава правительства призвал ученых присоединиться к этой работе. Сами же подобные установки призваны сделать научные прорывы во всевозможных сферах: от медицины и сельского хозяйства до генетики и космоса.

Не только придумано, но и сделано или растиражировано в нашу обычную жизнь», — подчеркнул Михаил Мишустин.

Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип

С создания компактной термоядерной бомбы в 1953 г. и до 90-х СССР был лидером в этой гонке, а США выступали в роли догоняющего. Новости о горячем синтезе теперь разрешено публиковать, потому что идет коммерциализация холодного синтеза. То есть провели реакцию холодного термоядерного синтеза. Недавно Россия отправила в Европу катушку, которая будет вставлена в экспериментальную установку холодного синтеза. Представлены новые данные в пользу реальности холодного термоядерного синтеза – следы возникновения высокоэнергичных нейтронов при электролизе тяжёлой воды. С создания компактной термоядерной бомбы в 1953 г. и до 90-х СССР был лидером в этой гонке, а США выступали в роли догоняющего. Новости о горячем синтезе теперь разрешено публиковать, потому что идет коммерциализация холодного синтеза. За одну реакцию термоядерного синтеза длительностью 5 секунд было получено 69 МДж энергии.

Зачем это нужно

  • Другие новости
  • Возможет ли холодный синтез?
  • Что еще почитать
  • Холодный термоядерный синтез в обыкновенной кружке | АльтерСинтез
  • Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы
  • Что такое холодный термоядерный синтез? Холодный термоядерный синтез: принцип

Компактные термоядерные реакторы: прорыв или просчёт?

На протяжении десятков лет холодный синтез проявлял поразительную капризность и упорно продолжал мучить своих исследователей неповторяемостью экспериментов. объяснения поддерживали в новостях то, что называлось "холодным термоядерным синтезом" или "путаницей термоядерного синтеза".[32. Холодный термоядерный синтез признали официально.

Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER

Холодный термоядерный синтез признали официально. Термоядерный синтез заработал, квантовые точки, клей для клеток, уранил из отходов | техно-новости. Что подпитывает шумиху вокруг коммерческого термоядерного синтеза?

Поделиться

  • Холодный ядерный синтез. L E N R
  • Холодный синтез: желаемое или действительное? -
  • Содержание
  • Что не так с «японским ученым» и его холодным термоядом
  • Курсы валюты:
  • BERES • Отчет по "народной проверке" холодного ядерного синтеза (ХЯС)

Холодный ядерный синтез: почему у Google ничего не получилось?

«Отмечу недавний успех в лазерном термоядерном синтезе, где радиационное сжатие смеси дейтерия и трития позволило запустить реакцию ядерного синтеза с выделением большей энергии, чем было доставлено в образец. Следует понимать, что холодный ядерный синтез на настольных аппаратах не только возможен, но и осуществлен, причем в нескольких версиях. Стандартная реакция термоядерного синтеза T + D ---> He 4 + n+ 17.6 МэВ.

Похожие новости:

Оцените статью
Добавить комментарий