реактора четвертого поколения БРЕСТ-ОД-300. На МФР будет производиться смешанное плотное нитридной уран-плутониевое топливо (СНУП-топливо), разработанное специально для активной зоны реактора БРЕСТ-ОД-300. Обзоры - О проведении исследований, строительстве и эксплуатации и ремонте опытно демонстрационного энергетического комплекса с реактором на быстрых нейтронах БРЕСТ-ОД-300 со свинцовым теплоносителем. «Заключение контракта на строительство энергоблока с реакторной установкой БРЕСТ-ОД-300 – главное долгожданное событие 2019 года в рамках реализации проекта «Прорыв». Прорыв в атомной энергетике от РОСАТОМ | Геоэнергетика Инфо.
Уникальный реактор БРЕСТ-300 начали строить в Томской области
На площадке «Сибирского химического комбината» (к), принадлежащего госкорпорации «Росатом», стартовало строительство уникального энергоблока БРЕСТ-ОД-300. Замкнутый ядерный топливный цикл (ЯТЦ) реактора БРЕСТ-ОД-300 разрабатывается в соответствии с требованиями, приведенными ниже. •. Росатом приступил к тестированию первого объекта энергоблока нового поколения с реактором на быстрых нейтронах БРЕСТ-ОД-300 (проект "Прорыв"). БРЕСТ-ОД-300 на быстрых нейтронах позволит многократно использовать отработанное топливо, а также вырабатывать электроэнергию без накопления облучённого ядерного топлива. Руководитель проекта по созданию БРЕСТ-ОД-300 Андрей Николаев. Под «БРЕСТ-ОД-300» не доложили тысячи тонн щебня.
«Брест-300», это – «прорыв» к бюджетным ресурсам!».
Такие особенности установки позволили отказаться от массивной гермооболочки, ловушки расплава, большого объема обеспечивающих систем, а также дали возможность снизить класс безопасности внереакторного оборудования. Новое топливо Для быстрых реакторов необходимо специальное топливо, обычно оксиды урана или урана и плутония. СНУП-топливо получают из обедненного урана, оставшегося после обогащения, и энергетического плутония, произведенного из облученного топлива, с помощью технологии карботермического синтеза. По мнению ученых, применение нитридов позволит удлинить топливную кампанию, то есть время работы топливной сборки, и тем самым улучшить экономические показатели эксплуатации. Новая жизнь атомной энергетики Как уже было сказано, блок с реактором БРЕСТ — компонент опытно-демонстрационного энергетического комплекса.
Кроме реакторного блока в ОДЭК входит пристанционный завод, состоящий из модуля переработки облученного смешанного уран-плутониевого топлива и модуля фабрикации-рефабрикации, где будут изготавливаться тепловыделяющие элементы для БРЕСТ. На заводе планируется производить топливо, компоненты которого со временем будут извлекаться из облученного ядерного топлива ОЯТ. Благодаря переработке ОЯТ топливный цикл удастся замкнуть. Создание такого цикла на ОДЭК предусматривает включение в топливо минорных актинидов радиотоксичных трансурановых элементов, образующихся в процессе облучения для их последующей трансмутации.
Благодаря взаимодействию с быстрыми нейтронами кюрий, нептуний и америций будут превращаться в другие, менее опасные химические элементы. Первый — БН-800, в котором также используются обедненный уран и плутоний из облученного топлива. Но топливо для БН-800 производится на Горно-химическом комбинате, а в Северске оно будет изготавливаться и эксплуатироваться на одной площадке.
Преимущество реакторов на быстрых нейтронах — способность эффективно использовать для производства энергии вторичные продукты топливного цикла, в частности, плутоний. При этом обладая высоким коэффициентом воспроизводства, «быстрые» реакторы могут производить больше потенциального топлива, чем потребляют, а также «дожигать» — утилизировать с выработкой энергии — высокоактивные трансурановые элементы актиниды. Новый энергоблок станет частью важнейшего для всей мировой ядерной отрасли объекта — Опытного демонстрационного энергокомплекса ОДЭК.
При этом из всех конкурентов он обладает одной из лучшей нейтронной активностью. Почти идеал, если забыть о том, что натрий имеет свойство воспламеняться и взрываться при контакте с водой и воздухом.
Тем не менее из всех вариантов теплоносителей, отрабатывавшихся на экспериментальных установках, именно он оказался единственным кандидатом для энергетических реакторов на быстрых нейтронах, в частности отечественных реакторов типа БН. Высокая химическая активность натрия потребовала специальных технических решений, которые, при переходе от бумажной концепции к металлу, вызвали сильное удорожание проектов. Во-первых, требовалось изолировать натриевый контур охлаждения от водяного, так как их протечка могла привести к пожару или взрыву внутри реактора. Для этого пришлось делать промежуточных контур, разделяющий натрий и воду и снижающий КПД реактора, а также удорожавший конструкцию. Требование недопуска контакта натрия и воздуха заставило продумывать и хитрую систему замены отработанного топлива с помощью роботизированного комплекса, что ещё больше усложнило конструкцию реактора. Кроме того, пришлось решать проблему и загрязнения самого натрия в процессе работы реактора — обычными фильтрами тут не обойтись, поэтому создали так называемые «холодные ловушки». В итоге проект, который на бумаге выглядел не дороже легководника при переходе с кульманов на площадку строительства, значительно прибавил в стоимости и потерял в рентабельности. Реактор типа БН — сложно, дорого, с туманными перспективами Второй проблемой стала переработка топлива.
Реакторы на быстрых нейтронах вырабатывали много плутония оружейного качества. Этот плутоний предполагалось выделять, часть его отправлять обратно в составе топливной сборки в реактор, добавив свежего U-238, а остальное использовать для легководников. И вот тут-то и возник целый ворох проблем. Во-первых, плутоний нельзя просто так взять и запихнуть в обычный реактор. Совершенно иные параметры деления и тепловыделения у плутония требуют изменения многих параметров реакторной установки, в том числе и геометрии самих топливных сборок, из-за чего реакторы, рассчитанные на классическое урановое топливо, могут быть неспособны безопасно работать на смешанном урано-плутониевом топливе MOX-топливо. Упрощённая схема замкнутого цикла с реакторами типа БН Во-вторых, отработанное топливо в реакторах типа БН содержало кроме большого количества плутония ещё небольшое не больше процента содержание изотопов Америция, Нептуния и Кюрия — крайне радиотоксичных и сложных в утилизации. В-третьих, само наличие процесса выделения плутония оружейного качества из топлива ставил крест на любых попытках экспорта реактора. И МАГАТЭ, и США, заинтересованные в нераспространении технологий промышленного производства компонентов для ядерного оружия, сделали бы всё, чтобы не допустить экспорт такого реактора.
Нерадужные перспективы экспорта реакторов типа БН стали последним гвоздиком в крышку надежд на новое будущее. Есть у реакторов типа БН и ещё один недостаток, который может проявиться при увеличении их мощности — натриевый пустотный эффект. Выражается он в росте реактивности при закипании натрия, что приводит к росту процесса деления атомных ядер. Поэтому для реакторов на натриевом теплоносителе удалось получить стабильный коэффициент воспроизводства отношение скорости образования ядерного горючего к скорости выгорания ядерного горючего лишь немногим больше 1 от 1 до 1,05. Все эти вместе взятые причины привели к тому, что у серийных реакторов серии БН нет никаких преимуществ перед легководными собратьями, а даже в случае реализации ЗЯТЦ рентабельность всё равно была сомнительной. Коллеги по опасному бизнесу Свинец всему голова Одной из ключевых проблем реакторов на натриевом теплоносителе был сам натрий. Выход из ситуации казался очевидным — нужно сменить теплоноситель. Но сделать это было непросто.
В 60-70е в СССР для подводных лодок создавались реакторы на быстрых нейтронах с теплоносителем эвтектического жидкий гомогенный сплав состава свинец-висмут. Кроме того, из-за редкости висмута и сам теплоноситель влетал в копеечку, будучи дороже натрия в 7-8 раз. Для АПЛ всё это было не столь критично, так как выигрыш по весу и линейным размерам относительно легководных реакторов компенсировал все недостатки. А вот для АЭС это было уже более серьёзной проблемой. Относительный успех реакторов на свинцово-висмутовом теплоносителе оживил работы по другому направлению — свинцу. Хорошо же?
Но выбор свинца неслучаен — у него высокие инертность и температура кипения, что исключает взрывы или аварии с быстрым разрушением активной зоны. Свинец и бетон — одни из лучших материалов для защиты от ионизирующего излучения, поэтому вокруг реактора обеспечен естественный радиационный фон. В частности, это означает невозможность повторения сценария Чернобыля на таком реакторе. За что критикуют реактор Критиков проекта хватает — ряд специалистов указывают, что работоспособность конструкционных материалов, которые на протяжении многих лет будут контактировать с кипящим свинцом, обоснована недостаточно. Другой негативный фактор заключается в очень больших энергетических и временных затратах для расплавления и поддержания теплоносителя в жидком состоянии. Фактически, такие реакторы нельзя останавливать, иначе АЭС гарантирован длительный «отпуск». Некоторые эксперты отмечают, что тяжелый теплоноситель не задерживает продукты деления — цезий и йод, которые теоретически могут перейти в газовый контур и попасть за пределы самого реактора. Новый реактор потенциально способен совершить переворот в ядерной энергетике, но скепсис в отношении мирного атома разобьет только многолетняя успешная эксплуатация БРЕСТ-ОД-300. Если комплекс под Томском подтвердит свой потенциал, мировое доверие к отрасли может быть восстановлено. Еще по теме.
Информация
- Колонки экспертов
- Telegram: Contact @rosatomru
- Изобилие терминологии скрывает физический смысл
- Россия создала нейтронный «Прорыв»: ss69100 — LiveJournal
- Россия запустила модель Реактора будущего или «Секрет» поставок урана в США
Или воспользуйтесь аккаунтом
- По принципу естественной безопасности
- В Северске начали монтировать инновационный реактор БРЕСТ-ОД-300
- «Брест-300», это – «прорыв» к бюджетным ресурсам!».
- Проект «Прорыв»
- Как работает БРЕСТ-ОД-300
- «Прорыв» сегодня
Поделись позитивом в своих соцсетях
- Страница для новостей
- Бесконечная энергия: «Росатом» строит первый в мире реактор с замкнутым циклом
- «Прорыв» сегодня
- В Томской области начали строить уникальный реактор БРЕСТ-300
- Как получить энергию из урана почти без отходов
Росатом начал строительство уникального энергоблока с реактором на быстрых нейтронах БРЕСТ-ОД-300
Проект «Прорыв» | Энергоблок с реактором БРЕСТ-ОД-300 станет частью опытно-демонстрационного энергокомплекса (ОДЭК), который строится на площадке СХК в рамках стратегического. |
Росатом начал строительство первого в мире реактора на быстрых нейтронах БРЕСТ-ОД-300 | На стройплощадке опытно-демонстрационного энергокомплекса в Северске начался монтаж реактора четвертого поколения БРЕСТ-ОД‑300. |
Проект «Прорыв» | Как и любой другой реактор, БРЕСТ-ОД-300 снабжен системой аварийного охлаждения реактора. |
Новейший энергоблок БРЕСТ: мир замер в восхищении от проекта "Росатома"
Ключевым элементом ОДЭК является первый в мире инновационный демонстрационный опытно-промышленный энергоблок на базе быстрого реактора на быстрых нейтронах с реакторной установкой БРЕСТ-ОД-300 со свинцовым теплоносителем. БРЕСТ-ОД-300 на быстрых нейтронах позволит многократно использовать отработанное топливо, а также вырабатывать электроэнергию без накопления облучённого ядерного топлива. Ключевым элементом ОДЭК является первый в мире инновационный демонстрационный опытно-промышленный энергоблок на базе быстрого реактора на быстрых нейтронах с реакторной установкой БРЕСТ-ОД-300 со свинцовым теплоносителем. Специалисты НИУ «МЭИ» приняли участие в создании заготовки выходной части МГД-насоса для нового типа реактора на быстрых нейтронах БРЕСТ-ОД-300. В шахту реактора строители погрузили первую часть корпуса реакторной установки БРЕСТ-ОД-300 – нижний ярус ограждающей конструкции. Реактор замкнутого цикла на быстрый нейтронах БРЕСТ должен стать первым в мире реактором без зоны отчуждения, без необходимости вывоза за территорию радиоактивных отходов.
Росатом начал монтаж первого в мире быстрого реактора IV поколения БРЕСТ-ОД-300 в Северске
Первая: обедненный уран, наработанный во время обогащения урана под реакторное топливо и уже отработанное топливо. Что с ними делать? На самом деле, проблема их хранения не такая уж и страшная, потому что не так уж их и много и не такие уж они радиоактивные и методы есть довольно надежные. Но все же. Вот так вот хранят в России гексафторид обедненного урана. И главное, этого достаточно по безопасности: Фото: atomic-energy. Первая проблема, с «отходами» решается с помощью реакторов на быстрых нейтронах. В таких в качестве тепловыделяющих элементов используются переработанные тепловыделяющие элементы обычных атомных станций. А в процессе работы они еще и обогащают обедненный уран.
Сейчас очень на пальцах и очень коротко поясним. Реакторы на быстрых нейтронах могут использовать и торий-232, и оружейный плутоний, которые в обычных реакторах не смогут участвовать в управляемой реакции. Это решает проблему отработанного ядерного топлива и запасов оружейного плутония. Но как же решается проблема обедненного урана-238?
В реакторах на быстрых нейтронах все гораздо напряженнее — разрушительные потоки нейтронов, температуры теплоносителя, быстрота и многогранность реакций в активной зоне. Технические трудности и экономические затраты создания полномасштабной энергетики на быстрых нейтронах в историческом периоде оказались практически на порядок выше, чем таковые для обычных реакторов. Это привело к значительному отставанию в их развитии и к тому, что пока что реакторы на быстрых нейтронах — это единичные и экспериментальные установки.
Это отразилось еще на первом поколении реакторов на быстрых нейтронах, которые использовали в качестве теплоносителя жидкий натрий. А вот США, Франция и Япония, начав крупномасштабные эксперименты с реакторами на быстрых нейтронах с жидким натрием в то же время и даже раньше, сошли с дистанции, так и не добившись устойчивой работы этих сложных машин. Сейчас Россия, успешно освоив технологию жидкого натрия в реакторах на быстрых нейтронах, переходит к следующему поколению энергоблоков, использующих гораздо более безопасный и перспективный свинцовый теплоноситель. Это действительно энергетика будущего: пока доступность урана-235 еще не достигла критических для отрасли величин, но его запасы не бесконечны.
Тот уран, который уходит на АЭС и в ядерные арсеналы, — обогащенный, а тот, что лежит на заводской площадке — обедненный, названия вполне логичные. По данным "Гринпис", в 1996 году запасы обедненного урана составляли в странах, где активнее всего шло обогащение: Франция — 190 тысяч тонн, Россия — 500 тысяч тонн, США — 740 тысяч тонн. Добытого в недрах планеты, очищенного от пустой породы, доставленного на предприятия по обогащению, неоднократно переработанного, заскладированного в таком виде, который обеспечивает оптимальный режим хранения. Если найти, разработать, научиться применять технологию, которая позволяла бы использовать уран-238 для производства энергии — получится огромный запас, причем в очень хорошо подготовленном состоянии, все описанные этапы уже оплачены, в основном — в годы всеобщей ядерной гонки. Нейтроны быстрые и нейтроны тепловые, или "Открытый ядерный топливный цикл" Есть у урана-238 и у урана-235 еще одна характеристика, из-за которой нынешняя атомная энергетика на 99,5 процента состоит из так называемых тепловых реакторов. В атомной физике такие характеристики, как скорость движения ядерных частиц и их температура — тождественные понятия, то есть реакторы на быстрых нейтронах можно называть и реакторами на нейтронах горячих, но как-то такой вариант не прижился.
И то же, но в другую сторону — тепловые реакторы мы имеем полное право называть медленными, но опять же — не прижилось. После того, как свободный нейтрон "разбивает" ядро атома урана, осколки разлетаются с разными скоростями, что совершенно неудивительно. Ради эксперимента швырните камень в стекло — осколки получатся разного размера, какие-то улетят далеко, какие-то лягут на землю рядышком. Эксперименты ученых-атомщиков показали, что свободные нейтроны с высокими скоростями до ядер урана-235 практически не добираются — их, грубо говоря, перехватывают ядра урана-238. Перехватывают настолько уверенно, что никакой цепной реакции не получается, свободных нейтронов для нее просто не остается. Для борьбы с этой проблемой используются сразу два способа — во-первых, то самое обогащение, наращивание содержания урана-235 в ядерном топливе в среднем до пяти процентов, то есть концентрация урана-235 в ядерном топливе в семь раз выше, чем в природном уране. Но остальные 95 процентов ядерного топлива — это тот самый уран-238, который быстрые свободные нейтроны "ловит" и "ловит". А вот в том случае, если нейтроны будут медленными, тепловыми, уран-238 их "не замечает", а уран-235 хорош тем, что цепная реакция в нем возникает что от тепловых нейтронов, что от быстрых с равным успехом. Вывод — в активной зоне реактора нужен замедлитель, который превратит все нейтроны в тепловые медленные , что и гарантирует возможность управляемой цепной реакции деления. Химических элементов, обеспечивающих замедление нейтронов, не так уж много: чистый графит, вода с высоким содержанием дейтерия она же — "тяжелая вода" и вода обычная, но химически очищенная от всех примесей.
Уран-графитовые реакторы исторически были первыми — именно их использовали для наработки оружейного плутония, то есть для создания ядерного оружия. Десять лет атомной аварии на "Фукусиме": Япония скорбит и помнит 12 марта 2021, 15:30 Канадцы сосредоточились на реакторах с тяжелой водой, но основная часть действующих атомных энергоблоков относится к водо-водяному типу. Название несколько нелепое, но отражает физическую идею: вода одновременно служит и замедлителем, и теплоносителем, то есть "тормозит" нейтроны и забирает на себя энергию ядерных реакций, набирая температуру, которой достаточно для получения горячего пара, который и вращает турбину, генерирующую электроэнергию.
Замкнутый топливный цикл увеличивает экологическую чистоту реактора — возникающие в процессе работы минорные актиниды, наиболее опасные радиоактивные вещества, возвращаются в реактор в составе регенерированного топлива, где их «пережигают». Оставшиеся радиоактивные отходы отправляют «вылеживаться» прямо на территории комплекса.
Еще один важный плюс — в таком реакторе не образуется «лишнего» плутония, который теоретически можно использовать для сборки атомной бомбы. Тем самым реакторы можно смело строить в любых странах, не опасаясь нарушения режима нераспространения ядерного оружия. Все ранее созданные реакторы на быстрых нейтронах используют в качестве теплоносителя натрий. Но выбор свинца неслучаен — у него высокие инертность и температура кипения, что исключает взрывы или аварии с быстрым разрушением активной зоны. Свинец и бетон — одни из лучших материалов для защиты от ионизирующего излучения, поэтому вокруг реактора обеспечен естественный радиационный фон.
В частности, это означает невозможность повторения сценария Чернобыля на таком реакторе. За что критикуют реактор Критиков проекта хватает — ряд специалистов указывают, что работоспособность конструкционных материалов, которые на протяжении многих лет будут контактировать с кипящим свинцом, обоснована недостаточно. Другой негативный фактор заключается в очень больших энергетических и временных затратах для расплавления и поддержания теплоносителя в жидком состоянии. Фактически, такие реакторы нельзя останавливать, иначе АЭС гарантирован длительный «отпуск».
На СХК завершен монтаж оборудования по изготовлению таблеток СНУП-топлива для реактора БРЕСТ-ОД-300
Такого рода утверждения были названы Пономарёвым-Степным: Кроме неотработанности технологии, были обозначены «узкие» технические вопросы: в большом объёме интегральной схемы «БРЕСТ» не обеспечивается равномерность поддержания кислородного потенциала в узком разрешённом диапазоне если он будет подтвержден. Чтобы обеспечить работоспособность тепловыделяющих элементов, необходимо найти оптимальное для заданного уровня и диапазона изменения температур содержание кислорода в теплоносителе и стабильно поддерживать его на этом уровне в течение всего срока эксплуатации реакторной установки; не обоснована работоспособность конструкционных материалов в свинце при принятой температуре и при высоком облучении нейтронами расплавленный свинец вызывает сильную коррозию конструкционных материалов ; не изучено влияние облучения в реальных реакторных условиях на поведение в свинце тепловыделяющих элементов и топливной композиции; сама по себе проблема смешанного нитридного топлива требует значительных усилий и времени для её разрешения; технические решения по переработке топлива находятся на начальной стадии разработки. Доллежаля» В. Орлова, опубликованной в том же 2001 году на сайте НИКИЭТ, практически не содержится ответных доводов в технической части, напротив, подтверждаются слова академика Пономарёва-Степного о начальности стадии разработки проекта, неотработанности и неисследованности многих важных вопросов, однако содержатся нападки на личность критика: «статья Н. Пономарева-Степного не содержит каких-либо новых возражений против Стратегии или идей по её корректировке, которые не были бы обсуждены в ходе её выработки и принятия. Африкантова» В. Костин в опубликованной в 2007 году статье журнала «Атомная стратегия», в которой были обозначены нерешённые технические проблемы: Также в этой статье высказываются сомнения вообще относительно возможности создания надёжных реакторных установок с «тяжёлым теплоносителем» с длительным сроком эксплуатации, ставится вопрос об экономической целесообразности создания таких установок, а также высказывается мнение, что: Общий вывод, который в своей статье делает Костин: БРЕСТ-ОД-300[ ] Проект разрабатывался с 1999 года, на основе концепции ядерной энергетики естественной безопасности, работы над которой велись с конца 80-х годов в рамках специального конкурса, объявленного ГКНТ СССР.
Первоначально проектировалась установка БРЕСТ, обеспечивавшая в составе энергоблока электрическую мощность 300 МВт, позже возник и проект с мощностью энергоблока 1200 МВт, однако на данный момент разработчики сосредоточили свои усилия на менее мощном БРЕСТ-ОД-300 «опытный демонстрационный» , в связи с отработкой большого количества новых в этой области конструктивных решений и планами опробования их на относительно небольшом и менее дорогом в реализации проекте. Кроме того, выбранная мощность 300 МВт эл. Представители Росатома рассматривают БРЕСТ как составную часть проекта «Прорыв», «консолидирующего проекты по разработке реакторов большой мощности на быстрых нейтронах, технологий замкнутого ядерного топливного цикла, а также новых видов топлива и материалов и ориентированный на достижение нового качества ядерной энергетики». В июле 2019 эксперты РАН подтвердили безопасность проекта и ожидалось получение лицензии Ростехнадзора на строительство. Начало строительства собственно реактора было намечено на 2019 год. К началу 2019 года на территории Сибирского химического комбината АО «СХК» ведется строительство вспомогательных объектов, в частности пристанционных заводов фабрикации топлива и переработки ОЯТ для демонстрации замыкания топливного цикла.
Завершить работы планируется до конца 2026 года. На момент начала строительства реактора Росатом планировал, что запуск реактора состоится в 2026 году. В ходе испытаний отдельных модулей МФР потребовалась дополнительная «обкатка» технологии на промышленных стендах, а также проведение дополнительных научно-исследовательских и конструкторских работ НИОКР.
Конструкция реакторной установки позволяет локализовать течи теплоносителя в объеме ее корпуса и исключить осушение активной зоны. На изготовление высокотехнологичного оборудования реакторной установки отводится от трех до пяти лет, монтаж основного оборудования должен быть завершен в 2025 году. Позволяет работать как с исходными материалами, так и с продуктами переработки ОЯТ реактора БРЕСТ-ОД-300, а также предусматривает включение в топливо минорных актинидов для последующей их трансмутации.
В 2022 году начаты работы по пусконаладке основного технологического оборудования и установок для фабрикации СНУП-топлива.
Новый энергоблок станет частью важнейшего для всей мировой ядерной отрасли объекта — Опытного демонстрационного энергокомплекса ОДЭК. Таким образом, впервые в мировой практике на одной площадке будут построены АЭС с «быстрым» реактором и пристанционный замкнутый ядерный топливный цикл.
Облученное топливо после переработки будет направляться на рефабрикацию повторное изготовление свежего топлива — таким образом эта система постепенно станет практически автономной и независимой от внешних поставок энергоресурсов.
Николаев, во время пуска каждого из модулей численность персонала будет больше. Всего это предприятие станет обслуживать 1 500 человек, из них на модуль фабрикации направляется 500 человек, поскольку исходное топливо будет изготавливаться через перчаточные боксы вручную. В дальнейшем модуль фабрикации будет переведен в модуль рефабрикации. На рефабрикацию пойдут только топливные материалы, все продукты полураспада будут завершать свой жизненный цикл. А когда все технологии заработают, то на обслуживание опытно-демонстрационного энергетического комплекса останется 800 человек. Поистине такой комплекс замкнутого цикла не предполагает никаких выбросов, поэтому его безопасно будет строить даже вблизи городов. По его словам, у ГК «Росатом» есть проекты маленьких атомных станций специально для посёлков, но это другая история.
А пока на стройплощадке под Северском начат путь к созданию опытно-демонстрационного комплекса, который совершит полное замыкание топливного цикла - от наработки ядерного топлива, загрузки его в реактор на быстрых нейтронах, переработки отработанного ядерного топлива, его рефабрикации и далее «по кругу». Этот эксперимент должен доказать, что облученное ядерное топливо может быть вновь запущено в производственный цикл. Андрей Николаев отметил, что конечная цель эксперимента - поставить на коммерческую основу создание подобных комплексов. Это действительно будет прорыв в новейших ядерных технологиях, потому что ничего подобного в мире нет. Очень хотелось бы увидеть завершение строительства этого масштабного для России и для всего мира мега-проекта. Свидетели зарождающегося опытно-демонстрационного энергетического комплекса «Прорыв» под Северском.
Проект «Прорыв»
Уникальный реактор БРЕСТ-300 начали строить в Томской области | За прототип в проекте «Прорыв» взяли реактор «Брест ОД-300», работоспособность которого не доказана. |
Росатом изготовит уникальное оборудование для энергоблока с реактором БРЕСТ-ОД-300 | Переработка ОЯТ БРЕСТ-300 будет происходить непосредственно на площадке ОДЭК, в модуле переработки (МП) комплекса ОДЭК. |
Уникальный реактор обеспечит энергетическое будущее России | На стройплощадке опытно-демонстрационного энергокомплекса в Северске начался монтаж реактора четвертого поколения БРЕСТ-ОД‑300. |
Бесконечная энергия: «Росатом» строит первый в мире реактор с замкнутым циклом
Согласно планам, реактор БРЕСТ-ОД-300 должен начать работу в 2026 году. нераспространение ядерных материалов, поскольку в нем не накапливается отдельно плутоний; равновесность захоронения отходов, безопасность проекта, т.е. Проектная документация реактора БРЕСТ-ОД-300 получила положительное заключение Главгосэкспертизы. В Северске на площадке "Сибирского химического комбината" (СХК) госкорпорации "Росатом" стартовало строительство первого в мире энергоблока нового поколения БРЕСТ-ОД-300, передает корреспондент РИА Новости. Добавить новость можно всем, без премодерации, только регистрация.