Новости из чего состоит водородная бомба

Водородная бомба Термоядерное оружие (она же водородная бомба) — тип ядерного, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза лёгких элементов в более тяжёлые (например. Термоядерная (водородная) бомба — также достаточно проста по конструкции.

Радиоактивные осадки

  • Как устроена водородная бомба
  • Термоядерные реакции.
  • Подписи к слайдам:
  • История создания оружия
  • Что включает в себя ядерное оружие
  • История создания оружия

Термоядерное оружие: Как устроена водородная бомба

Водородные бомбы типа РДС-6с и РДС-37 были включены в состав вооружения стратегических бомбардировщиков — тяжелых Ту-95а, М-4 и средних Ту-16а, причем РДС-37 заложили в основу следующих термоядерных боеприпасов. ВОДОРОДНАЯ БОМБА, оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Взрыв водородной бомбы – неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей, но весьма эффективным для целей разрушения. Водородную бомбу можно собрать таким образом, что выгорание каждого из трёх компонентов — плутония, дейтрида лития и обеднённого урана — превысит 90%. Конструкция бомбы состояла из чередующихся сферических слоев делящихся материалов и термоядерного горючего (дейтерий, тритий).

Поражающие факторы взрыва водородной бомбы. Водородная бомба

Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва. Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете.

В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок.

В радиусе 800 километров был слышен ужасный взрыв. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров.

Только представьте себе, что бы было, если бы взрыв произошел в городской черте. Царь-бомба Мощнейшая водородная бомба была испытана Советами в 1961 году. Ее мощность достигла 58-75 Мт, при заявленных 51 Мт. Ударная волна обошла планету три раза. На полигоне Новая Земля не осталось ни одной возвышенности, взрыв было слышно на расстоянии 800км.

Огненный шар достиг диаметра почти 5км, «гриб» вырос на 67км, а диаметр его шапки составил почти 100км. Последствия такого взрыва в крупном городе тяжело представить. По мнению многих экспертов, именно испытание водородной бомбы такой мощности Штаты располагали на тот момент бомбами вчетверо меньше по силе стало первым шагом к подписанию различных договоров по запрету ядерного оружия, его испытания и сокращению производства. Мир впервые задумался о собственной безопасности, которая действительно стояла под угрозой. Царь-бомба Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала.

Наконец, 30. Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн. При этом 1,5 мегатонны составляла мощность взрыва первичного атомного заряда, а вторая термоядерная ступень должна была дать еще 50. Реальная мощность взрыва составила до 58 мегатонн. Внешний вид бомбы показан на фото ниже.

Последствия его были впечатляющими. Несмотря на весьма существенную высоту взрыва в 4000 м, невероятно яркий огненный шар нижним краем почти достиг Земли, а верхним поднялся до высоты более 4,5 км. Давление ниже точки разрыва было в шесть раз выше пикового давления при взрыве в Хиросиме. Вспышка света была настолько яркой, что ее было видно на расстоянии 1000 километров, несмотря на пасмурную погоду. Один из участников теста увидел яркую вспышку через темные очки и почувствовал последствия теплового импульса даже на расстоянии 270 км.

Фото момента взрыва показано ниже. При этом было показано, что мощность термоядерного заряда действительно не имеет ограничений. Ведь достаточно было выполнить третью ступень, и расчетная мощность была бы достигнута. А ведь можно наращивать число ступеней и далее, так как вес «Царь-бомбы» составил не более 27 тонн. Вид этого устройства показан на фото ниже.

После этих испытаний многим политикам и военным как в СССР, так и в США стало ясно, что наступил предел гонки ядерных вооружений и ее нужно остановить. Сегодня термоядерные бомбы России продолжают служить сдерживающим фактором для тех, кто стремится к мировой гегемонии. Будем надеяться, что они сыграют свою роль только в виде средства устрашения и никогда не будут взорваны. Водородная бомба Как было сказано ранее, принцип действия водородной бомбы основан на реакции синтеза. Термоядерный синтез — это процесс слияния двух ядер в одно, с образованием третьего элемента, выделением четвертого и энергии.

Силы, отталкивающие ядра, колоссальны, поэтому для того, чтобы атомы сблизилась достаточно близко для слияния, температура должна быть просто огромной. Ученые уже который век ломают голову над холодным термоядерным синтезом, так сказать пытаются сбросить температуру синтеза до комнатной, в идеале. В этом случае человечеству откроется доступ к энергии будущего.

Следы трития находят в верхних слоях атмосферы Земли: именно там, под действием космических лучей молекулы газов, образующие воздух, претерпевают подобные изменения. Получение трития возможно также и в ядерном реакторе путём облучения изотопа литий-6 мощным потоком нейтронов. Разработка и первые испытания водородной бомбы В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы.

И уже весной 1951 года, на полигоне Эниветок атолл в Тихом океане было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза. Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость размером с трёхэтажный дом , наполненную жидким дейтерием. В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор имела мощность 10 Мт.

История создания Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества - но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны что в 450 раз больше мощности бомбы, сброшенной на Нагасаки , а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.

Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива - дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн - самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба».

По новой оценке, достигнутая в NIF мощность импульса 1. Sandy Z-machine Идея такая: возьмем большую кучу высоковольтных конденсаторов, и резко разрядим их через тоненькие вольфрамовые проволочки в центре машины.

Проволочки мгновенно испаряются, через них продолжает течь огромный ток в 27 миллионов ампер на протяжении 95 наносекунд. Плазма, нагретая до миллионов и миллиардов! Возможно, у этого направления в будущем появится шанс сравниться и превзойти токамаки. Dense Plasma Focus — DPF — «схлопывает» бегущую по электродам плазму с получением гигантских температур. В марте 2012 на установке, действующей по этому принципу была достигнута температура 1. Levitated Dipole — «вывернутый» токамак , в центре вакуумной камеры висит торообразный сверхпроводящий магнит который и удерживает плазму. В такой схеме плазма обещает быть стабильной сама по себе. Но финансирования у проекта сейчас нет, похоже непосредственно реакцию синтеза на установке не проводили. Farnsworth—Hirsch fusor Идея проста — размещаем две сферические сетки в вакуумной камере наполненной дейтерием, или дейтерий-тритиевой смесью, прикладываем между ними потенциал в 50-200 тысяч вольт.

В электрическом поле атомы начинают летать вокруг центра камеры, иногда сталкиваясь между собой. Выход нейтронов есть, но он довольно мал. Большие потери энергии на тормозное рентгеновское излучение, внутренняя сетка быстро раскаляется и испаряется от столкновений с атомами и электронами. Хотя конструкция интересна с академической точки зрения собрать её может любой студент , КПД генерации нейтронов намного ниже линейных ускорителей. Polywell — хорошие напоминание о том, что не все работы по термоядерному синтезу публичны. Идея — развитие Farnsworth—Hirsch fusor. Центральный отрицательный электрод, с которым было больше всего проблем, мы заменяем облаком электронов, удерживаемых магнитным полем в центре камеры. Все тестовые модели имели обычные, а не сверхпроводящие магниты. Реакция давала единичные нейтроны.

В общем, никакой революции. Возможно, увеличение размеров и сверхпроводящие магниты и изменили бы что-то. Мюонный катализ — радикально отличающаяся идея. Берем отрицательно-заряженный мюон, и заменяем им электрон в атоме. Поскольку мюон в 207 раз тяжелее электрона — в молекуле водорода 2 атома будут намного ближе друг к другу, и произойдет реакция синтеза. Проблема тут в том, что генерация мюона на данный момент требует больше энергии, чем может получится в цепочке реакций, и таким образом пока энергию тут не получить. Научно подтвержденных и независимо повторяемых положительных результатов нет.

Как это устроено: все секреты термоядерной бомбы

Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными — в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает.

Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей. Устройство термоядерной бомбы по принципу Теллера-Улама Многие его детали по-прежнему остаются засекреченными, но есть достаточная уверенность, что все имеющееся ныне термоядерное оружие использует в качестве прототипа устройство, созданное Эдвардом Теллерос и Станиславом Уламом, в котором атомная бомба т. Схематически устройство термоядерной бомбы в этом варианте показано на рисунке ниже. Дело в том, что в промышленности давно используется гидрид лития LiH для безбалонной транспортировки водорода. Разработчики бомбы эта идея сначала была использована в СССР просто предложили брать вместо обычного водорода его изотоп дейтерий и соединять с литием, поскольку с твердым термоядерным зарядом выполнить бомбу гораздо проще.

По форме вторичный заряд представлял собой цилиндр, помещенный в контейнер со свинцовой или урановой оболочкой. Между зарядами находится щит нейтронной защиты. Пространство, между стенками контейнера с термоядерным топливом и корпусом бомбы заполнено специальным пластиком, как правило, пенополистиролом. Сам корпус бомбы выполнен из стали или алюминия. Эти формы изменились в последних конструкциях, таких как показанная на рисунке ниже. H-bomb А вот горючее для термоядерного синтеза критической массы не имеет. Вот Солнце, наполненное термоядерным топливом, висит над головой, внутри его уже миллиарды лет идет термоядерная реакция, — и ничего, не взрывается. К тому же при реакции синтеза, например, дейтерия и трития тяжелого и сверхтяжелого изотопа водорода энергии выделяется в 4,2 раза больше, чем при сгорании такой же массы урана-235. Изготовление атомной бомбы было скорее экспериментальным, чем теоретическим процессом.

Создание же водородной бомбы потребовало появления совершенно новых физических дисциплин: физики высокотемпературной плазмы и сверхвысоких давлений. Прежде чем начинать конструировать бомбу, надо было досконально разобраться в природе явлений, происходящих только в ядре звезд. Никакие эксперименты тут помочь не могли — инструментами исследователей были только теоретическая физика и высшая математика. Не случайно гигантская роль в разработке термоядерного оружия принадлежит именно математикам: Уламу, Тихонову, Самарскому и т. Классический супер К концу 1945 года Эдвард Теллер предложил первую конструкцию водородной бомбы, получившую название «классический супер». Для создания чудовищного давления и температуры, необходимых для начала реакции синтеза, предполагалось использовать обычную атомную бомбу. Сам «классический супер» представлял собой длинный цилиндр, наполненный дейтерием. Предусматривалась также промежуточная «запальная» камера с дейтериевотритиевой смесью — реакция синтеза дейтерия и трития начинается при более низком давлении. По аналогии с костром, дейтерий должен был играть роль дров, смесь дейтерия с тритием — стакана бензина, а атомная бомба — спички.

Такая схема получила название «труба» — своеобразная сигара с атомной зажигалкой с одного конца. По такой же схеме начали разрабатывать водородную бомбу и советские физики. Однако математик Станислав Улам на обыкновенной логарифмической линейке доказал Теллеру, что возникновение реакции синтеза чистого дейтерия в «супере» вряд ли возможно, а для смеси потребовалось бы такое количество трития, что для его наработки нужно было бы практически заморозить производство оружейного плутония в США. Чистое термоядерное оружие Основная статья: Чистое термоядерное оружие Теоретически возможный тип термоядерного оружия, в котором условия для начала реакции термоядерного синтеза создаются без применения ядерного триггера. Таким образом, чистая термоядерная бомба вообще не включает распадающихся материалов и не создаёт долговременного радиоактивного поражения. Ввиду технической сложности инициирования термоядерной реакции в требуемом масштабе — в настоящее время создать чистый термоядерный боеприпас разумных размеров и веса не представляется практически возможным. Достижение предельной мощности Затем последовало десятилетие непрерывной гонки вооружений, в течение которого мощность термоядерных боеприпасов непрерывно возрастала. Наконец, 30. Этот трехступенчатый боеприпас разрабатывался на самом деле как 101,5-мегатонная бомба, но стремление снизить радиоактивное заражение территории заставило разработчиков отказаться от третьей ступени мощностью в 50 мегатонн и снизить расчетную мощность устройства до 51,5 мегатонн.

В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее. Первое испытание И Советский Союз вновь опередил многих участников гонки холодной войны. Первую водородную бомбу, изготовленную под руководством гениального Сахарова, испытали на секретном полигоне Семипалатинска — и они, мягко говоря, впечатлили не только ученых, но и западных лазутчиков. Ударная волна Прямое разрушительное воздействие водородной бомбы — сильнейшая, обладающая высокой интенсивностью ударная волна. Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда.

Тепловой эффект Водородная бомба всего в 20 мегатонн размеры самой большой испытанной на данный момент бомбы — 58 мегатонн создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда. В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки.

Еще во время ее разработки советская разведка выяснила, что США переключились на разработку более мощной бомбы. Это подтолкнуло СССР заняться изготовлением термоядерного оружия.

Выяснить, каких результатов достигли американцы, разведчики не смогли, да и попытки советских ядерщиков не увенчались успехом. Поэтому было решено создать бомбу, взрыв которой происходил бы за счет синтеза легких ядер, а не деления тяжелых, как в атомной бомбе. Весной 1950 года начались работы над созданием бомбы, получившей в дальнейшем название РДС-6с. В числе ее разработчиков оказался и будущий лауреат Нобелевской премии мира Андрей Сахаров, предложивший идею конструкции заряда еще в 1948 году, но позднее выступавший против ядерных испытаний.

Впоследствии, правда, дейтерий предложили заменить на дейтерид лития — это значительно упростило конструкцию заряда и его эксплуатацию. Дополнительным преимуществом было то, что из лития после бомбардировки нейтронами получается еще один изотоп водорода — тритий.

Гораздо опаснее для человека ударная взрывная волна, расходящаяся по поверхности земли от эпицентра взрыва по окружности радиусом, достигающим 700 км, и радиоактивные осадки, выпадающие из того самого грибовидного облака. В день на полигонах могли производиться по три-четыре эксперимента, в ходе которых изучалась динамика взрыва, поражающие способности, потенциальный ущерб противника. Первый опытный образец был взорван 27 августа 1949 года, а последнее испытание ядерного оружия в СССР произвели 25 декабря 1962-го.

Все испытания проходили в основном на двух полигонах — на Семипалатинском полигоне или "Сияпе", расположенном на территории Казахстана, и на Новой земле, архипелаге в Северном Ледовитом океане. Там осуществили взрыв заряда мощностью 10,4 мегатонны, что в 450 раз превышало мощность бомбы "Толстяк", сброшенной на Нагасаки. Впрочем, называть это устройство бомбой в прямом смысле слова нельзя. Это была конструкция с трехэтажный дом, заполненная жидким дейтерием. А вот первое термоядерное оружие в СССР было испытано в августе 1953 года на Семипалатинском полигоне.

Это была уже настоящая бомба, сброшенная с самолета. Проект был разработан в 1949 году еще до испытания первой советской ядерной бомбы Андреем Сахаровым и Юлием Харитоном. Курчатова 30 октября 1961 года на полигоне "Сухой Нос" на архипелаге Новая земля.

Презентация по физике на тему: "Термоядерные реакции. Водородная бомба"

Испытание этой термоядерной бомбы стало ключевым фактором, позволившим Советскому Союзу обеспечить ядерно-оружейный паритет с США. Взрыв водородной бомбы – неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей, но весьма эффективным для целей разрушения. Водородные бомбы — наиболее разрушительный его вариант — имеют теоретически неограниченную мощность, и потому при их разработке между СССР и США развернулась гонка. Водородная бомба — ядерное оружие, которое использует процесс термоядерного синтеза для создания огромного количества энергии.

Как это устроено: все секреты термоядерной бомбы

СССР начал разрабатывать термоядерную бомбу позднее — первая схема была предложена советскими разработчиками лишь в 1949 году. Водородная бомба, известная также как Hydrogen Bomb или HB — оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Принцип термоядерной реакции: Водородная бомба использует термоядерную реакцию, при которой происходит слияние легких ядер (обычно изотопов водорода) при высоких температурах и давлениях. Мировое сообщество было разочаровано новостью о создании водородной бомбы, считает историк Клим Жуков. Испытание этой термоядерной бомбы стало ключевым фактором, позволившим Советскому Союзу обеспечить ядерно-оружейный паритет с США.

Самая мощная бомба в мире. Какая бомба сильнее: вакуумная или термоядерная?

Но бомба сожрала 120 килограммов плутония — это столько, сколько Британия могла произвести за год. Термоядерный заряд должен был располагаться отдельно от инициирующего, соответственно, для осуществления радиационного обжатия требовались решения нетривиальные. В современной конструкции оба заряда — инициирующий и термоядерный — помещаются в заполненную рентгенопрозрачным пластиком общую оболочку из обеднённого урана. При подрыве ядерного заряда внешняя оболочка, в том числе и её затенённый термоядерной капсулой участок, «освещённый» благодаря рассеянию излучения в пластике, предсказуемо превращается в плазму также излучающую соответствующий своей температуре рентген. И давление направленного внутрь излучения симметрично — именно равномерное давление со всех направлений требует изощрённых методов — обжимает капсулу. Капсула, в свою очередь, для обеспечения равномерного сжатия могла представлять собой цилиндр, усеченный конус, яйцо, — лишь в 80-х удалось добиться равномерного действия излучения, позволяющего использовать капсулы в форме сферы. Внешний её слой, опять-таки, состоит из обеднённого урана, средний из термоядерного горючего, внутренний же из подкритической массы плутония. В результате обжатия плотность плутония увеличивается, критическая масса достигается и происходит второй ядерный взрыв. Термоядерная реакция начинается в момент, когда внешние слои капсулы ещё падают внутрь, а внутренние со всей ядерной силы уже стремятся наружу. На фронте столкновения ударных волн преодолевается потенциальный барьер, и ядра начинают сливаться.

В качестве горючего используется дейтрид лития-6. Сам по себе литий, в действительности, не «горит». Но захватывая нейтрон появившийся в результате распада плутония , он распадается на тритий и гелий.

При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии. Принципиальная схема водородной бомбы такова. Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии для поддержания из жидкостного агрегатного состояния. Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота.

Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес более 60 т. Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение. В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы. Кроме того, гидрид лития был использован вместо трития, что позволило размещать термоядерные заряды на истребителях бомбардировщиках и баллистических ракетах. Создание водородной бомбы не стало концом развития термоядерного оружия, появлялись все новые и новые его образцы, была создана водородно- урановая бомба, а также некоторые ее разновидности — сверхмощные и, наоборот, малокалиберные бомбы. Последним этапом совершенствования термоядерного оружия стало создания так называемой «чистой» водородной бомбы.

При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные. Слайд 8 Слайд 9 Описание слайда: Последствия взрыва. Последствия взрыва. Ударная волна и тепловой эффект. Прямое первичное воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий - это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха - туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Однако самое опасное хотя и вторичное последствие взрыва - это радиоактивное заражение окружающей среды.

Слайд 11 Описание слайда: Самая мощная водородная бомба В 1961 году был произведён самый мощный взрыв водородной бомбы. Утром 30 октября в 11ч.

Капсула, в свою очередь, для обеспечения равномерного сжатия могла представлять собой цилиндр, усеченный конус, яйцо, — лишь в 80-х удалось добиться равномерного действия излучения, позволяющего использовать капсулы в форме сферы.

Внешний её слой, опять-таки, состоит из обеднённого урана, средний из термоядерного горючего, внутренний же из подкритической массы плутония. В результате обжатия плотность плутония увеличивается, критическая масса достигается и происходит второй ядерный взрыв. Термоядерная реакция начинается в момент, когда внешние слои капсулы ещё падают внутрь, а внутренние со всей ядерной силы уже стремятся наружу.

На фронте столкновения ударных волн преодолевается потенциальный барьер, и ядра начинают сливаться. В качестве горючего используется дейтрид лития-6. Сам по себе литий, в действительности, не «горит».

Но захватывая нейтрон появившийся в результате распада плутония , он распадается на тритий и гелий. И уже тритий вступает в реакцию с дейтерием, порождая ещё одно ядро гелия и релятивистский нейтрон на бонус. И здесь в игру вступает уран из внешней и внутренней оболочек.

Релятивистские нейтроны не захватываются ядрами, а разбивают их. Разваливающиеся ядра урана порождают тучи новых нейтронов уже подходящей для разложения лития энергии. Если ядерное взрывное устройство поддерживает цепную реакцию лишь до момента своего разрушения, то термоядерный заряд запускается уже в плазменном агрегатном состоянии.

Уроки водородной бомбы для мирного термоядерного синтеза

Вроде того, что американцы богатые: нагромоздили кубометры — и шарахнули, лишь бы произвести эффект. Так всегда была настроена внутренняя наша пропаганда. Всегда говорилось именно так — и никогда по-другому. Я никого не хочу обвинять — может, в той ситуации это было оправданно и разумно. Да, её взорвали на земле, но они всё проверили и подтвердили то, что сумели сделать новую бомбу.

К ней было приковано всеобщее внимание, она подготавливалась к испытаниям и была нашей национальной гордостью. В состав атомного заряда включались слои из водородонесущего материала дейтерид лития для усиления деления по схеме деление-синтез-деление. Исходно плотность лёгких и тяжёлых слоёв отличалась в десятки раз. При взрыве, когда материал разогревался и ионизировался, происходило сильное сжатие лёгких слоёв со стороны тяжёлых, что способствовало резкому возрастанию скорости термоядерных реакций.

Рассуждали примерно так: есть водородная бомба, чего мы будем ещё какую-то следующую громоздить — с неизвестным исходом и огромной затратой и своих усилий, и материальных средств?! Так что с благословения Зельдовича и Франк-Каменецкого мы это дело прекратили. А уже в августе 1953 года на башне Семипалатинского полигона была успешно испытана первая советская водородная бомба. Подтвердились расчёты, полный триумф.

Уже по этой причине испытанный заряд поднимал уровень ядерного оружия на новую ступень. Более того, схема этого заряда допускала создание водородной бомбы мощностью до одной мегатонны. Никто не сомневался в то время, что и дальше мы будем идти по своему, отечественному пути, развивая первый успех. Однако к концу 1953 года, в самый разгар эйфории и, казалось бы, вопреки логике, события стали стремительно развиваться совсем в другом направлении.

Такой поворот был неожиданным не только для меня. По-видимому, аналогичное ощущение испытывал и А. Конечно, мне следовало отказаться: сказать, что подобные вещи не делаются с ходу и одним человеком, что необходимо осмотреться, подумать. Но у меня была идея, не слишком оригинальная и удачная, но в тот момент она казалась мне многообещающей.

Посоветоваться мне было не с кем. Одно из них обязывало наше Министерство в 1954 amp;ndash;1955 гг. Существенно, что вес заряда, а следовательно, и весь масштаб ракеты был принят на основе моей докладной записки. Это предопределило работу всей огромной конструкторско-производственной организации на долгие годы.

Именно эта ракета вывела на орбиту первый искусственный спутник Земли в 1957 г. Но, как теперь проясняется, они имели лишь косвенное влияние на реальное развитие последовавших вскоре событий. Что случилось за короткий промежуток времени конца 1953-го — самого начала 1954 года? Запомнилось одно не совсем обычное совещание у руководства.

Скорее всего — по прихоти Я. Детали обсуждения стёрлись из памяти, но главный мотив, ради чего собрались, отчётливо запомнился. Тамма, выраженное в энергичной форме и потому хорошо запомнившееся. Если ему оставить старое и поручить новое, то он будет делать только старое.

Я уверен, что через несколько месяцев мы достигнем цели… Мудрый И. Тамм оказался прав. Должен оговориться, что в то время мне очень нравился революционный характер совещания и последовавший затем бурный порыв. Понимание того, почему всё так обернулось, пришло гораздо позже, спустя десятилетия.

Прорыв, если хотите. Этот шаг и был сделан. Как — это другой вопрос. Была ли такая передача на самом деле или всё это домыслы, искусственно возбуждаемые и направляемые на поддержание нашей бдительности, мне не известно.

Тогда же появился эскиз, по поводу которого было сказано, что его просил рассмотреть А. Завенягин, работавший в то время заместителем министра среднего машиностроения.

Но появление термоядерного оружия стало возможным только благодаря разновидности гидрида лития — дейтериду лития-6.

Это соединение тяжёлого изотопа водорода — дейтерия и изотопа лития с массовым числом 6. Дейтерид лития-6 — твёрдое вещество, которое позволяет хранить дейтерий обычное состояние которого в нормальных условиях — газ при плюсовых температурах, и, кроме того, второй его компонент — литий-6 — это сырьё для получения самого дефицитного изотопа водорода — трития. Собственно, Li-6 — единственный промышленный источник получения трития : Слайд 9 В ранних термоядерных боеприпасах США использовался также и дейтерид природного лития, содержащего в основном изотопе лития с массовым числом 7.

Он также служит источником трития, но для этого нейтроны, участвующие в реакции, должны иметь энергию 10 МэВ и выше. Слайд 10 Триггер Триггер — это небольшой плутониевый ядерный заряд с термоядерным усилением и мощностью в несколько килотонн. Задача триггера — создать необходимые условия для разжигания термоядерной реакции — высокую температуру и давление.

Слайд 11 Контейнер с термоядерным горючим Контейнер с термоядерным горючим — основной элемент бомбы. Внутри него находится термоядерное горючее — дейтерид лития-6 — и расположенный по оси контейнера плутониевый стержень, играющий роль запала термоядерной реакции. Контейнер покрывается слоем нейтронного поглотителя соединений бора для защиты термоядерного топлива от преждевременного разогрева потоками нейтронов после взрыва триггера.

Расположенные соосно триггер и контейнер заливаются специальным пластиком, проводящим излучение от триггера к контейнеру, и помещаются в корпус бомбы, изготовленный из стали или алюминия.

Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость размером с трёхэтажный дом , наполненную жидким дейтерием. В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года.

РДС-6 данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор имела мощность 10 Мт. Однако в отличие от американского «трёхэтажного дома», советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике. Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы 15 Мт на испытательном полигоне на атолле Бикини Тихий океан. Испытание стало причиной выброса в атмосферу большого количества радиоактивных веществ, часть из которых выпало с осадками за сотни километров от эпицентра взрыва. Японское судно «Счастливый дракон» и приборы, установленные на острове Рогелап, зафиксировали резкое повышение радиации.

Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза.

Вот некоторая информация о водородной бомбе: Принцип работы: Водородная бомба использует принцип ядерного синтеза, в отличие от ядерного расщепления, как это происходит в атомной бомбе. В ядерном синтезе легкие ядра, обычно изотопы водорода деутерий и тритий , объединяются, чтобы образовать более тяжелое ядро, освобождая при этом огромное количество энергии. Двухступенчатая конструкция: Водородная бомба состоит из двух ступеней. Первая ступень, называемая урановой "подрывной зарядкой" или "примесной зарядкой", использует энергию атомной бомбы, чтобы создать условия для термоядерной реакции. Вторая ступень, называемая "термоядерной ступенью", содержит деутерий и тритий, которые при взрыве испускают огромное количество энергии в результате ядерного синтеза. Гораздо большая мощность: Водородная бомба значительно мощнее атомной бомбы. Мощность водородной бомбы измеряется в мегатоннах TNT эквивалент тротилового эквивалента , что означает, что она способна создать разрушения, эквивалентные множеству миллионов тонн тротила.

Разработка и испытания: Разработка водородной бомбы требует значительных научных знаний и технологического уровня.

Похожие новости:

Оцените статью
Добавить комментарий