Новости что такое хроматофор

Термин хроматофор позже был принят как название пигментных клеток, происходящих из нервного гребня хладнокровных позвоночных и головоногих моллюсков. Хроматофор – клетка, чаще всего содержащая пигмент, которая вырабатывает какой-либо цвет. Хроматофоры есть у многих видов животных: рыб, амфибий, рептилий, ракообразных и др. Учебники. Биология.

Хроматофоры это в биологии что такое?

Например, у животных хроматофоры могут использоваться для маскировки, коммуникации, терморегуляции или защиты от ультрафиолетового излучения. 4. Что такое пигменты? Биологические пигменты – это вещества, входящие в состав пластид и обладающие способностью окрашивать. Хроматофор содержит бактериохлорофилл, ряд других пигментов (каротиноиды), фосфолипиды и весь набор ферментов, необходимых для бактериального фотосинтеза. Форма хроматофоров отличается значительным разнообразием, однако наиболее распространена звездчатая (ем. рис. 10) и дисковидная или близкая к ним (например, ветвистая). Например, у животных хроматофоры могут использоваться для маскировки, коммуникации, терморегуляции или защиты от ультрафиолетового излучения. это органоиды, которые находятся внутри водорослей и содержат пигменты, необходимые для фотосинтеза.

Что такое хроматофор простыми словами?

Функция хроматофоров заключается в регулировании цвета тела животных и их способности менять цвет и легко приспособиться к окружающей среде. Ответ: Хроматофоры (от греч. «хромос» — крашу и «форос» — несущий) — пигментсодержащие и светоотражающие клетки, присутствующие у земноводных, рыб, рептилий, ракообразных и головоногих. Политика конфиденциальности и соглашение Научитесь определять, что такое и как работает хроматофор Хроматофоры — это специализированные клетки, ответственные за изменение цвета у многих животных, улиток, рыб и рептилий. Хроматофоры (от греч. «хромос» — крашу и «форос» — несущий) — пигменто-содержащие и светоотражающие клетки, присутствующие у земноводных, рыб, рептилий, ракообразных и головоногих. Что такое хроматофоры в биологии. В клетках живых существ содержатся различные органоиды (органеллы), имеющие разные функции. Хроматофоры – это органоиды клетки, расположенные в цитоплазме и придающие ей окраску. Хроматофоры (от греч. chroma, родительный падеж chromatos — цвет, краска и phorós — несущий), 1) у животных и человека — то же, что пигментные клетки.

Как выглядит хламидомонада?

  • Хроматофор: объединение цветов в живых организмах
  • Хроматофоры это в биологии что такое?
  • ГДЗ по биологии 7 класс Пасечник. Линейный курс | Страница 24
  • Хроматофоры – объединение цветов в живых организмах | Гид по Китаю
  • Что такое хроматофор в 7 классе | Гид по Китаю
  • Что такое хроматофор в 7 классе | Гид по Китаю

Что такое ХРОМАТОФОР простыми словами

Иридофоры и лейкофоры Иридофорами называются окрашенные клетки, которые отражают свет с помощью хемохромов из кристаллизованного гуанина. Дифракция падающего света на гранях гуаниновых пластин вызывает появление характерной переливающейся иридирующей окраски. Природа наблюдаемого цвета определяется ориентацией хемохрома[ источник не указан 2928 дней ]. В сочетании с биохромами, которые выступают в качестве светофильтров, иридофоры создают эффект Тиндаля , придавая тканям ярко-голубую или ярко-зелёную окраску[ источник не указан 2928 дней ]. Меланофоры Меланофоры содержат эумеланин — разновидность меланина, пигмент чёрного или тёмно-коричневого цвета, обусловленного высокой светопоглощающей способностью.

Эумеланин содержится в пузырьках, называемых меланосомами, и распределён по всему объёму клетки. Эумеланин синтезируется из тирозина в результате ряда последовательных катализированных химических реакций и представляет собой сложное химическое соединение состоящее из дигидроксииндола[ неизвестный термин ] и дигидроксииндол-2-карбоновой кислоты[ неизвестный термин ] с пиролловыми кольцами[ источник не указан 2928 дней ]. Основным ферментом в синтезе меланина служит тирозиназа. Нарушение функционирования тирозиназы приводит к альбинизму вследствие невозможности синтеза меланина.

Меланофоры являются наиболее широко изучаемыми клетками. Этому способствует их заметный цвет, высокое содержание в клетках, а также факт, что меланоциты — аналоги меланофоров, являются единственным классом пигментсодержащих клеток человека. Тем не менее, существуют различия между меланофорами и меланоцитами. Цианофоры В 1995 году было показано, что яркие голубые цвета некоторых видов мандаринок обусловлены циансодержащими биохромами, а не хемохромами.

Данный пигмент, встречающийся у как минимум двух видов семейства Callionymidae , очень редок в животном мире, синий цвет обычно обусловлен наличием хемохроматиков. Эти данные позволяют говорить о наличии особого типа хроматофоров — цианофоров. Физиологическая смена цвета Многие виды обладают способностью перемещать пигмент внутри хроматофоров, что позволяет им менять цвет. Этот процесс, известный как физиологическая смена цвета, является хорошо изученным на примере меланофоров.

Это обусловлено тем, что меланин является наиболее тёмным и заметным пигментом. У большинства вида, с относительно тонкой кожей, кожные меланофоры обычно имеют плоскую форму и покрывают большую площадь. У животных с толстой кожей, примером которых могут служить рептилии, кожные меланофоры часто объединяются в трёхмерные блоки с другими хроматофорами.

Они отвечают за цвет кожи и глаз у холоднокровных животных и рождаются в нервном гребне во время эмбриогенеза. Данный термин также может относиться к цветным везикулам, связанным с мембраной, которые встречаются в некоторых фототрофных бактериях. Некоторые биологические виды могут быстро изменять свой цвет с помощью механизмов, которые перемещают пигменты и переориентируют отражающие плашки с хроматофором. Этот процесс часто используется для камуфляжа и называется физиологическая смена цвета.

Каким образом тогда эти животные изменяют свою окраску в соответствии с цветовым фоном окружающей среды? Американские ученые во главе с Александром Стаббс и Кристофером Стаббсы выяснили, что источник информация о цвете окружающих моллюска предметов и среды — хроматическая аберрация глаз. Речь идет о разном преломлении световых лучей в зрительных органах в зависимости от длины волны.

Головоногие моллюски могут «настраиваться» на определенные световые волны, что позволяет им опознавать цвет. Принцип действия такого механизма похож на фокусировку камеры при настройке четкости кадра. Практическое применение Ученые долгое время изучают цветовую адаптацию головоногих на местности, надеясь создать аналогичную технологию. Скрываться на местности с такими способностями? Нет ничего проще. Хотя есть и другое применение идее, подсказанной природной. Например, цветная электронная бумага работает примерно по тому же принципу, что и кожа головоногих моллюсков или же хамелеонов. Но здесь вместо мускулов для работы с пигментами используются электрические поля. Если подвести к пигментным молекулам цветной электронной бумаги электрический ток, то эти молекулы станут невидимыми, спрятавшись в специфические углубления. Если напряжение убрать, молекулы станут заметными.

Есть и еще одна разновидность электронной бумаги, которая основана на фотонно-кристаллических чернилах. У такой бумаги специфическая структура, отражающая свет. По мнению ряда специалистов, сейчас цветная электронная бумага уже превзошла свой природный аналог — кожу хамелеонов и головоногих моллюсков.

У эмбрионов рыбок данио известно, например, что через 3 дня после оплодотворения каждый из классов клеток, обнаруженных у взрослых рыб - меланофоры, ксантофоры и иридофоры - уже присутствует. Исследования с использованием мутантных рыб показали, что такие факторы транскрипции, как Комплект,sox10, а также митф важны для контроля дифференцировки хроматофора Kelsh et al. Если эти белки дефектны, хроматофоры могут отсутствовать частично или полностью, что приводит к лейцистическому расстройству.

Транслокация пигмента Многие виды обладают способностью перемещать пигмент внутри хроматофора, что приводит к заметному изменению цвета. Этот процесс, известный как физиологическое изменение цвета, наиболее широко изучен у меланофоров, поскольку меланин - самый темный и наиболее заметный пигмент. У большинства видов с относительно тонкой дермой дермальные меланофоры имеют тенденцию быть плоскими и покрывать большую площадь поверхности. Однако у животных с толстым дермальным слоем, таких как взрослые рептилии, дермальные меланофоры часто образуют трехмерные единицы с другими хроматофорами. Эти дермальные хроматофорные единицы DCU состоят из самого верхнего слоя ксантофора или эритрофора, затем слоя иридофора и, наконец, корзинообразного слоя меланофора с отростками, покрывающими иридофоры Bagnara et al. Оба типа кожных меланофоров важны для физиологического изменения цвета.

Плоские кожные меланофоры часто перекрывают другие хроматофоры, поэтому, когда пигмент рассредоточен по клетке, кожа выглядит темной. Когда пигмент собирается по направлению к центру клетки, пигменты других хроматофоров подвергаются воздействию света, и кожа приобретает свой оттенок. Точно так же после агрегации меланина в DCU кожа становится зеленой из-за ксантофорной желтой фильтрации рассеянного света от слоя иридофора. При рассеивании меланина свет больше не рассеивается, и кожа становится темной. Поскольку другие биохроматические хоматофоры также способны к транслокации пигментов, животные с несколькими типами хроматофоров могут генерировать впечатляющий набор цветов кожи, хорошо используя эффект разделения Palazzo et al. Контроль и механика быстрой транслокации пигмента хорошо изучены у ряда различных видов, особенно у земноводных и костистых рыб Deacon et al.

Было продемонстрировано, что процесс может находиться под контролем гормонов, нейронов или и тем, и другим. Нейрохимические вещества, которые, как известно, перемещают пигмент, включают норадреналин через его рецептор на поверхности меланофоров Aspengren et al. Основными гормонами, участвующими в регуляции транслокации, являются меланокортины, мелатонин и меланинконцентрирующий гормон MCH , которые вырабатываются в основном в гипофизе, шишковидной железе и гипоталамусе соответственно. Эти гормоны могут также паракринно вырабатываться клетками кожи. Было показано, что на поверхности меланофора гормоны активируют специфические рецепторы, связанные с G-белком, которые, в свою очередь, передают сигнал в клетку. Меланокортины приводят к диспергированию пигмента, в то время как мелатонин и MCH вызывают агрегацию Logan et al.

Многочисленные рецепторы меланокортина, МСН и мелатонина были идентифицированы у рыб Logan et al. Было показано, что внутри клетки циклический аденозинмонофосфат цАМФ является важным вторичным посредником транслокации пигмента. Посредством механизма, который еще не полностью изучен, цАМФ влияет на другие белки, такие как протеинкиназа A, чтобы управлять молекулярными моторами, несущими пигмент, содержащие пузырьки, вдоль как микротрубочек, так и микрофиламентов Snider et al. Фоновая адаптация См. Также: Камуфляж Большинство рыб, рептилий и земноводных претерпевают ограниченное физиологическое изменение цвета в ответ на изменение окружающей среды. Этот вид камуфляжа, известный как фоновая адаптация », чаще всего проявляется в легком потемнении или осветлении тона кожи, чтобы приблизительно имитировать оттенок окружающей среды.

Было продемонстрировано, что процесс фоновой адаптации зависит от зрения похоже, животное должно видеть окружающую среду, чтобы адаптироваться к ней Neuhauss 2003 , и что перемещение меланина в меланофорах является основным фактором изменения цвета Logan и др. У некоторых животных, таких как хамелеоны и анолисы, высокоразвитая фоновая реакция адаптации, способная очень быстро генерировать различные цвета. Они адаптировали способность изменять цвет в зависимости от температуры, настроения, уровня стресса и социальных сигналов, а не просто имитировать окружающую среду. Хроматофоры головоногих моллюсков Колеидные головоногие моллюски имеют сложные многоклеточные «органы», которые они используют для быстрой смены цвета. Это особенно заметно у ярко окрашенных кальмаров, каракатиц и осьминогов. Каждая хроматофорная единица состоит из одной хроматофорной клетки и множества мышечных, нервных, оболочечных и глиальных клеток Cloney and Florey, 1968.

Внутри клетки хроматофора гранулы пигмента заключены в эластичный мешок, называемый цитоэластическим саккулюсом. Чтобы изменить цвет, животное искажает форму или размер саккулюса за счет сокращения мышц, изменяя его полупрозрачность, отражательную способность или непрозрачность. Это отличается от механизма, используемого у рыб, земноводных и рептилий, тем, что изменяется форма саккулюса, а не перемещение пигментных пузырьков внутри клетки. Однако достигается аналогичный эффект. Осьминоги оперируют хроматофорами в сложных волнообразных хроматических дисплеях, что приводит к множеству быстро меняющихся цветовых схем. Считается, что нервы, управляющие хроматофорами, расположены в головном мозге в том же порядке, что и хроматофоры, которые каждый из них контролирует.

Это означает, что образец изменения цвета соответствует модели активации нейронов. Это может объяснить, почему, когда нейроны активируются один за другим, изменение цвета происходит волнообразно Demski 1992. Подобно хамелеонам, головоногие моллюски используют физиологическое изменение цвета для социального взаимодействия. Они также являются одними из самых опытных в адаптации фона, имея способность с поразительной точностью подбирать цвет, узор, интенсивность и текстуру окружающей среды. Бактерии Хроматофоры также встречаются в мембранах фототрофных бактерий. Используемые в основном для фотосинтеза, они содержат пигменты бактериохлорофилла и каротиноиды Salton, 1987.

У пурпурных бактерий, таких как Rhodospirillum rubrum, светособирающие белки присущи мембранам хроматофора. Однако у зеленых серных бактерий они организованы в специальные антенные комплексы, называемые хлоросомами Frigaard and Bryant 2004. Практическое применение В дополнение к фундаментальным исследованиям, направленным на лучшее понимание самих хроматофоров, клетки используются для прикладных исследовательских целей. Например, личинки рыбок данио используются для изучения того, как хроматофоры организуются и взаимодействуют, чтобы точно сформировать регулярный узор с горизонтальными полосами, как у взрослых рыб Kelsh 2004. Это рассматривается как полезная модельная система для понимания паттернов в области эволюционной биологии развития. Биология хроматофора также использовалась для моделирования состояния или заболевания человека, включая меланому и альбинизм.

Недавно ген, ответственный за меланофор-специфический золотой штамм рыбок данио, Slc24a5, было показано, что он имеет человеческий эквивалент, который сильно коррелирует с цветом кожи Lamason et al. Хроматофоры также используются в качестве биомаркера слепоты у хладнокровных животных, так как животные с определенными дефектами зрения не способны к фоновой адаптации к световой среде Neuhauss 2003. Считается, что человеческие гомологи рецепторов, которые опосредуют перемещение пигмента в меланофорах, участвуют в таких процессах, как подавление аппетита и загар, что делает их привлекательными мишенями для лекарств Logan et al. Поэтому фармацевтические компании разработали биологический анализ для быстрой идентификации потенциальных биологически активных соединений с использованием меланофоров африканской когтистой лягушки Jayawickreme et al. Другие ученые разработали методы использования меланофоров в качестве биосенсоров Andersson et al. Были предложены потенциальные военные применения изменения цвета, опосредованного хроматофорами, в основном как тип активного камуфляжа Lee 2005.

Филиппини, А. Суска и др. Меланофоры лягушки, культивируемые на флуоресцентных микрошариках: биосенсинг на основе биомимики. PMID 15967358. Проверено 6 августа 2008 г. Аспенгрен, S.

Скёльд, Г. Кирога, Л. Мартенссон и М. Норадреналин- и мелатонин-опосредованная регуляция агрегации пигментов в меланофорах рыб. Пигментная клетка Res 16: 59—64. PMID 12519126.

Багнара, Дж. Цитология и цитофизиология немеланофорных пигментных клеток. Инт Рев Цитол 20: 173—205. PMID 5337298. Сравнительная анатомия и физиология пигментных клеток в тканях не млекопитающих в пигментной системе: физиология и патофизиология. Издательство Оксфордского университета.

Хроматофор: объединение цветов в живых организмах

Хроматофоры широко распространены в животном мире и могут быть найдены у разных групп организмов: рыб, рептилий, птиц, насекомых, моллюсков и других. Они могут быть различных форм, размеров и структур, но все они выполняют схожую функцию - регулируют цвет, чтобы использовать его в коммуникации, защите или камуфляже. Хроматофоры образуются из специализированных клеток или тканей и содержат пигменты, такие как меланин, каротиноиды и гуанидины. У каждого типа хроматофора может быть свой специфический пигмент, который определяет определенный цвет. Например, эвфоторы отвечают за зеленый цвет, ксантофоры - за желтый или оранжевый, а цианофоры - за синий. Одна из ключевых особенностей хроматофоров состоит в их способности к изменению цвета.

Аркаша Силин Правильный ответ Хроматофор — это отдельный вид органоида, содержащего пигмент хлорофилл. Выполняет ту же функцию, что и обычные хлоропласты — фотосинтез, но может иметь разнообразную форму и размер. Хлоропласты всегда мелкие и овальной формы.

Achnanthes longipes. Неделящиеся и делящиеся хроматофоры и пиреноиды ув. Achnanthes subsessilis. Helminthicladia purpurea. Клетка с Х. Draparnaldia glomerata. Valonia macrophysa 800. Nemalion multifidum 800. Podosira Montagnei 800. Urospora mirabilis 400. Euglena viridis 800. Euglena oxyuris Х. Делящиеся Х. Porphyridium cruentum 1400. Batrachospermum moniliforme 1400. Зигота спирогиры Pohynchonema sp. Striatella unipunctata 400. Zygnema sp.

Строение водорослей 7 класс биология. Хроматофор в растительной клетки. Имеют спиралевидный хроматофор. Фукус хроматофор. Виды одноклеточных водорослей. Хроматофоры в клетках водорослей. Форма хроматофора у зеленых водорослей. Хроматофор в клетке. Форма хроматофора. Функция хроматофора у хламидомонады. Функции хламидомонады. Форма хроматофора у бурых водорослей. Водоросли форма хроматофоров рис 29. Водоросль спирогира автотроф. Строение водоросли хламидомонады. Строение клетки Chlamydomonas. Строение клетки водоросли хламидомонады 5 класс. Строение одноклеточной водоросли хламидомонады. Спиралевидный хроматофор. Строение одноклеточной водоросли хламидомонады рисунок. Хламидомонада строение рисунок. Строение водорослей 5 класс биология. Хроматофор это в биологии 5 класс. Что такое хроматофор кратко. Хроматофор это в биологии. Улотрикс хроматофор. Улотрикс клеточная стенка. Улотрикс и спирогира. Строение и функции пиреноид. Хламидомонада миксотроф. Хроматофор улотрикса. Улотрикс водоросль строение. Улотрикс строение. Улотрикс строение рисунок. Хроматофор у водорослей рисунок. Хламидомонада и хлорелла. Одноклеточная водоросль хламидомонада. Клетка зеленой водоросли хламидомонады.

Что такое хроматофор? Функция хроматофора

Цвет тела животного зависит от цвета увеличившихся в размере хроматофор. Функция хроматофоров заключается в регулировании цвета тела животных и их способности менять цвет и легко приспособиться к окружающей среде. Хроматофор представляет собой содержащую пигмент и светоотражающую клетку, обнаруженную у различных беспозвоночных и хладнокровных позвоночных животных, которая может способствовать изменению цвета или яркости в организме. Хроматофоры (носители окраски) — этим именем можно назвать все окрашенные тела, заключающиеся в клетках растений, но специально им называются таковые, заключающиеся в клетках водорослей (см.). Хроматофором называется внутриклеточное образование различной формы у водорослей, в котором находится хлорофилл и другие пигменты.

Значение слова «хроматофор»

Arch Microbiol 182: 265-75. PMID 15340781. Fujii, Р. Регулирование подвижной активности в хроматофорах рыб.

Pigment Cell Res. PMID 11041206. Ито С.

Количественный анализ эумеланина и феомеланина у людей, мышей и других животных: сравнительный обзор. Пигментная клетка Res 16: 523-31. PMID 12950732.

Jayawickreme, C. Sauls, N. Bolio, et al.

Использование клеточного анализа в формате газона для быстрого скрининга библиотеки пептидов на основе 442 368 гранул. J Pharmacol Toxicol Методы 42: 189-97. PMID 11033434.

Карлссон, J. Андерссон, П. Аскелоф и др.

Агрегационная реакция меланофоров изолированной чешуи рыбы: очень быстрый и точный диагноз коклюша. PMID 1936946. Кашина А.

Семенова, П. Иванов и др. Протеинкиназа А, регулирующая внутриклеточный транспорт, образует комплексы с молекулярными моторами на органеллах.

Curr Biol 14: 1877—81. PMID 15498498. Келш, Р.

Шмид, И. Генетический анализ развития меланофоров у эмбрионов рыбок данио. Дев Биол 225: 277-93.

PMID 10985850. Генетика и эволюция пигментных паттернов у рыб. Пигментная клетка Res 17: 326-36.

PMID 15250934. Ламасон Р. Мохидин, Дж.

Мест и др. Предполагаемый катионообменник SLC24A5 влияет на пигментацию у рыбок данио и людей. Наука 310: 1782—6.

PMID 16357253. Ли, I. Нанотрубки для обработки шумных сигналов: адаптивный камуфляж.

Докторская диссертация, Университет Южной Калифорнии. Проверено 6 августа 2008 года. Логан Д.

Брайсон-Ричардсон, М. Тейлор и др. Последовательная характеристика рецепторов меланокортина костистых рыб.

Ann N Y Acad Sci 994: 319-30. PMID 12851332. Брайсон-Ричардсон, К.

Паган и др. Структура и эволюция рецепторов меланокортина и МСН у рыб и млекопитающих. Геномика 81: 184-91.

PMID 12620396. Берн, И. Регулирование пигментации меланофоров рыбок данио.

Пигментная клетка Res 19: 206-13. PMID 16704454. Мацумото, Дж.

Исследования тонкой структуры и цитохимических свойств эритрофоров меченого хвоста. Xiphophorus helleri. J Cell Biol 27: 493—504.

PMID 5885426. Моррисон, Р. Метод просвечивающей электронной микроскопии ПЭМ для определения структурных цветов, отраженных иридофорами ящериц.

Пигментная клетка Res 8: 28—36. PMID 7792252. Neuhauss, S.

Поведенческие генетические подходы к развитию и функции зрительной системы у рыбок данио. J Neurobiol 54: 148-60. PMID 12486702.

Палаццо, Р. Линч, С.

Ответ: два ответа это хорошооооооооооооооооооо Ответ: Хроматофоры содержатся в тканях растений и придают им окраску. Клетка, в состав которой входит пигмент. У человека такие клетки, богатые гранулами меланина, обнаруживаются в коже, в волосах, а также в радужке и сетчатке глаза.

Аркаша Силин Правильный ответ Хроматофор — это отдельный вид органоида, содержащего пигмент хлорофилл. Выполняет ту же функцию, что и обычные хлоропласты — фотосинтез, но может иметь разнообразную форму и размер. Хлоропласты всегда мелкие и овальной формы.

Нервы, управляющие хроматофорами располагаются в головном мозгу в порядке, соответствующей распределению хроматофоров, которыми они управляют. Это предположение объясняет, почему при последовательном возбуждении нейронов, смена цвета имеет волновой характер. Как и хамелеоны, головоногие используют физиологическую смену цвета для коммуникации. Кроме того, головоногие, с их поразительно точной способностью подстраиваться под цвет и текстуру окружающего фона, являются рекордсменами животного мира по мимикрии. Бактерии Также хроматофоры были обнаружены в мембранах фототрофных бактерий. Здесь они используются главным образом для фотосинтеза, содержат пигмент бактериохлорофилл и каротиноиды. Однако, в зелёных серных бактериях они расположены в особых антенных комплексах , которые называются хлоросомы.

Bagnara, J. The Dermal Chomatophore Unit англ. Bacterial membrane proteins. Microbiol Sci. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Arch Microbiol. Что такое monamir.

Он открыт для любого пользователя. Наш сайт - это библиотека, которая является общественной. Любой посетитель сможет найти необходимую для себя информацию. Основа этой страницы находится в Вики. E-mail: admin monamir.

Хроматофор

Хроматофор - Chromatophore Таким образом, хроматофоры выполняют важную роль в организме, обеспечивая адаптивность и выживаемость животных в различных условиях среды.
Хроматофоры это в биологии что такое? Что такое хроматофоры водорослей 5 класс биология. Пиреноиды в хроматофорах. Хроматофор строение и функции.
Для чего нужен хроматофор? Хроматофор непосредственно связан с нервной системой животного и реагирует на различные стимулы: изменение освещенности, температуры или эмоционального состояния.

Что означает слово Хроматофор?

  • Хроматофор - Образование - 2024
  • Что означает слово Хроматофор?
  • ХРОМАТОФОРЫ
  • Другие термины:
  • Что такое Хроматофор 5 класс? - Места и названия

Для чего нужен хроматофор?

Значение слова ХРОМАТОФОР. Что такое ХРОМАТОФОР? Например, у животных хроматофоры могут использоваться для маскировки, коммуникации, терморегуляции или защиты от ультрафиолетового излучения.
Что такое хроматофор в 7 классе | Гид по Китаю 9 классов классов.

Что такое хроматофор в биологии и как его можно кратко определить?

Хроматофор 9 классов классов.
ХРОМАТОФОРЫ - определение. Что такое ХРОМАТОФОРЫ Например, у животных хроматофоры могут использоваться для маскировки, коммуникации, терморегуляции или защиты от ультрафиолетового излучения.
Хроматофор — Что такое Хроматофор Хроматофоры (от греч. «хромос» — крашу и «форос» — несущий) — пигменто-содержащие и светоотражающие клетки, присутствующие у земноводных, рыб, рептилий, ракообразных и головоногих.
Хроматофоры - это что такое в биологии? Хроматофор непосредственно связан с нервной системой животного и реагирует на различные стимулы: изменение освещенности, температуры или эмоционального состояния.
Для чего нужен хроматофор? Хроматофоры (носители окраски) — этим именем можно назвать все окрашенные тела, заключающиеся в клетках растений, но специально им называются таковые, заключающиеся в клетках водорослей (см.), в отличие от хлорофилльных зерен (см.).

Что такое хроматофор

это органоиды, которые находятся внутри водорослей и содержат пигменты, необходимые для фотосинтеза. Ответ на вопрос здесь, Количество ответов:3: Что такое хроматофор? 4. Что такое пигменты? Биологические пигменты – это вещества, входящие в состав пластид и обладающие способностью окрашивать. это клетка, в состав которой входит пигмент. Хроматофоры содержатся в тканях растений и придают им окраску. это (chromatophore) - клетка, в состав которой входит пигмент. У человека такие клетки, богатые гранулами меланина, обнаруживаются в коже, в волосах, а также в радужке и сетчатке глаза. Хроматофоры (носители окраски) — этим именем можно назвать все окрашенные тела, заключающиеся в клетках растений, но специально им называются таковые, заключающиеся в клетках водорослей (см.), в отличие от хлорофилльных зерен (см.) и хромопластов (см.

Научитесь определять, что такое и как работает хроматофор

В некоторых случаях окраска может также играть роль в территориальных спорах или обозначать половую зрелость. Фотостатические хроматофоры: обнаружение света и реакция Функция фотостатических хроматофоров основана на способности клеток к изменению своего цвета или освещению в ответ на изменение освещенности окружающей среды. Когда хроматофоры освещаются, пигменты в их клетках меняют свое расположение или становятся темнее, что приводит к изменению цвета хроматофоров. Эти цветовые изменения позволяют животным адаптироваться к окружающей среде. Например, они могут использоваться для защиты от хищников, мимикрии, обнаружения партнера для размножения или привлечения добычи.

Фотостатические хроматофоры обнаруживают наличие света с помощью специальных органов, называемых офтальмосомами или фотосенсорными структурами. Эти структуры содержат фотопигменты, которые реагируют на световые лучи и передают сигналы о наличии света в клетки хроматофоров. Когда ожидаемое или неожиданное изменение освещенности происходит, фотопигменты передают сигналы в клетки хроматофоров, вызывая изменение цвета. Например, некоторые хроматофоры становятся более яркими и насыщенными при повышенной освещенности и менее заметными в темноте, тогда как другие могут менять свой цвет от белого до черного или от зеленого до красного.

Фотостатические хроматофоры представляют интерес для ученых и исследователей, которые исследуют механизмы, лежащие в основе этих клеток. Понимание, как они работают, может привести к разработке новых технологий в области оптики и обнаружения света. Роль хроматофоров в коммуникации и социальном поведении Окраска, усиливаемая или изменяемая хроматофорами, может использоваться для межвидовой и внутривидовой коммуникации. Животные могут использовать различные комбинации и интенсивность цветов, чтобы передать разные сигналы, такие как сексуальное влечение, статус в социальной иерархии, агрессию или страх.

Кроме того, хроматофоры могут помочь животным маскироваться и скрываться от хищников или быть замеченными и остановиться на определенных участках, чтобы привлечь партнера или отпугнуть конкурента. Способность изменять свою окраску позволяет животным адаптироваться к различным средам и менять тактику поведения в зависимости от обстоятельств. Хроматофоры также могут играть важную роль в обнаружении и распознавании партнеров, особенно во время размножения. Животные могут использовать определенные цветовые сигналы для привлечения партнера и демонстрации своей способности к размножению.

В целом, хроматофоры играют ключевую роль в коммуникации и социальном поведении животных, помогая им передвигаться, привлекать внимание, обмениваться информацией и адаптироваться к своей среде. Практическое применение хроматофоров в науке и технологиях Хроматофоры, являющиеся клетками или органами некоторых организмов, нашли широкое применение в различных областях науки и технологий. Процесс изменения цвета у хроматофоров может быть использован в медицине, биомиметике, оптике и других сферах. В медицине хроматофоры активно применяются для разработки датчиков и индикаторов.

Например, ученые создали биологические капельки с хроматофорами, которые изменяют цвет при взаимодействии с определенными веществами. Это позволяет быстро и просто обнаружить наличие или концентрацию различных веществ в теле организма. Такие датчики могут быть использованы в диагностике болезней, контроле качества пищевых продуктов и других областях медицины. Кроме того, хроматофоры нашли применение в биомиметике — науке, изучающей природные объекты и процессы для создания новых технологичных материалов и устройств.

Наблюдая за работой хроматофоров у различных животных, ученые получили важные знания о свойствах и способах изменения цвета. Эти знания использовались для создания «умных» материалов, способных менять цвет под воздействием различных факторов, таких как температура, свет, электричество.

Эти пигменты помогают водорослям поглощать свет для фотосинтеза и придают им разнообразные цвета. Они содержат пигменты, которые помогают водорослям делать фотосинтез, то есть получать энергию от солнечного света. Каждая группа водорослей имеет свой уникальный состав пигментов. Некоторые водоросли могут иметь зеленые хроматофоры, другие — красные или коричневые. Эти различные пигменты помогают водорослям поглощать разные цвета света, что позволяет им производить больше энергии.

Зеленые хроматофоры содержат пигменты, называемые хлорофиллом, которые делают их зелеными. Хлорофилл поглощает синий и красный свет, а отражает зеленый свет, поэтому водоросли с зелеными хроматофорами кажутся зелеными. Красные хроматофоры содержат пигменты, которые делают их красными или фиолетовыми. Эти пигменты называются фикобилинами и помогают водорослям поглощать синий и зеленый свет. Такие водоросли можно увидеть на коралловых рифах или в красном и фиолетовом цветах в океане. Коричневые хроматофоры содержат пигменты, называемые фукоидинами, которые делают их коричневыми. Эти водоросли можно увидеть в море или на песчаном дне.

Они поглощают синий и зеленый свет, что помогает им получать энергию для фотосинтеза.

Проверено 6 августа 2008 года. Логан Д. Брайсон-Ричардсон, М. Тейлор и др.

Последовательная характеристика рецепторов меланокортина костистых рыб. Ann N Y Acad Sci 994: 319-30. PMID 12851332. Брайсон-Ричардсон, К. Паган и др.

Структура и эволюция рецепторов меланокортина и МСН у рыб и млекопитающих. Геномика 81: 184-91. PMID 12620396. Берн, И. Регулирование пигментации меланофоров рыбок данио.

Пигментная клетка Res 19: 206-13. PMID 16704454. Мацумото, Дж. Исследования тонкой структуры и цитохимических свойств эритрофоров меченого хвоста. Xiphophorus helleri.

J Cell Biol 27: 493—504. PMID 5885426. Моррисон, Р. Метод просвечивающей электронной микроскопии ПЭМ для определения структурных цветов, отраженных иридофорами ящериц. Пигментная клетка Res 8: 28—36.

PMID 7792252. Neuhauss, S. Поведенческие генетические подходы к развитию и функции зрительной системы у рыбок данио. J Neurobiol 54: 148-60. PMID 12486702.

Палаццо, Р. Линч, С. Ло, Дж. Тейлор и Т. Перестройки птериносом и цитоскелета, сопровождающие дисперсию пигмента в ксантофорах золотой рыбки.

Цитоскелет клеточного мотиля 13: 9—20. PMID 2543509. Поррас М. Де Луф, М. Брейер и Х.

Коразонин способствует миграции тегументарного пигмента у раков. Procambarus clarkii. Пептиды 24: 1581—9. PMID 14706537. Родионов В.

Надежда, Т. Свиткина, Г. Функциональная координация подвижности на основе микротрубочек и актина в меланофорах. Curr Biol 8: 165-8. PMID 9443917.

Salton, M. Бактериальные мембранные белки. Microbiol Sci 4: 100-5. PMID 3153178. Sangiovanni, G.

Descrizione di unpecolare sistema di organi cromoforo espansivo-dermoideo e dei fenomeni che esso productions, scoperto nei molluschi cefaloso. Enciclopedico Napoli 9:1—13. Швальм П. Старретт и Р. Инфракрасное отражение у неотропических лягушек, сидящих на листьях.

Наука 196: 1225—7. PMID 860137. Снайдер, Дж. Лин, Н. Захеди и др.

Внутриклеточный транспорт на основе актина: как далеко вы продвинетесь, зависит от того, как часто вы переключаетесь. PMID 15331778. Сагден, Д. Дэвидсон, К. Хаф и М.

Мелатонин, рецепторы мелатонина и меланофоры: трогательная история. Пигментная клетка Res 17: 454-60. PMID 15357831. Влияние интермедина на ультраструктуру иридофоров амфибий. Gen Comp Endocrinol 12: 405-16.

PMID 5769930.

Ответ: два ответа это хорошооооооооооооооооооо Ответ: Хроматофоры содержатся в тканях растений и придают им окраску. Клетка, в состав которой входит пигмент. У человека такие клетки, богатые гранулами меланина, обнаруживаются в коже, в волосах, а также в радужке и сетчатке глаза.

Что такое Хроматофор 5 класс?

Определение и структура хроматофоров Основная функция хроматофоров — обеспечивать животное возможность регулирования своего окраса в зависимости от окружающей среды и внешних воздействий. Это может быть полезно для маскировки или для привлечения партнера в процессе размножения. Хроматофоры состоят из специализированных клеток, называемых хроматофорными клетками. У каждого типа хроматофор несколько подтипов, которые отличаются по цвету, который они могут произвести. Некоторые хроматофоры способны производить только один цвет например, желтый или черный , в то время как другие могут производить различные оттенки. Структура хроматофоров включает центральное тело, содержащее пигменты, и множество ветвей, называемых фибриллами. Фибриллы могут быть сжаты или растянуты с помощью мышц, что позволяет клетке изменять свой цвет.

Например, при растяжении фибриллы пигменты раздвигаются и поглощают определенные длины волн света, что приводит к изменению цвета хроматофора. Интересно, что некоторые хроматофоры могут иметь светоотражающие слои или отражающие зеркала, которые помогают усилить цвет и блеск.

Термин «хроматофор» также может относиться к окрашенным мембранно-связанным везикулам органеллам , обнаруженным в некоторых формах фотосинтезирующих бактерий. В дополнение к их очевидной ценности для животных с хроматофорами, эти клетки исследуются на предмет потенциального применения для людей, включая моделирование болезней, использование для подавления аппетита и дубления, а также в качестве биосенсоров и для быстрого обнаружения заболеваний. Эти клетки также значительно увеличивают разнообразие и чудеса природы для людей. Обзор и классификация Клетки беспозвоночных, несущие пигмент, были впервые описаны как хромофор в итальянском научном журнале в 1819 г. Sangiovanni 1819. Срок хроматофор был принят позже как название для несущих пигмент клеток, происходящих из нервного гребня хладнокровных позвоночных и головоногих. У этих животных был идентифицирован только один такой тип клеток - меланоциты.

Считается, что теплокровные животные не имеют классических активных дермальных пигментных клеток хроматофоров в их покровах Oliphant et al. Однако ярко окрашенные кожные пигментные клетки обнаруживаются в радужной оболочке радужной оболочки многих птиц и сопоставимы с хроматофорами низших позвоночных Oliphant et al. В то время как млекопитающие, по-видимому, утратили способность продуцировать иридофоры, эритрофоры и ксантофоры, сопоставимые с низшими позвоночными, Oliphant et al. Некоторые виды могут быстро менять цвет с помощью механизмов, которые перемещают пигмент и переориентируют отражающие пластинки внутри хроматофоров. Этот процесс, часто используемый в качестве маскировки, называется физиологическим изменением цвета. Головоногие моллюски, такие как осьминоги, имеют сложные хроматофорные органы, контролируемые мышцами для достижения этой цели, в то время как позвоночные, такие как хамелеоны, производят аналогичный эффект посредством передачи сигналов клетками. Такие сигналы могут быть гормонами или нейротрансмиттерами и могут быть инициированы изменениями настроения, температуры, стресса или видимыми изменениями в окружающей среде. Только в 1960-х годах структура и окраска хроматофоров были изучены достаточно хорошо, чтобы можно было разработать систему подклассификации, основанную на их внешнем виде. Эта система классификации существует и по сей день, хотя более поздние исследования показали, что определенные биохимические аспекты пигментов могут быть более полезными для научного понимания того, как функционируют клетки Bagnara 1966.

Производство цвета подразделяется на отдельные классы: биохромы и схемохромы Fox, 1976. В биохромы включают настоящие пигменты, такие как каротиноиды и птеридины. Эти пигменты избирательно поглощают части спектра видимого света, составляющие белый свет, позволяя при этом другим длинам волн достигать глаза наблюдателя. Схемы, также известные как «структурные цвета», создают окраску, отражая одни длины волн цвета света и передавая другие, заставляя световые волны интерферировать внутри структуры или рассеивая свет, падающий на них. Хотя все хроматофоры содержат пигменты или отражающие структуры за исключением случаев, когда произошла генетическая мутация, приводящая к нарушению, подобному альбинизму , не все клетки, содержащие пигмент, являются хроматофорами. Например, гем - это биохром, ответственный за красный цвет крови. В первую очередь он содержится в красных кровяных тельцах эритроцитах , которые образуются в костном мозге на протяжении всей жизни организма, а не образуются во время эмбриологического развития. Таким образом, эритроциты не относятся к хроматофорам. Было обнаружено, что везикулы, содержащие птеридин и каротиноид, иногда обнаруживаются в одной и той же клетке, и что общий цвет зависит от соотношения красного и желтого пигментов Matsumoto 1965.

Следовательно, различие между этими типами хроматофоров по существу произвольно. Способность генерировать птеридины из гуанозинтрифосфата является общей характеристикой большинства хроматофоров, но ксантофоры, по-видимому, имеют дополнительные биохимические пути, которые приводят к избыточному накоплению желтого пигмента. Напротив, каротиноиды метаболизируются с пищей и транспортируются к эритрофорам. Это было впервые продемонстрировано при выращивании обычно зеленых лягушек на диете из сверчков с ограниченным содержанием каротина. Это привело к тому, что лягушка стала синей, а не зеленой Bagnara 1998. Иридофоры и лейкофоры Иридофоры, иногда также называемые гуанофорами, представляют собой пигментные клетки, которые отражают свет с помощью пластинок кристаллических хемохромов, сделанных из гуанина Taylor 1969. При освещении они создают переливающиеся цвета из-за дифракции света внутри уложенных друг на друга пластин. Ориентация схемы определяет характер наблюдаемого цвета Morrison 1995. Используя биохромы в качестве цветных фильтров, иридофоры создают оптический эффект, известный как рассеяние Тиндаля или Рэлея, производя яркие синие или зеленые цвета Fujii 2000.

Родственный тип хроматофоров, лейкофор, встречается у некоторых рыб, особенно у тапетума lucidum. Как иридофоры, они используют кристаллические пурины часто гуанин для отражения света. Однако, в отличие от иридофоров, лейкофоры имеют более организованные кристаллы, что снижает дифракцию. При наличии источника белого света они производят белый блеск. Как и в случае с ксантофорами и эритрофорами, у рыб различие между иридофорами и лейкофорами не всегда очевидно, но обычно считается, что иридофоры генерируют радужные или металлические цвета, в то время как лейкофоры дают светоотражающие белые оттенки Fujii 2000. Меланофоры Меланофоры содержат эумеланин, тип меланина, который кажется черным или темно-коричневым из-за его способности поглощать свет. Он упакован в пузырьки, называемые меланосомами, и распределяется по клетке. Эумеланин образуется из тирозина в результате ряда катализируемых химических реакций. Это сложное химическое соединение, содержащее звенья дигидроксииндола и дигидроксииндол-2-карбоновой кислоты с некоторыми пиррольными кольцами Ito and Wakamatsu 2003.

Ключевым ферментом в синтезе меланина является тирозиназа. Когда этот белок является дефектным, не может образовываться меланин, что приводит к определенным типам альбинизма. У некоторых видов земноводных наряду с эумеланином упакованы и другие пигменты. Например, новый пигмент темно-красного цвета был идентифицирован в меланофорах филломедузиновых лягушек Bagnara et al. Впоследствии он был идентифицирован как птерородин, димер птеридина, который накапливается вокруг эумеланина. Хотя вполне вероятно, что другие, менее изученные виды имеют сложные пигменты меланофоров, тем не менее верно, что большинство изученных на сегодняшний день меланофоров действительно содержат исключительно эумеланин. У людей есть только один класс пигментных клеток, эквивалент меланофоров у млекопитающих, для создания цвета кожи, волос и глаз. По этой причине, а также из-за того, что большое количество и контрастный цвет клеток обычно упрощает их визуализацию, меланофоры, безусловно, являются наиболее изученными хроматофорами. Однако есть различия между биологией меланофоров и меланоцитов.

Цианофоры В 1995 году было продемонстрировано, что яркие синие цвета у некоторых видов мандариновой рыбы не создаются схемохромами. Вместо этого ответственен голубой биохром неизвестной химической природы Fujii 2000. Этот пигмент, обнаруженный в пузырьках по крайней мере у двух видов каллионимидных рыб, очень необычен для животного мира, поскольку все остальные синие окраски, исследованные до сих пор, являются схематическими. Поэтому был предложен новый тип хроматофоров - цианофор. Хотя они кажутся необычными по своему таксономическому ограничению, могут быть цианофоры а также другие необычные типы хроматофоров у других рыб и земноводных. Например, ярко окрашенные хроматофоры с неопределенными пигментами наблюдались как у ядовитых лягушек, так и у стеклянных лягушек Schwalm et al. Разработка Во время эмбрионального развития позвоночных хроматофоры являются одним из ряда типов клеток, генерируемых в нервном гребне, парной полосе клеток, возникающих на краях нервной трубки. Эти клетки обладают способностью мигрировать на большие расстояния, позволяя хроматофорам заселять многие органы тела, включая кожу, глаза, ухо и мозг. Покидая нервный гребень волнообразно, хроматофоры проходят либо дорсолатеральный путь через дерму, проникая в эктодерму через небольшие отверстия в базальной пластинке, либо вентромедиальный путь между сомитами и нервной трубкой.

Исключением являются меланофоры пигментированного эпителия сетчатки глаза. Они не происходят из нервного гребня, вместо этого выход из нервной трубки создает глазной бокал, который, в свою очередь, формирует сетчатку. Когда и как мультипотентные клетки-предшественники хроматофора называемые хроматобласты развиваются в свои дочерние подтипы - область постоянных исследований. У эмбрионов рыбок данио известно, например, что через 3 дня после оплодотворения каждый из классов клеток, обнаруженных у взрослых рыб - меланофоры, ксантофоры и иридофоры - уже присутствует. Исследования с использованием мутантных рыб показали, что такие факторы транскрипции, как Комплект,sox10, а также митф важны для контроля дифференцировки хроматофора Kelsh et al. Если эти белки дефектны, хроматофоры могут отсутствовать частично или полностью, что приводит к лейцистическому расстройству. Транслокация пигмента Многие виды обладают способностью перемещать пигмент внутри хроматофора, что приводит к заметному изменению цвета. Этот процесс, известный как физиологическое изменение цвета, наиболее широко изучен у меланофоров, поскольку меланин - самый темный и наиболее заметный пигмент. У большинства видов с относительно тонкой дермой дермальные меланофоры имеют тенденцию быть плоскими и покрывать большую площадь поверхности.

Однако у животных с толстым дермальным слоем, таких как взрослые рептилии, дермальные меланофоры часто образуют трехмерные единицы с другими хроматофорами. Эти дермальные хроматофорные единицы DCU состоят из самого верхнего слоя ксантофора или эритрофора, затем слоя иридофора и, наконец, корзинообразного слоя меланофора с отростками, покрывающими иридофоры Bagnara et al. Оба типа кожных меланофоров важны для физиологического изменения цвета. Плоские кожные меланофоры часто перекрывают другие хроматофоры, поэтому, когда пигмент рассредоточен по клетке, кожа выглядит темной. Когда пигмент собирается по направлению к центру клетки, пигменты других хроматофоров подвергаются воздействию света, и кожа приобретает свой оттенок.

У животных цвет может быть любым. Общие сведения о водорослях Водоросли бывают одноклеточные и многоклеточные, также существуют колониальные формы. У одних в клетке отсутствует оболочка, а есть лишь уплотненный слой протоплазмы. Это позволяет водоросли менять форму.

У других водорослей оболочка плотная, с большим содержанием целлюлозы, а у некоторых она даже пропитана минеральными веществами — известью, кремнезёмом. Клетки водорослей могут иметь как одно, так и несколько ядер, а могут и вообще не иметь оформленного ядра. Тогда протопласт имеет заметную окраску, а его центр не окрашен. У некоторых представителей водорослей красящий пигмент содержится в хроматофорах, в которых обычно находятся пиреноиды плотные тельца с большим содержанием белков , а вокруг пиреноидов откладываются запасы крахмала. Тип питания большей части водорослей автотрофный за счет энергии света, проникающего сквозь толщу воды. Каковы особенности хроматофоров у спирогиры и некоторых других водорослей У водорослей обычно хроматофор участвует в питании, так как является участником процесса фотосинтеза и соответственно образования питательных веществ. Какую форму имеет хроматофор водорослей? Спирогира имеет хроматофор в виде ленты, которая спиралью извивается у клеточных стенок. Улотрикс, как и спирогира, являющийся нитчатой многоклеточной водорослью, содержит хроматофор в виде кольца.

Хроматофоры зигнемы - в форме звездчатых телец. Найденные у диатомовых водорослей хроматофоры имеют вид зернышек, пластинок и так далее, и содержат пигменты бурого цвета, что придает водорослям желтоватую, желтовато-бурую или коричневую окраску. У сине-зелёных водорослей хроматофоров как таковых нет. Цветовые пигменты у них равномерно распределяются в протоплазме, минуя только центральную часть. Нужно заметить, что сине-зеленые водоросли на самом деле — колонии цианобактерий.

Механизмы образования и функционирования хроматофоров Механизм образования хроматофоров достаточно сложен и включает в себя несколько этапов. В основе образования хроматофоров лежит активность определенных генов, которые направляют синтез определенных пигментов или кристаллических включений. Эти пигменты и включения, в зависимости от их структуры, определенным образом взаимодействуют с электромагнитным излучением.

Одним из основных типов хроматофоров являются пигментные хроматофоры. Они содержат пигменты, такие как меланин, каротиноиды или феромоны, которые придает организму определенный цвет. Меланин ответственен за черный, коричневый или желтый цвет, каротиноиды обеспечивают красный, оранжевый или желтый цвет, а феромоны могут служить для привлечения партнера или отпугивания хищников. Другим типом хроматофоров являются глитерофоры. Они состоят из специализированных клеток, содержащих в себе глитерин — прозрачное вещество, отвечающее за отражение или преломление света. Благодаря глитерофорам животное может изменять свое освещение и маскироваться на фоне окружающей среды. Также существуют иридофоры, которые обладают способностью отражать и преломлять свет на своих многочисленных наноструктурах. Это позволяет им создавать яркие, металлически-блестящие цвета, которые зависят от угла падения света и наблюдения.

Функции хроматофоров разнообразны и зависят от конкретного видового состава организма. Они могут служить для мимикрии и камуфляжа, привлечения партнера, отпугивания хищников, сигнализации или осветления окружающей среды. Интересно, что некоторые животные могут активировать и деактивировать хроматофоры, что позволяет им быстро изменять свою окраску в зависимости от ситуации или настроения. В итоге, хроматофоры являются одной из самых удивительных адаптивных особенностей живых организмов. Хроматофоры как средство общения и мимикрии Одна из важнейших функций хроматофоров — коммуникация. Животные используют изменение цвета при взаимодействии с другими особями своего вида или с другими видами. Например, хроматофоры позволяют животным выражать свои эмоции, показывать свое состояние или предупреждать о предстоящей опасности. Некоторые животные используют хроматофоры для мимикрии.

Они могут изменять окраску своего тела, чтобы соответствовать окружающей среде и стать неразличимыми для хищников или добычи.

Похожие новости:

Оцените статью
Добавить комментарий