Просмотрите доску «Фракталы в природе» пользователя Александрина в Pinterest. Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского.
Фракталы в природе
Посмотрите потрясающие примеры фракталов в природе. (с) Примеры фракталов в природе встречаются повсеместно: от ракушек до сосновых шишек. Фрактальные модели в природе и технике Текст научной статьи по специальности «Математика». Фракталы часто встречаются в природе. Немного о фракталах и множестве Мандельброта Антон Ступин Что породило само понятие фрактал?
9 Удивительных фракталов, найденных в природе
На самом деле они изменяются — облака движутся, пламя мерцает, лист увядает. Your browser does not support the video tag. Цикл книг «Фракталы и Хаос».
Секрет — в расшифровке сокращения «B» Benoit B. Геометрия и фракталы. Бесконечные фигуры часто используются в дизайне, художественном искусстве, архитектуре. Снежинка Коха, Треугольник Серпинского, Кривая Леви, Дерево Пифагора и другие нашли применение в области фрактальных антенн для мобильных устройств. Фигуры компактного размера обладают широким диапазоном действий. Алгебраические фракталы. Он базируется на математических формулах, например, Мандельброта.
Фигуры строятся с помощью комплексной динамики. Эти фигуры создают методом хаотичного изменения параметров, применяют дизайне, художестве. Изображения получаются природными, абстрактными. Такие фигуры нашли популярность в кинематографе, компьютерной графике, нейрографике дизайне при создании эффекта «плазмы» природы: молний, пламени, северного сияния, береговой линии и даже ионосферы. Концептуальные фракталы и их дизайн. А эти фигуры уже выходят за рамки геометрии. Многоуровневое самоподобие ищи в стихах, музыке, изобразительном искусстве. Сказка «Репка», где «бабка за дедку, внучка за бабку, а Жучка за внучку» — яркий тому пример. Внепространственные фракталы также применяются в разделении общества на группы, организации поселений, социокультурной сфере.
Фрактал — это бесконечная цепочка самопостроения Первые изображения найдены на керамике Трипольской культуры 2700 год. Гипнотические фигуры в природе и науке преображают хаос, создают матрицу. Они перестают быть синонимами беспорядка, обретая тонкую и четкую структуру. Фракталы выстраивают свой дизайн посредством простых алгоритмов. Математика, современные технологии, дизайн, экономика и другие сферы давно обратили внимание на подобные закономерности. Фрактал упорядочивает хаос Картины с изображением фракталов способствуют глубокой медитации От общего к частному: из природы в архитектуру Архитектура обожает прием совершенной геометрии. К примеру, индуистские храмы обладают схожими друг на друга структурами.
На рисунке эти формы застыли. На самом деле они изменяются — облака движутся, пламя мерцает, лист увядает. Your browser does not support the video tag.
Из-за своей древовидной природы и уникального красновато-коричневого цвета кристаллы меди часто выращивают для искусства. Хотя иногда ручьи могут быть расположены по прямой линии, они быстро становятся извилистыми, поскольку приспосабливаются к помехам, таким как норы диких животных. Всего одна помеха может изменить течение реки и заставить ее изгибаться на всем протяжении. Ширина этих ручьев также чрезвычайно шаблонна. Кривые, как установили эксперты, всегда в шесть раз больше ширины русла. Такое самоподобие характерно для фракталов и является причиной того, что реки во всем мире выглядят одинаково. Если вы внимательно посмотрите на прожилки листьев, то заметите, насколько они самоподобны. Самые мелкие из них похожи на главную срединную жилку, а срединная жилка похожа на ствол дерева с его ветвями. Это справедливо только для сетчатого жилкования паутинистые, а не параллельные жилки. В природе пузырьки, которые образуются при разбивании океанских волн или падении капель дождя, образуют самоподобный узор с тонкими пленками жидкости, разделяющими газовые карманы разных размеров.
Фракталы в природе
Загадочный беспорядок: история фракталов и области их применения | В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. |
Математика в природе: самые красивые закономерности в окружающем мире | ПРОСТО ФРАКТАЛ. Фракталы в природе. |
Фракталы в природе | Природа создаёт удивительные и прекрасные фракталы, с безупречной геометрией и идеальной гармонией. |
Порядок в хаосе
- Идеи для фен-шуй
- Впервые в природе обнаружена микроскопическая фрактальная структура
- Фракталы — фигуры в дизайне: сакральные аспекты в геометрии и природа фракталов
- Фракталы вокруг нас
Молния фрактал
Ясно, что в этом случае алгоритм сводится к бесконечной формуле... Для любого значения числа с возможен один из двух результатов вычислений. Либо сумма постоянно растет - быстрее или медленнее, но рано или поздно "улетая" в бесконечность, либо она остается конечной, сколько бы шагов ни сделал алгоритм на практике берется не более 1000, что вполне достаточно. По мере роста числа шагов алгоритма выявляются новые и новые причудливые и стройные фрактальные структуры, неисчерпаемое богатство форм. А самое удивительное в том, что многие из них напоминают различные природные объекты: инфузории и снежинки, морские коньки и галактики, раковины и облака... Вот оно, самоподобие! Фрактальная геометрия природы выражается в том, что принцип самоподобия в приближенном виде выполняется во многих проявлениях: в линиях берегов морей и рек, в очертаниях облаков и деревьев, в турбулентном потоке жидкости и иерархической организации живых систем хотя нет ни одной реальной структуры, которую можно было бы последовательно увеличивать бесконечное число раз и которая выглядела бы при этом неизменной. Фрактальные структуры порождают процессы с обратной связью, когда одна и та же операция выполняется снова и снова, и результат одной операции является начальным значением для следующей. Проблемы, связанные с итерациями, возникают при изучении эволюции любой системы в любой области знания, от астрономии до биологии и экологии. Например, прочитать генетическую информацию ДНК человека в принципе возможно, не расшифровывая последовательно год за годом три миллиарда буквенных обозначений, а установив ключ, лежащий в основе кода. Несмотря на внешнее разнообразие встречающихся в природе самоподобных структур, все они обладают общей количественной мерой - фрактальной размерностью, характеризующей скорость увеличения элементов фрактала с увеличением интервала масштабов, на котором он рассматривается.
Сложные биологические структуры и сигналы могут быть численно охарактеризованы всего лишь одним параметром - показателем фрактальной размерности 1993г. Первая международная конференция "Фракталы в естественных науках". Как уже отмечалось, фрактальным строением обладает огромное число объектов и процессов в окружающем нас мире. Хрестоматийный пример фрактала - крона дерева. Крона имеет ветвящуюся многомасштабную структуру с отчетливо выраженным самоподобием: ветви разных масштабов похожи между собой и на дерево в целом. Примерами фракталов являются поверхность облаков и гор, разветвленные системы рек, траектории броуновских частиц, турбулентные вихри в атмосфере и в воде, контуры электрических разрядов и многие другие объекты и явления. Наше ощущение прекрасного возникает под влиянием гармонии порядка и хаоса в объектах природы - тучах, деревьях, горных грядах и кристалликах снега. Их очертания - динамические процессы, застывшие в физических формах, и определенное чередование порядка и беспорядка характерно для них. В 1992 году вышла книга М. Маковского "Лингвистическая генетика".
В ней автор доказывает, что человеческие языки развиваются по законам Менделя. У многочисленных "братьев" и "сестер" родительские признаки расщепляются по закону Менделя в соотношении 3:1. Дурная наследственность порождает мутации - появляются слова уродцы. Иногда часть слова перепрыгивает с места на место - происходит транспозиция. Лингвист Геннадий Гриневич писал, что языки мира подобны ветвям дерева, то есть имеют общий корень. Математик-лингвист Ноам Хомский доказал, что грамматики всех языков универсальны имеют общие стратегические черты. Эти и другие факты позволили лингвистам создать универсальную математическую модель человеческих языков, которая оказалась похожей на дерево. Существует математическая модель генетических текстов кодов. Все они имеют общее происхождение и общие черты, которые можно изобразить в виде дерева. Интересно, что сравнение обнаруживает полное сходство деревьев языков и генетических текстов.
Классические примеры фракталов — это папоротник, капуста брокколи, капуста романеско, горные пейзажи. В природе таких явлений достаточно много. Пока математики всерьез не взялись за такие объекты, не было ясно, как можно с ними взаимодействовать. Например, стоит задача: нарисовать кровеносные сосуды в легких. Это практически невозможно сделать без применения фрактальной геометрии. Мы попросили Давида Каца, аспиранта Института математики и механики К П ФУ, выступить для нас проводником в этот странный мир бесконечного повторения. Брокколи — конечно, полезный, замечательный продукт, но математики обычно с капустой дело не имеют. Самый классический объект: «Множество Кантора» или «Канторова пыль». Мы берем отрезок, делим его на три части и среднюю часть выкидываем. Потом повторяем и повторяем эту процедуру с каждым из оставшихся отрезков.
В чем странность этого объекта? Несмотря на то, что мы постоянно что-то выкидываем, у нас остается множество точек, весьма сложно устроенных. Есть еще один более замысловатый пример: «Салфетка Серпинского». Берем равносторонний треугольник, в серединах его сторон отмечаем точки, соединяем. Получаем равносторонний треугольник, который вырезаем. У нас остается три равносторонних треугольника. Дальше, как можно уже понять, мы то же самое делаем с каждым из треугольников до бесконечности. В чем здесь странные свойства? Исходный треугольник мы можем сделать сколь угодно большим, но при этом площадь у него будет нулевая.
Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера. В движении Фракталы бесподобны! Если сложить два фрактала вместе, то получится два фрактала, сложенных вместе. Фрактал — непонятный объект, который обладает весьма любопытными свойствами. Фрактал — с греч. Фрактал — с лат. Фрактал — очень умное слово современной науки. Как сказано в определении фрактал — это самоподобное… Действительно, вы можете взять в руки фрактал, и вы тут же заметите что он остается подобным самому себе бесконечно длительное время.
Неправильные и фрагментарные формы — облака, горы, листья — демонстрируют повтор почти однотипных фрагментов при разных масштабах наблюдения. На рисунке эти формы застыли. На самом деле они изменяются — облака движутся, пламя мерцает, лист увядает.
Бесконечность фракталов. Как устроен мир вокруг нас
Упорядочение работы сердца служит индикатором снижения хаотичности и в других, связанных с ним системах. Регулярность свидетель ствует об уменьшении сопротивляемости организма случайным воздействиям внешней среды, когда он уже не способен адекватно отследить изменения и достаточно гибко на них отреагировать. Очевидно, что подобной пластичностью и управляемостью должны обладать любые сложные системы, функционирующие в изменчивой среде. В этом залог их сохранности и успешной эволюции. От хаоса - к упорядоченности Как же обеспечивается целостность и устойчивость живых организмов и других сложных систем, если отдельные их части ведут себя хаотически? Оказывается, кроме хаоса в сложных нелинейных системах возможно и противоположное явление, которое можно было бы назвать антихаосом. В том случае, если хаотические подсистемы связаны друг с другом, может произойти их спонтанное упорядочение "кристаллизация" , в результате чего они обретут черты единого целого. Простейший вариант такого упорядочения - хаотическая синхронизация , когда все связанные друг с другом подсистемы движутся хотя и хаотически, но одинаково, синхронно. Процессы хаотической синхронизации могут происходить не только в организме животных и человека, но и в более крупных структурах - биоценозах, общественных организациях, государствах, транспортных системах и др.
Чем определяется возможность синхронизации? Во-первых, поведением каждой отдельной подсистемы: чем она хаотичнее, "самостоятельнее" , тем труднее заставить ее "считаться" с другими элементами ансамбля. Во-вторых, суммарной силой связи между подсистемами: ее увеличение подавляет тенденцию к "самостоятельности" и может, в принципе, привести к упорядочению. При этом важно, чтобы связи были глобальными , то есть существовали не только между соседними, но и между отстоящими далеко друг от друга элементами. В реальных системах, включающих большое число подсистем, связь осуществляется за счет материальных или информационных потоков. Чем они интенсивнее, тем больше шансов, что элементы будут вести себя согласованно, и наоборот. Например, в государстве роль связующих потоков играют транспорт, почта, телефонная связь и др. Поэтому повышение тарифов на эти услуги в том случае, когда оно приводит к уменьшению соответствующих потоков, ослабляет целостность государства и способствует его разрушению.
Из теории хаотической синхронизации следует, что согласованную работу отдельных частей сложной системы может обеспечивать один из ее элементов, называемый пейсмейке ром, или "ритмоводителем". Будучи связан односторонним образом со всеми компонентами системы, он "руководит" их движением, навязывая свой ритм. Если при этом сделать так, что отдельные подсистемы не будут связаны друг с другом, а только с пейсмейкером, - получим случай предельно централизованной системы. В государстве, например, роль "ритмоводителя" выполняет центральная власть и... Сегодня это в особенности относится к электронным средствам массовой информации, поскольку по мобильности и общему информационному потоку они значительно превосходят остальные. Интуитивно понимая это, центральная власть старается держать СМИ под контролем, а также ограничивает влияние каждого из них в отдельности. В противном случае управлять государством будет уже не она. Здесь мы коснулись очень важного вопроса.
Поскольку средняя сила связей является суммарным параметром, в который входят как материальные связи, так и информационные, то это значит, что ослабление одних из них может быть компенсировано усилением других. Простейший пример - замена реальных товаров на бумажные или даже электронные деньги. В этом случае поставщику, по сути, вместо материального продукта поступает информация об изменении на его счете - и такой обмен его вполне устраивает. Подобным же образом путем биржевых операций ежедневно приобретаются или теряются громадные суммы, которые, в конечном счете, кто-то должен компенсировать реальными продуктами или услугами. Как может происходить разрушение синхронизованного состояния? Об одной возможности мы уже упомянули. Это ослабление связей. Другая причина - неадекватное воздействие "ритмоводителя" на ансамбль.
Действительно, если "ритм", диктуемый пейсмейкером, будет слишком противоречить естественному поведению компонент системы, то даже при достаточной силе связи ему не удастся навязать ансамблю свою линию поведения. Однако прежнее поведение также не сохранится. В результате синхронизация будет разрушена. Фрактальность и устойчивость Мы уже убедились, что теорию динамического хаоса можно применить ко многим системам, в том числе к государству и обществу в целом. А какую роль играет при этом фрактальная структура хаоса? Ведь образ хаоса в фазовом пространстве - странный аттрактор - геометрически представляет собой фрактал. Несмотря на то, что каждая отдельная хаотическая траектория чрезвычайно чувствительна к малейшим возмущениям, странный аттрактор совокупность всех возможных траекторий является очень устойчивой структурой. Таким образом, динамический хаос подобен двуликому Янусу: с одной стороны, он проявляет себя как модель беспорядка, а с другой - как стабильность и упорядоченность на разных масштабах.
Если задуматься, то легко увидеть, что в обществе, как и в природе, многие системы построены по принципу фракталов: из малых элементов образуются некоторые комплексы, они в свою очередь служат элементами для более крупных комплексов и т. Как, например, организованы жизнеспособные экономические и производственные структуры? Две крайние позиции: крупные транснациональные компании и "мелкий бизнес". Каждая из них в отдельности нежизнеспособна. Большие компании, обладая огромной экономической мощью, малоподвижны и не могут быстро реагировать на изменения в окружающей экономической среде. Где же золотая середина? В средних по размеру предприятиях? Устойчивая экономическая инфраструктура обеспечивается при необходимой подкачке нужных ресурсов совокупностью разномасштабных вот он фрактал!
У основания ее находится множество мелких компаний и фирм, выше по пирамиде размер предприятий постепенно увеличивается, а их число, соответственно, сокращается, и, наконец, наверху находятся самые крупные компании. Такая структура характерна, например, для экономики США. При этом мелкие предприятия наиболее мобильны: они часто рождаются и умирают, являясь основными поставщиками новых идей и технологий. Нововведения, получившие достаточное развитие, позволяют ряду предприятий вырасти до следующего уровня либо передать продать накопленные инновации более крупным компаниям. При достаточной восприимчивости среды такой механизм способен создать новые отрасли промышленности и экономики за несколько лет. Недаром в так называемой "новой экономике" основную массу даже крупных предприятий составляют компании, которые 15-20 лет назад либо вообще не существова ли, либо находились в разряде мелких. Другой пример. Во времена перестройки много писалось и говорилось о "неправильном" устройстве СССР, в котором государство имело сложную иерархическую структуру, организованную по принципу матрешки.
Что было предложено взамен? Каждому народу свою туземную армию, свой язык, свою "элиту", своих племенных вождей. Звучит неплохо. С точки зрения теории устойчивости, идея однородного устройства российского государства - идея двоечника. Принцип матрешки - это, по сути, фрактальный принцип, благодаря которому хаотическая система обретает структуру и устойчивость. СССР и Российская империя были построены по принципу фрактальных систем, и это обеспечивало их стабильность как государств. На разных уровнях в общую систему были вкраплены естественные государственные, этнические, территориальные и другие образования с отлаженными механизмами внутреннего функциониро вания, со своими правами и обязанностями. Хаос порождает информацию Мы уже установили, что поведение хаотических систем не может быть предсказано на большие интервалы времени.
По мере удаления от начальных условий положение траектории становится все более и более неопределенн ым. С точки зрения теории информации это означает, что система сама порождает информацию, причем скорость этого процесса тем выше, чем больше степень хаотичности. Отсюда, согласно теории хаотической синхрониза ции, рассмотренной ранее, следует интересный вывод: чем интенсивнее система генерирует информацию, тем труднее ее синхронизировать, заставить вести себя как-то иначе. Это правило, видимо, справедливо для любых систем, производящих информацию. Например, если некий творческий коллектив генерирует достаточное количество идей и а активно работает над способами их реализации, ему труднее навязать извне какую-то линию поведения, неадекватную его собственным воззрениям. И наоборот, если при наличии тех же материальных потоков и ресурсов коллектив ведет себя пассивно в информационном смысле, не создает идей или не проводит их в жизнь - иными словами, следует принципу "... Хаотические компьютеры Чего нам не хватает в современных компьютерах? Если живой организм для существования в изменчивой среде должен обладать элементами хаотического поведения, то можно предположить, что и искусственные системы, способные адекватно взаимодей ствовать с меняющимся окружением, должны быть в той или иной степени хаотичными.
Современные компьютеры таковыми не являются. Они представляют собой замкнутые системы с очень большим, но конечным числом состояний. Возможно, в будущем на основе динамического хаоса создадут компьютеры нового типа - открытые с термодина мической точки зрения системы, способные адаптироваться к условиям внешней среды. Однако уже сегодня хаотические алгоритмы могут успешно применять ся в компьютер ных технологиях для хранения, поиска и защиты информации. При решении некоторых задач они оказываются более эффективными по сравнению с традиционными методами.
Nature 2024. Эксперименты по "обратной эволюции", восстанавливающие предковую форму белка, продемонстрировали, что фрактальный узор возник внезапно из-за нескольких мутаций, но впоследствии исчез у большинства видов цианобактерий. Уровни фрактальной сборки. Авторство: Sendker, F.
Данный факт подчёркивает важность стохастических процессов в эволюции, демонстрируя, что сложные фенотипы могут возникать без явной адаптивной функции. Молекулярная основа фрактальной сборки Авторство: Sendker, F.
Речь идет об эксперименте, который поставил Льюис Ричардсон Lewis Fry Richardson — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать всё новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений.
Ее довольно легко нарисовать, и, как оказалось, она характеризуется фрактальными свойствами. Один из вариантов данной кривой назвали в честь ее автора — «снежинка Коха». Далее идею самоподобия фигур развивал будущий наставник Б. Мандельброта француз Поль Леви.
В 1938 году он опубликовал статью «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому». В ней он описал новый вид — С-кривую Леви. Все вышеперечисленные фигуры условно относятся к такому виду, как геометрические фракталы. Динамические, или алгебраические фракталы К данному классу относится множество Мандельброта.
Первыми исследователями этого направления стали французские математики Пьер Фату и Гастон Жюлиа. В 1918 году Жюлиа опубликовал работу, в основе которой лежало изучение итераций рациональных комплексных функций. Здесь он описал семейство фракталов, которые близко связаны с множеством Мандельброта. Невзирая на то что данная работа прославила автора среди математиков, о ней быстро забыли.
И только спустя полвека благодаря компьютерам труд Жюлиа получил вторую жизнь. ЭВМ позволили сделать видимым для каждого человека ту красоту и богатство мира фракталов, которые могли «видеть» математики, отображая их через функции. Мандельброт стал первым, кто использовал компьютер для проведения вычислений вручную такой объем невозможно провести , позволивших построить изображение этих фигур. Человек с пространственным воображением Мандельброт начинал свою научную карьеру в исследовательском центре IBM.
Изучая возможности передачи данных на большие расстояния, ученые столкнулись с фактом больших потерь, которые возникали из-за шумовых помех. Бенуа искал пути решения этой проблемы. Просматривая результаты измерений, он обратил внимание на странную закономерность, а именно: графики шумов выглядели одинаково в разном масштабе времени. Аналогичная картина наблюдалась как для периода в один день, так и для семи дней или для часа.
Сам Бенуа Мандельброт часто повторял, что он работает не с формулами, а играет с картинками. Этот ученый отличался образным мышлением, любую алгебраическую задачу он переводил в геометрическую область, где правильный ответ очевиден. Так что неудивительно, что такой человек, отличающийся богатым пространственным мышлением, и стал отцом фрактальной геометрии. Ведь осознание данной фигуры может прийти только тогда, когда изучаешь рисунки и вдумываешься в смысл этих странных завихрений, образующих узор.
Фрактальные рисунки не имеют идентичных элементов, однако обладают подобностью при любом масштабе. Жюлиа — Мандельброт Одним из первых рисунков этой фигуры была графическая интерпретация множества, которая родилась благодаря работам Гастона Жюлиа и была доработана Мандельбротом. Гастон пытался представить, как выглядит множество, построенное на базе простой формулы, которая проитерирована циклом обратной связи. Попробуем сказанное объяснить человеческим языком, так сказать, на пальцах.
Для конкретного числового значения с помощью формулы находим новое значение. Подставляем его в формулу и находим следующее. В результате получается большая числовая последовательность.
Созерцание великого фрактального подобия
В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев. Это и есть яркое проявление фрактальной геометрии в природе. Фракталы представляют собой довольно сложные для определения математические объекты, но в общих чертах их можно охарактеризовать как геометрические формы, состоящие из меньших структур, которые, в свою очередь, напоминают исходную целостную конфигурацию. В ней он впервые заговорил о фрактальной природе нашего многомерного мира.
Открытие первой фрактальной молекулы в природе — математическое чудо
Когда вы думаете о фракталах, вам могут прийти на ум плакаты и футболки Grateful Dead, пульсирующие всеми цветами радуги и вызывающие завихрение сходства. Эволюция знает, как порадовать любителей фракталов и симметрии – 88 фотографий Образец, Флора, Композиция, Закономерности В Природе, Настенные Росписи, Макросъемки, Листья. Фракталы в природе Подготовила Андреева Алина Р-12/9.
ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ
Давай лучше рассмотрим дизайн фракталов в природе и науке, чтобы вернуть себе веру в волшебство. Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. Прекрасные фракталы в природе (18 фото) Морские раковины Nautilus является одним из наиболее известных примеров фрактала в природе. Как вам, например, такая фраза: «Фрактал – это множество, обладающее дробной хаусдорфовой размерностью, которая больше топологической».
Физики нашли фракталы в лазерах
Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных. Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера. Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке например, множество Кантора. Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».
Самые большие группы это: геометрические фракталы алгебраические фракталы стохастические фракталы Однако существует и другая классификация: деление на рукотворные и природныефракталы. К рукотворным относятся те фракталы, которые были придуманы учёными, они при любом масштабе обладают фрактальными свойствами. На природные фракталы накладывается ограничение на область существования — то есть максимальный и минимальный размер, при которых у объекта наблюдаются фрактальные свойства.
Именно с них и начиналась история фракталов. Этот тип фракталов — самый наглядный, потому что в нем сразу видна самоподобность. Получается он путем простых геометрических построений.
Обычно при построении этих фракталов поступают так: берется «затравка» - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой «затравке» применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил.
С каждым шагом фигура будет становиться все сложнее и сложнее, и, если мы проведем по крайней мере, в уме бесконечное количество преобразований, получим геометрический фрактал. Рисунок 3. Снежинка Коха Кривая Коха является типичным геометрическим фракталом.
Процесс её построения выглядит следующим образом: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. Выполнив аналогичные преобразование на сторонах равностороннего треугольника можно получить фрактальное изображение снежинки Коха.
Для его построения из центра треугольника мысленно вырезают кусок треугольной формы, который своими вершинами будет упираться в середины сторон исходного треугольника. Рисунок 4. Треугольник Серпинского.
Рисунок 5. Процесс построения Треугольника Серпинского Повторяют эту же процедуру для трех образовавшихся треугольников за исключением центрального , и так до бесконечности. Если теперь взять любой из образовавшихся треугольников и увеличить его, то получится точная копия целого.
Это и есть полное самоподобие. Кривая дракона И зобретена итальянским математиком Джузеппе Пеано. Ее построение начинается с нулевого порядка, которая представляет собой прямой угол.
Изображение фигуры каждого следующего порядка строится путем постоянных замен каждого из отрезков фигуры младшего порядка на два отрезка, сложенных также в виде прямого угла. При этом каждый первый угол оказывается вывернутым наружу, а каждый второй - вовнутрь. На рисунке проиллюстрирован алгоритм построения драконовой ломаной и изображен вполне взрослый дракон десятого порядка.
Здесь можно заметить, что два равных звена продолжают друг друга. Рисунок 7. Кривая Минковского.
Описано в 1883 году Г. Рисунок 8. Множество Кантора.
По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. Фракталы встречаются всюду: в продуктах питания, в бактериях,в растениях, в животных, в горах, в небе и в воде. Посмотрите потрясающие примеры фракталов в природе.
Самоподобные фигуры, повторяющиеся конечное число раз, называются предфракталами. Слайд 3 Описание слайда: Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: Слово «фрактал» употребляется не только в качестве математического термина. Фракталом может называться предмет, обладающий, по крайней мере, одним из указанных ниже свойств: 1. Обладает нетривиальной структурой на всех масштабах.
Классический пример картинки вы сможете найти, например, в книге Фракталы Е. Федер - осаждение кристаллов, например, коллоидного золота. Суть процесса в том, что в стакане осаждаются частички коллоидного золота, причем они могут "приклеиваться" как ко дну, так и к уже осадившимся частичкам. Первые частички на дно стакана падают практически произвольно - любая пылинка или неровность стакана может стать точкой, где начнется осаждение.
Однако как только первая частичка подклеилась в какое-то место, площадь поверхности в этой области сразу увеличивается - а значит, шанс, что следующая частичка приклеиться к этой поверхности, значительно выше. Когда следующая частица садиться здесь, площадь поверхности увеличивается еще сильнее - еще больше увеличивая вероятность осаждения частиц именно в этой области.
Фракталы вокруг нас
Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Фракталы в природе. Природный фрактал Минералы, Родохрозит, Кристаллы, Природа, Фракталы, Из сети, Фотошоп мастер, Фейк.